湖南省常德市鼎城区周家店镇中学七年级数学上册5.8教育储蓄教案北师大版【精品教案】
北师大版七年级上册数学5.8 教育储蓄 练习

5.8 教 育 储 蓄一、课前练习:1、顾客存入银行的钱叫____________,银行付给顾客的酬金叫____________,本息和是指_______________与___________的和。
2、小明把春节得到的1000元钱存入银行,一年后,小明扣除利息税后连本带息共取回1140.8元,小明得到的利息是_________元,他存入银行的这一年的利率是__________。
3、银行存款的年利率是2.5%,某人存款4000元,一年后取出本金和利息共_______元。
二、探索练习:为了准备不颖6年后上大学的学费5000元,她的父母现在参加了教育储蓄。
下面有两种储蓄方式:(1)直接存一个6年期;(年利率为2.88)解:设开始存入x 元,根据题意得:解得:x ≈4263答:(2)先存一个3年期的,3年后将本息和自动转存一个3年期。
(年利率为2。
70) 年期第一个3年期后,本息和为x x 081.1)3%7.21(=⨯+⨯第二个3年期后,本息和要达到5000元,由此可得:解:设开始存入x 元,根据题意得因此,按第________种储蓄方式开始存入的本金少。
三、巩固练习:1、一年前小明把80元压岁钱存进了银行,一年后本息正好够买一以录音机,已知录音机每台92元,问银行的年利率是多少?2、为了使贫困学生能够顺利地完成大学学业,国家设立了助学贷款。
助学贷款分0.5~1年期、1~3年期、3~5年期、5~8年期、四种,贷款利率分别为5.85%, 5.95%, 6.03% , 6.21%,贷款利息的50%由政府补贴。
某大学一位新生准备贷6年期的款,他预计6年后最多能够一次性还清20000元,他现在至多可以贷多少元?(可借助计算器)3、某公司存入银行甲、乙两种不同性质的存款共20万元,甲种存款的年利率为1.5%,乙种存款的年利率为3.5%,该公司一年共得利息4600元,求甲、乙两种存款各多少万元?4、某商店将彩电按原价提高40%,然后又八折处理,结果每台彩电比原来多赚270元,每台彩电原价多少元?5、敌我两军相距25千米,敌军以每小时5千米的速度逃跑,我军同时以每小时8千米的速度追去,并在相距1千米处发生战斗,问战斗是在开始追去几小时后发生的?6、矿山爆破时,为确保安全,点燃引火线后,要在爆破前转移到300米以外的安全地区,引火线燃烧速度是0.8 cm/秒,人离开的速度是5米/秒,问引火线至少需要多少厘米长?7、提高题:某人将200元钱按两种不同方式存入银行,将100元钱按活期方式存一年,另100元按定期存一年,一年共取回210.44元,又已知定期一年存款月利率为0.63%,求活期存款月利率是多少?8、提高题:李明的父亲2006年12月30日存入一笔钱,已知存款的年息为2.25% ,按照中华人民共和国公民存款需要缴纳20%的利息税(即利息税是按利息的20%进行缴纳,这个税由银行代扣代收),最后李明的父亲拿到了16288元。
新北师大版七年级上册数学教案最新

新七年级上册数学教案最新新北师大版七年级上册数学教案最新作为一位优秀的人民教师,很有必要精心设计一份教案,借助教案可以有效提升自己的教学能力。
如何把教案做到重点突出呢?下面是小编为大家收集的新北师大版七年级上册数学教案最新,欢迎大家分享。
新北师大版七年级上册数学教案最新1一、教学目标:通过观察生活中的大量物体,认识基本的几何体。
经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
二、教学过程:1、引入:(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。
2、过程:(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。
老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论如何对以上几何体进行分类:(1)按底面(2)按侧面学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:(1)、上图中哪些物体的形状与长方体、正方体类似?(学生在回答桌面时老师应指出桌面是指整个层面)(2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?(3)请找出上图中与笔筒形状类似的'物体?(4)请找出上图中与地球形状类似的物体?4、想一想:生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
5、小结:与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。
湖南省常德市鼎城区周家店镇中学七年级数学上册 6.2 科学记数法教案 北师大版

6.2.科学记数法一、学生起点状况分析学生的知识技能基础:在学习本课之前,学生学习了有理数的乘方,100万有多大等内容,这节课进一步学习大数的表示——科学记数法。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些数据搜集体验活动,感受到了大数据在生活中的广泛应用。
二、教学任务分析本节课学习内容是用科学记数法表示比10大的数。
大数在实际生活中有着广泛的应用,因此在教学中结合实验、计算器、多媒体等现代教育手段实施教学能突出本课特色,同时在课堂中引导学生主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力,从而增强数学应用意识,养成良好的学习习惯。
并为七年级下册学习用科学记数法表示“小数”打下基础。
为此,本节课的教学目标是:①理解科学记数法的意义,并学会用科学记数法表示比10大的数。
②积累数学活动经验,发展数感、空间感,培养学生自主学习的能力。
③感受科学记数法的作用,体会科学记数法表示大数的优越性及必要性。
三、教学过程设计本节课由六个教学环节组成。
第一环节:创设情景,导入问题;第二环节:探索新知,解析问题;第三环节:运用新知,解决问题;第四环节:分析归纳,探索规律;第五环节:随堂练习,巩固新知;第六环节:课堂小结,布置作业。
第一环节情境引入,导入问题内容:在生活中还经常遇到比100万更大的数. 教师以中国人口、太阳半径、光速中的数据为切入点,引出本节课研究的问题:上面这些数都很大,你该怎样表示它们呢?目的:创设学生感兴趣的问题情景--“神舟”五号载人飞船的发射成功。
激发学生的学习热情,同时培养学生民族自豪感。
从一系列的数据中体会大数“读”“写”的困难,从而导出课题。
效果:学生感受到问题的产生来源于生活实际问题,有了极大的探究热情。
第二环节:探索新知,解析问题;内容:(1)提出以下问题。
问题1、回顾有理数的乘方运算,算一算:102= 104= 108= 1010=请学生讨论回答(1)1021表示什么?(2)指数与运算结果中的0的个数有什么关系?(3)与运算结果的数位有什么关系?问题2、把下列各数写成10的幂的形式:100000=10000000=1000000000=(2)给出情境:小明想知道计算器是怎样表示数的大数的,于是他输入1 000,连续地进行平方运算,两次平方后,发现计算器上出现了下图这样的显示。
湖南省常德市鼎城区周家店镇中学七年级数学上册 1.1 生活中的立体图形教案 北师大版

1.生活中的立体图形(一)一、学生知识状况分析生活中的立体图形,学生在生活中有所感受,在小学阶段也学过棱柱、圆柱、圆锥、球等,对简单几何体的基本特征、联系和区别有所了解,对几何体分类等知识已具有一定的认知水平,但由于学生刚进入初中阶段学习,在数学学习过程中,难免会遇到各方面的困难,教师对此应有充分的应对措施。
二、教学任务分析本节是学生进入初中后的第一节数学课,他们充满了对数学课以及数学教师的好奇和期待。
教师要因势利导地吸引他们参与到课堂中来,感悟数学在生活中的应用。
教师为学生创设丰富的现实生活情境,鼓励学生从身边去发现立体图形,在观察、操作、思考、交流中感受几何体的特征,激发学生的学习兴趣,在数学活动中,培养学生合作交流的意识和积极主动表达自己观点的能力。
鉴于此,本小节的教学目标如下:1.在具体的情境中,认识并能够辨别出基本的几何体。
2.通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。
3.有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
本节课的重点是在具体的情境中,认识一些基本的几何体,并能描述这些几何体的特征。
本节课的难点是描述几何体的特征,对几何体进行分类。
三、教学过程分析本节课由六个教学环节组成:情境引入、生活观察室、画一画说一说、引导归纳、趣味活动、小结及作业。
具体内容与分析如下:第一环节情境引入内容:教师展示几何模型(圆柱、圆锥、正方体、长方体、棱柱、球等),引导学生思考这些几何体的名称,并主动寻求这些几何体的现实背景。
目的:让学生通过观察联想感受几何体的基本特征,培养他们的空间观念,同时激发学生的学习兴趣,为下一个环节做好铺垫。
注意事项与效果:第二环节生活观察室:考察你的观察能力活动1:教师依次展示上海浦东建筑物图片、三峡截流石图片和金字塔图片(如下图)要求学生从图片中寻找出所熟悉的几何体。
活动2:学生分组活动,解决课本P3的问题串:目的:通过三组图片的展示使学生能够在丰富多彩的现实生活中辨认出特征鲜明的几何体,认识到几何体的特征是我们认识不同几何体、区别不同几何体的钥匙,意识识到我们所学习的这些几何体大到古代建筑、小到日常生活学习用品就在的现实生活中广泛存在,数学与生活紧密相连。
湖南省常德市鼎城区周家店镇中学七年级数学上册3.1字母能表示什么教案(北师大版)

3.1 《字母能表示什么》[教学目标]一、知识与技能目标1、能从具体情境中探索出规律并用字母及代数式表示;2、在现实情境中理解用字母表示数的意义,形成初步的符号感;3、能用字母及代数式表示已学过的运算律和计算公式。
二、过程与方法目标1、经历从具体情境中抽象出符号,用字母表示数,这一由具体到抽象,由特殊到一般的思维过程;2、能对具体情境中的数学信息作出初步的解释和推断,能用字母及代数式刻画简单的数量间的关系;3、让学生初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以互相转化的辨证关系。
三、情感与态度目标1、从学生所熟悉的,与学习和生活经验密切联系的问题中创设学习情境,使学生在轻松学习抽象的数学知识的同时,体会数学与现实生活的密切联系;2、通过学习活动中探索新知的过程,体会与他人合作交流的重要性;3、体验数、字母与符号是有效地描述现实世界的重要手段,敢于面对数学活动中的困难,建立学好数学的自信心。
[教材分析]作为“九义”教材“整式的加减”中的传统内容,新教材中并没有出现整式、单项式、多项式概念以及升幂、降幂排列等,而是重点突出用字母表示数,使学生建立符号感。
在解决实际问题的过程中引导学生动手、动脑,体会用字母表示数使数学更简洁,是数学发展的必须。
作为本章的开篇课,使学生体会到用字母表示数的思想,对指导学生学好代数入门知识将起到关键作用,并为后续的代数学习奠定基础。
[教学重点]1、在现实情境中引导学生探索并用字母表示规律;2、用字母表示学过的公式、法则、运算律等;3、体会用字母表示数本质上是从事物的特殊性中归纳出一般性。
[教学设计理念]以新课程标准为指导,本节课的教学设计,按照新课程教学理念,较之传统教学主要有如下转变:1、不仅考虑数学自身的特点,更应遵循学生学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题转化到数学知识,并进行解释与应用的过程;进而使学生在获得对数学知识理解的同时,在思维能力、情感态度与价值观等方面得到进步与发展。
湖南省常德市鼎城区周家店镇中学七年级数学上册4.6垂直教案北师大版【精品教案】

垂直一、学生起点分析上一课时已经研究了两条直线(线段)的位置关系,研究的方法是通过直观和大量的操作活动经验得出的,学生能从大量的生活素材中提炼出数学问题,并能积极动手、动口、动脑来研究归纳问题。
在知识基础方面,垂直在小学中已给出定义,学生能根据图形的已知条件判断两直线是否垂直。
不过在这一课时中研究与思考问题时要用到类比的学习方法,如类比“平行”的表示、性质的归纳等,特别是定义中的“同一平面内”等关键处的理解。
考虑到学生已有知识的储备,本课时的定义引入可以精减一些素材,突显简洁干炼。
二、教学任务分析本课时是通过角的度量来说明两条直线的位置关系,这种转化的思想方法,学生刚接触,开始一定要细致。
垂直性质的得出仍然是通过大量的操作活动而得出的,在活动中,学生要操作、交流充分。
主要教学目标:1、会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线。
2、通过丰富的画、折等操作活动探究并归纳垂直的性质。
3、用类比“平行”的研究方法来研究垂直的表示和性质归纳,初步感受有条理的说明问题;强化表达能力和用数学交流的能力。
重点是垂直的定义和性质以及通过实验操作、交流探究来研究垂直性质的方法。
在学习中是一定要引导学生将“平行”与“垂直”对比来归纳与区别,继续渗透“直观——归纳——运用”的数学学习方法。
课前准备好三角板、直尺、量角器和圆规、铅笔、方格纸、白纸等学习用品。
三、教学过程设计本课时由如下几个环节构成:创设情景,适时点题----定义运用,掌握画法----活动探究,归纳性质----知识运用,课堂小结.第一环节,创设情景适时点题内容:设计一组问题串(1)出示问题:学校操场上的旗杆或厨房房顶上的烟囱裁的标准吗?(2)进一步引导学生猜想两条直线如何才算垂直?由此引入课题——垂直,指出定义中的关键字眼,明白“互相”的含义,引导学生对比“平行”的表示与读法来表示两直线垂直,并在图中标示。
目的:对于问题(1)学生由生活经验会得出:标不标准看是否与地面垂直,进而进一步追问垂直怎样判断?再由小学垂直的基础知识得出:旗杆与地面的角是否成90度,谈到这里不再深究。
湖南省常德市鼎城区周家店镇中学七年级数学上册 3.3
3.3 代数式求值一、教学目标1.了解代数式的值的概念.2.会求代数式的值.3.利用求代数式的值解决较简单的实际问题.4.通过引例培养学生解决实际问题的能力.5.通过例题的讲解培养学生良好的学习习惯和品质,提高运算能力.6.通过求代数式的值渗透特殊与一般的辩证关系思想.二、重点、难点1.重点:求代数式的值.2.难点:代数式的值的概念和代数式既有联系、又有区别.需要辨证地看问题。
三、教学步骤(一)创设情境,复习导入师:谁能回忆出上节课研究的什么问题?学生活动:思考后举手回答(列代数式).师:对.上节课同学们表现都很出色,下面看同学们巩固的怎样.1.设教室里座位的行数是m,每行座位数比座位的行数多3,教室里总共有多少个座位?(出示小黑板)学生活动:m(m+3)个.(师板书)师:你能用最快的速度说出我们班的座位数吗?你是怎样算出来的?2.为了开展体育活动,学校要添置一批排球,每班配2个,学校另外留10个,n个班总共需要多少个排球?学生活动:互相讨论后写在练习本上.一个学生板演()个.3.底是a cm,高是h cm的三角形的面积怎样表示?学生活动:回答问题.().师:很好.先看1题,若甲班座位行数是6,该班总共有__________个座位?6*(6+3)=54.若乙班座位行数是7呢?7*(7+3)=70 .座位数在m=6或7时一样吗?这说明m取不同的值时代数式m(m+3)的计算结果不同.再看2题,若班数是15(即),则排球总数是:;若班数是20(即),则排球总数是师:你由此看出什么结论?(说明n取不同值时,代数式的计算结果也不同),此时,我们说当时,代数式的值是40;当时,代数式的值是50.这就是今天我们要认识的代数式的值.[板书] 3.3代数式的值问:由上面观察代数式的值和什么有关呢?(代数式中字母的取值)【教法说明】由学生熟悉的实际问题入手,引出概念,对学生兴趣的培养.学习目的的端正都是有益的.这里应注意学生活动,师不能越俎代庖.(二)探索新知,讲授新课.学生活动:观察P/110中图3-2的数值转换机思考并回答.师:你能说出图3-2、图3-3中输出的代数式的值吗?学生活动:回答问题,师注意规范学生语言.师:由自己给出3题中a、h的值并计算相应的面积.学生活动:在练习本上运算.师:根据学生运算结果问:能说的值是2吗?学生活动:不能.须指出字母取值,即当时的值是2.【教法说明】一环紧扣一环的发问,使学生对代数式的值的概念有了清楚的认识,分散了难点,也培养了学生逻辑思维能力.师:在今后解决问题的过程中,往往需要根据代数式中字母取值确定代数式的值,你能根据代数式的值的概念找出求代数式的值的方法吗?学生活动:积极思考,相互讨论,找出方法:一是代入,二是计算.师:很好,下面实践一下,看P/110议一议4.完成P/111随堂练习1~25.当时,求代数式的值.学生活动:找一个学生口述,教师板书过程.[板书]解:当时注意:①代入数值后“乘号”要填上;②要按数的运算法则进行运算.【教法说明】由学生探索方法大胆实践有利于培养学生开拓进取精神,养成善于思考总结规律的习惯.(三)尝试反馈,巩固练习6.根据下面a、b的值,求代数式的值.(1);(2)问:a能等于0吗?练习1.(1)当时求代数式的值.(2)当时,求代数式的值.2.填表…18 12 30 …学生活动:写在练习本上,4个学生板演例2和练习1题.师:及时肯定和鼓励.并问:例2和练习1两题与练习2题在问法上有什么不同?学生活动:观察思考并回答.(例2和练习1题求的是当字母取不值时同一代数式的值;练习2题是两个字母分别取定某一数值时,不同代数式的值.)【教法说明】师在学生活动时注意巡视,指导学生开展尝试活动,培养学生运算能力.(四)变式训练,培养能力7.下题是某同学所做,你同意他的做法吗?若不同意请按你的想法写出过程:当时,求代数式的值.解:当时,【教法说明】通过辨析,澄清错误认识,培养学生的批判性;(五)归纳小结师:(1)什么叫代数式的值?它与代数式有什么不同?一般地,用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值. (不向学生要求)(2)求代数式的值的方法:先代入,后计算.运算时既要分清运算种类,又要注意运算顺序.(3)列代数式是从特殊到一般;求代数式的值是从一般到特殊,体现了特殊与一般的辩证关系.五、布置作业(一)必做题:课本第112页知识技能1、2、3.数学理解1。
北师大版初中数学七年级上册全册教案
北师大版初中数学七年级上册全册教案北师大版初中数学七年级上册全册教案北师大版七年级数学上册精品教案全集(共140页)第一章丰富的图形世界第一课时介绍单元整体说明本章在小学数学和中学数学的联系中起着承上启下的作用。
编写本章的目的在于:(1)帮助学生梳理小学的数学知识和数学方法。
(2)为学生学习中学数学作必要的准备。
本章较充分地体现了课程标准的基本理论,学习本章将为其他各章的学习提供了一个示范。
本章体现的数学思想方法、数学人文精神、数学应用意识、数学价值观等都应该在其他各章的学习中得到贯彻。
本章按照如下线索展开内容:数学伴我成长——人类离不开数学——人人都能学会数学——让我们来做数学贯穿于内容的始终。
课程内容标准使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识。
使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。
使学生对数学产生一定的兴趣,获得学好数学的自信心。
使学生学会与他人合作,养成独立思考与合作交流的习惯。
使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。
结构体系单元教学建议鉴于本章承上启下的特点,故教材内容只是给教师提供一个教学思路,教师可根据教学目标,结合学生的具体情况,补充适当的素材,灵活安排教学内容,调节课时数。
教学的总要求是以学生为主体,使学生在活动中主动构建对数学的认识,具体应注意以下几点:1.适当补充一些能引起学生学习兴趣的素材。
2.注意引导学生通过实验得出结论。
如第3页的练习第2题、第5页的练习第2题、习题1.1的第3题与第4题、第11页的练习第1题以及习题1.2的第6题都应该让学生通过实验,主动探索得出结论。
3.通过多媒体演示,帮助学生理解。
如第3页的练习第2题、第5页的练习第2题、习题1.1的第3题与第4题以及第11页的练习第1题等都可以通过多媒体的演示来帮助学生理解。
4.给学生提供实地考察、调查的机会。
有条件的话,应给让学生实地考察一些生产、生活中应用数学的例子。
湖南省常德市鼎城区周家店镇中学七年级数学上册5.5打折销售教案(北师大版)
5.5打折销售●教学目标(一)教学知识点1.整体把握打折问题中的基本量之间的关系:每件商品的利润=商品售价-商品成本价;每件商品的利润率=利润÷成本×100%.2.探索打折问题中的等量关系,建立一元一次方程.3.进一步经历运用方程解决实际问题的过程,总结运用一元一次方程解决实际问题的一般步骤.(二)能力训练要求让学生亲身经历和体验运用方程解决实际问题的过程,培养学生抽象、概括、分析问题、解决问题的能力.(三)情感与价值观要求1.在解决生活中富有挑战性问题的过程中,培养学生敢于面对挑战和勇于克服困难的意志.2.鼓励学生大胆尝试,从中获得成功的体验,激发学生学习数学的热情.●教学重点1.把握打折问题中的相等关系.2.根据以往的经验,总结出运用方程解决实际问题的一般步骤.●教学难点1.把握打折问题中的相等关系.2.全面、准确、系统的审题.●教学方法教师引导法学生根据对市场商品的标价、进价(即成本价)等的调查,让学生主动参与学习过程,引导学生在课堂活动中感悟和体验知识的生成、发展和应用的过程.●教具准备投影片三张第一张:(记作§5.5A)商品销售中基本概念第二张:(记作§5.5B)教材例题第三张:(记作§5.5C)补充例题●教学过程Ⅰ.创设问题情境,引入新课师生共同根据市场调查,讨论分析商品销售中的几个概念.[师]同学们,上一节课我给大家留了一个特殊的作业,让你们去做市场上的价格调查.结果如何?[生甲]老师,我发现商场中,每件服装有一个标价牌,标出服装的价钱.[生乙]老师,我还发现有的换季的,过时的一些服装旁边写着“打七折”,老师,“打七折”什么意思?[师]谁来告诉这位同学呢?[生]我是和妈妈一块去的商场,当时,我也不明白,后来妈妈告诉我说:打七折就是按标价的十分之七或百分之七十可以买到那件衣服.[生乙]老师,那商场不就少卖百分之三十的钱,不就亏啦.(同学们哗然)[师]这位同学很爱动脑子思考问题,那么会不会亏了呢?同学们讨论一下.(2分钟时间)[生]老师,我觉得不会亏的,因为商家不会做赔本买卖的,做生意就是为了赚钱.但我不明白,这钱商场是如何赚到的.[生]我认为,商场在进这件服装时,有一个进价,卖衣服时有一个标价,而标价可比进价定高点,以致于打折后也比进价高,所以,商场不会亏的.[师]这位同学分析的太精彩了.确实如此,一般情况下,商场总得赚一些钱,也就是获得一定的利润.下面我们就来详细地了解一下商场是如何赚钱的即如何获得利润的?并投影片(§5.5A)来进一步明确一下商品销售中的基本概念及相等关系.投影片:(§5.5A)有时称成交价,卖出价Ⅱ.讲授新课1.问题提出:投影片:(§5.5B)2.在这一问题情境中哪些是未知数?哪些是已知数?如何设未知数?相等关系是什么?3.用含未知数的代数式表示:每件服装的标价:;每件服装的实际售价为:;每件服装的利润为:;由此列出方程:;生在师的引导下独立思考上述问题,然后同桌进行交流,最后师生合作回答问题:1.这15元的利润是这件服装的销售价与成本价的差.2.在这一问题情境中已知数有:标价是成本价提高40%的价,售出时又以标价的80%出售,每件服装的利润是15元;未知数是:每件服装的成本价.故可设成本价为x元.相等关系为:利润=售价-成本价.3.每件服装的标价:(x+40%x)元.每件服装的实际售价:(1+40%)·x·80%元每件服装的利润:[(1+40%)·80%x-x]元由此,列出方程为:(1+40%)·80%x-x=15[师]下面请同学们完整地写出此题的过程.由一学生板演.解:设这种服装每件的成本价为x元,根据题意得:(1+40%)·80%x-x=15解得:x=125答:每件服装的成本价为125元.2.例题讲解[例]小明的爸爸是某电器城销售部的经理,为了促销某种家用电器,需优惠顾客,打折出售此家用电器.我们看问题.投影片(§5.5C)明白题目中的已知量、未知量外,最重要的便是相等关系.让学生分小组讨论,这个题中的未知数如何设?相等关系如何找?经大家充分合作、交流意见后,派代表谈想法.[生]利润率不低于5%即大于或等于5%,最低利润为5%.因为打折数低利润率就低,折数增加,利润率也增加.所以最低的利润率对应于最低的折数,因此可设最低可打x折.[师]这位同学分析的很透彻,他们很了不起,能够将销售问题中各个量联系的如此紧密,说明你们组合作很愉快,祝贺你们用团队精神赢得了胜利.(同学们热烈掌声说明一切)[生]我们组找到了相等关系即进价进价折数标价-⨯⨯)%10(=利润率[生]我们组找到的相等关系为:进价×(1+利润率)=标价×(折数×10)%[师]这些同学想得都很好,说明他们都爱动脑子,下面我们就根据以上几个同学的回答来完整地将问题解决,小明的爸爸一定会很满意.[师生共同完成]解:设最低可打x折,根据题意,得5000(1+5%)=6500×10x%解,得x≈8答:最低可打8折.Ⅲ.课堂练习课本P157随堂练习解:设这批夹克每件的成本价是x元,根据题意,得(1+50%)×80%x=60解得x=50答:每件的成本价50元.Ⅳ.议一议[师]通过对《日历中的方程》《我变胖了》以及这一节的《打折销售》的学习,再根据以往学习的经验,我们来再一次分组讨论:用一元一次方程解决实际问题的一般步骤是什么?同学们积极地参与讨论,老师可接近学生,听他们说些什么,以便及时了解他们用一元一次方程解决实际问题中的困惑.[生]我们在学习《日历中的方程》时,首先根据题意,寻找到了相等关系,然后设出未知数,用列代数式的方法将相等关系转化成了方程,于是就将实际问题解决了.[生]我不同意上面这个同学的意见,我们在设出未知数,列出方程,并解出方程.同时,解出方程后还应注意检验求出的值是不是方程的解,是否具有实际意义.[师]你能给大家举一个例子吗?[生]可以.例如:课本P151的第(4)、(5)小问,如果竖列相邻三个数的和是75,设中间的一个为x,则(4)列出方程为:x-7+x+x+7=75,解得x=25,于是日历中就出现了32号,与实际不符,因此(4)问中无解.(5)也是同样的道理.[师]这位同学能联系前后知识,联系实际.我们如果具有了这种能力,就能够很好地用数学知识,指导我们的生活实际.这正是我们所提倡的:人人都学有用的数学.可见,我们要应用一元一次方程解决实际问题关键步骤是:根据题意,寻找相等关系.同时解出方程后注意检验求出的值是不是方程的解,是否符合实际.同学们翻开书P157,我们来看一下用一元一次方程解决实际问题的一般步骤框图.哪位同学能回顾一下以前学过的问题,来阐述每一步的含义.[生]有一些标有3、6、9、12…的卡片,后一张卡片上的数比前一张卡片上的数大3,小华拿到相邻的5张卡片,能使这些卡片上的数之和为100吗?我们可以将这个问题抽象成数学问题,通过分析已知量,由于后一张卡片上的数比前一张卡片上的数大3,因此可设相邻五个卡片,中间的为x,前两个分别为x-6,x-3;后两个分别为x+3、x+6,根据题意可知相等关系是这五个卡片上的数字之和为100,因此列出方程为:(x-6)+(x-3)+x+(x+3)+(x+6)=100,解得x=20.经验证,20不是3的倍数,因此可判断没有一张卡片标有20,因此说明20不符合题意即拿不到相邻的5张卡片,使得它们的和为100.说明:回顾以前的问题,加深理解每一步的含义,无需记忆.[师]这位同学举的例子很典型,也很清楚地说明了用一元一次方程解决实际问题的一般步骤.我们谢谢他.Ⅴ.课时小结1.能理解商品销售问题中的基本概念及相等关系.熟练地应用“利润=售价-成本价”“利润率=利润÷成本价×100%”来寻找商品销售中的相等关系.2.能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤.Ⅵ.课后作业(一)课本P157习题5.81、21.解:设这种商品的成本价为x元,则(1+20%)·90%·x=270解得x=250答:这种商品的成本价为250元.2.解:设销售量应增加x台,则100000(1-80%)=2500×80%x解得x=10答:销售量应增加10台.Ⅶ.活动与探究在我们的身边有一些股民,在每一次的股票交易中是或盈利或亏损.某股民将甲、乙两种股票卖出,甲种股票卖出1500元,盈利20%;乙种股票卖出1600元,但亏损20%.该股民在这次交易中是盈利还是亏损?盈利或亏损多少元?过程:通过家长或亲戚朋友了解股市的一些简单规则.结果:可设甲种股票买进时用了a元,乙种股票买进用了b元,根据题意,得:a(1+20%)=1500,解得a=1250.b(1-20%)=1600,解得b=2000.∴甲种股票盈利:20%a=1250×20%=250(元)乙种股票亏损:20%b=2000×20%=400(元)则该股民在这次交易中亏损:400-250=150(元)●板书设计●备课资料(一)商品销售中的几个问题 随着国家新课程标准的推广与实施,以一元一次方程解应用题的背景内容大为丰富,体现改革开放、经济意识和鲜明的时代特色,我们将要谈到商品销售问题就是其中之一.而此类问题主要有以下热点: 1.求商品标价[例1]某商品的进价是1530元,按商品标价的9折出售时,利润率是15%,商品的标价是多少元?(人教版课本P 233第11题)解:设此商品的标价为x 元,根据题意,得153015309.0-⨯x =15%解,得x =1955答:此商品的标价是1955元.2.求商品进价[例2]某商品的标价为320元,打9折销售时利润率为15.2%,此商品的进价为多少元?解:设此商品的进价为x 元,根据题意,得320×90%-x =15.2%x解得x =250答:此商品的进价为250元.3.求利润率[例3]一商店将每台彩电先按进价提高40%,标出售价,然后广告宣传将以80%的优惠价出售,结果每台赚了300元,则经销这种产品的利润率是多少?解:设该商品的进价为a 元,经销这种产品的利润率为x ,依题意,得a ×(1+40%)×80%=a (1+x )解得x =0.12,即x =12%答:经销这种产品的利润率为12%.4.求折扣数[例4]某商品的进价为1250元,按进价的120%标价,商店允许营业员在利润不低于8%的情况下打折销售,问营业员最低可以打几折销售此商品?解:设营业员最低可打x 折销售此商品,依题意,得1250×120%×10x=1250×(1+8%)解得x =9答:营业员最低可以打9折出售此商品.5.求盈亏[例5]某商店有两种进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈利还是亏损?盈利或亏损了多少元?解:设盈利的一件成本为x元,亏损的一件成本为y元,依题意,得(1+60%)x=64,则x=40.(1-20%)y=64,则y=80.成本共是40+80=120(元)而售价为64×2=128(元)故赚8元.(二)思维能力拓展1.进价、标价、利润率、折数之间的关系为:进价×(1+利润率)=标价×(10×折数)%.在此相等关系中,共有四个量,任意已知三个量,就可求出第四个量.这正是数学中方程思想的渗透.2.可借助商品销售中的概念及关系,通过列方程,解有关经济方面的问题如股票问题等.(三)参数在解应用题中的应用先让我们来看下面的例题:[例]某企业生产一种产品,每件成本价是400元,销售价为510元,本季度销售了m件.为进一步扩大市场,该企业决定在降低销售价的同时降低生产成本.经过市场调研,预计下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本价应降低多少元?分析:题目中的“销售利润”指的是总利润,故本季度利润为(510-400)m元;若下季度该产品每件的成本降低x元,则每件成本为(400-x)元;销售量提高至(1+10%)m,销售价降为510(1-4%)元/件,故下季度的利润为[510(1-4%)-(400-x)]×(1+10%)m,根据题意,列方程得[510(1-4%)-(400-x)](1+10%)m=(510-400)m看到这个方程,有些同学可能犯愁了:一个方程中有两个未知数,该怎么解呢?仔细观察方程特征,从总体上看,左右两边均为乘积形式,且都有因数m,因m≠0,方程两边都除以m得[510(1-4%)-(400-x)](1+10%)=510-400这不就成了一元一次方程了吗?解这个一元一次方程,得x=10.4所以,该产品每件的成本价应降低10.4元.在这道题中,m最终被消去了,我们并没有求它,但它在分析题目的过程中,给我们带来了很大的方便,我们就把这种“乐于主动助人,做好事不留名”的量,称为“参数”.在上例中,参数是题目给出的,但更多的情况下,参数是需要我们根据实际设出的,所以这种方法被称为设参数法,把这个参数称为只设不求的未知数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 5.8教育储蓄 ●教学目标 (一)教学知识点 1.熟练地按解一元一次方程解应用题的步骤解题. 2.利用本金、利息、利率、期数之间的关系列方程解应用题. (二)能力训练要求 1.通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型. 2.能利用计算器处理实际问题中的复杂数据. (三)情感与价值观要求 在学习数学过程中,体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学习数学的兴趣,应用数学的意识. ●教学重点 1.利用本金、利息、利率、期数等数量关系运用方程解决实际问题; 2.进一步体会方程是刻画现实世界的有效数学模型; 3.运用计算器处理复杂的数据. ●教学难点 利用本金、利息、利率、期数等数量关系,经历列出方程解决实际问题的过程. ●教学方法 引导启发式 通过课前组织学生到银行了解有关信息、教育储蓄等知识,引导学生弄清楚本金、利息、利率、期数的概念及它们之间的关系,在教师的启发下解决教育储蓄问题. ●教具准备 投影片两张 第一张:记作§5.8 A 储蓄问题中的术语 第二张:记作§5.8B 教育储蓄例题 ●教学过程 Ⅰ.创设情景、提出问题、引入新课 [师]昨天,我们组织去银行了解有关利息,教育储蓄等知识,谁能把了解到的情况为大家汇报一下. [生]经了解,我国从1999年11月1日起开始对储蓄存款利息征收个人所得税,即征收存款所产生的利息的20%,但教育储蓄和购买国库券暂不征收利息.还有关于利率……. [师]大家有没有注意到,在这个同学叙述了解到的情况时,用了很多储蓄的专业术语,如利息、利率、还有国家对储蓄存款利息征收的个人所得税即利息税等.我们要想真正地了解有关储蓄的知识,必须先弄清楚这些有关储蓄的术语,及它们之间的关系. Ⅱ.讲授新课 2
[师]下面我们就这些术语来真正地了解储蓄问题.这里我只对几个术语作文字解释,请同学们根据文字解释及自己到银行了解到的情况举例说明每个术语的含义. 出示投影片(§5.8A)
储蓄问题中的术语 ①本金:顾客存入银行的钱. ②利息:银行付给顾客的酬金. ③本息和:本金与利息的和. ④期数:存入的时间. ⑤利率:每个期数内的利息与本金的比. ⑥年利率:一年的利息与本金的比. ⑦月利率:一个月的利息与本金的比. ⑧从1999年11月1日起,国家对个人在银行的存款征得利息税:利息税=利息×20%. ⑨计算公式:利息=本金×利率×期数. [生]例如:某段时间,银行一年定期存款的年利率为2.25%.向国家交纳利息税,一储户取一年到期的本金及利息时,交纳了利息税4.5元,问这储户一年前存入多少钱? 从这个问题中可看出:所求的一年前存入多少钱是本金.4.5元是利息税即利息×20%=本金×利率×期数×20%.其中期数=1年.年利率=2.25%.所以,这个问题可利用本金、利息、利率、期数、利息税之间的关系列出一元一次求解. [师]很好.说明你对储蓄的这几个术语及它们之间的关系,已了解的较清楚.不妨我们大家一块来解答刚才的问题. 解:设这储户一年前存入银行x元钱,根据题意,列出方程x×2.25%×1×20%=4.5 解,得x=1000 所以这个储户存入银行1000元钱. 我们再来看一个例题 一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税.例如,存入一年期100元,到期储户纳税后所得的利息的计算公式为:税后利息=100×2.25%-100×2.25%×20%=100×2.25%(1-20%),已知某储户有一笔一年期定期储蓄到期纳税后得到的利息450元,问该储户存入多少本金? 分析:由题意可知本金×年利率×(1-20%)=450元,利用这个等量关系,设出未知数就可列出一元一次方程. 解:设存入本金x元,根据题意,得 2.25%(1-20%)x=450 解这个方程,得x=25000 所以该储户存入25000元本金. [师]大家在到银行做调查时,已经注意到教育储蓄到期后是不用交纳利息税的.什么是教育储蓄呢?教育储蓄是为促进国家教育事业的健康发展,鼓励城乡居民以储蓄形式,为其子女接受非 3
义务教育开支节省资金,而开办的一项专项储蓄.凡在校中小学生、为筹备将来上高中、大中专、大学本科、硕士和博士研究生等非义务教育开支的需要,都可以在家长的帮助下办理教育储蓄.我们了解了教育储蓄,接下来,我们就来看投影片(§5.8B)
小颖的妈妈为了准备小颖6年后上大学的学费5000元,她的父母现在就参加了教育储蓄.下面有两种储蓄方式: (1)直接存一个6年期,年利率为2.88%. (2)先存一个3年期的,3年后将本息和自动转存一个3年期. 你认为哪种储蓄方式开始存入的本金比较少? [师生共析]要想知道哪一种方式存入的本金少,就需按每一种储蓄方式去求一下需存入多少本金,才可以6年后取到的本息和是5000元. 设开始存入x元钱. (1)如果按照第一种储蓄方式,就可找到等量关系:本金×年利率×期数+本金=5000,从而列出方程:x×2.88%×6+x=5000,用计算器求得x≈4263. 所以第一种储蓄方式需存入约4263元钱,才可以6年后取得本息和5000元. (2)如果按照第二种储蓄方式,就需分两个时间段:第一个3年期;第二个3年期.这时,我们将每一个阶段的本金、利息、本息和列出一个表格分别表示出来,可以使等量关系一目了然.列表如下: (可鼓励学生自己建立表格,然后填表.适当的时候加以引导,对有困难的学生要由浅入深,帮助他们填写表格)
本金 利息 本息和 第一个3年期 x x×2.7%×3 x(1+2.7%×3)=1.081x
第二个3年期 1.081x 1.081x×2.7%×3 1.081x×(1+2.7%×3)
所以第一个3年期后,本息和为x(1+2.7%×3)=1.081x. 第二个3年期后,本息和为1.081x(1+2.7%×3)要达到5000元.由此可得 1.081x(1+2.7%×3)=5000 (这个方程未知数的系数较烦,可借助于计算来处理),解,得1.168561x=5000 x≈4279
就是说,第二种储蓄方式:开始大约存4280元,3年期满后,将本息和再存一个3年期,6年后本息和能达到5000元. 两种储蓄方式比较可知:按第一种储蓄方式开始存入的本金少. 评述:我们在解决储蓄这样的问题时,要注意以下关系:(1)对于教育储蓄这样的不纳利息税的储蓄,利息=本金×利率×期数;本息和=本金+利息=本金(1+利率×期数); 4
(2)对于需纳20%的利息税的储蓄,利息=本金×利率×期数×(1-20%);本息和=本金+利息=本金+本金×利率×期数×(1-20%).只要很好地利用好这几个关系,储蓄的问题就可很容易地变成刻画储蓄问题的一元一次方程. Ⅲ.课堂练习 1.课本P175. 为了使贫困学生能够顺利完成大学学业,国家设立了助学贷款.助学贷款分0.5~1年期、1~3年期、3~5年期、5~8年期四种,贷款利率分别为5.85%,5.95%,6.03%,6.21%,贷款利息的50%由政府补贴,某大学生刚入学准备贷6年期的款,他预计6年后最多能够一次性还清20000元,他现在至多可以贷多少元?(可借助计算器) 分析:贷款和储蓄是两个正好相反的过程,这位大学生6年后最多能够一次还清20000元,这就意味着他现在贷的款到6年后的本息和为20000元,要注意这里有国家的优惠政策:贷款利息的50%都由政府补贴,于是此题的等量关系为贷款(相当于本金)+贷款×6.21%×6×50%=20000元. 解:设现在至多可以贷x元,根据题意,得:x(1+6.21%×6×50%)=20000 借助于计算器,算得x≈16859元. 所以该大学生至多可贷16859元. 2.补充练习 王叔叔想用一笔钱买年利率为2.89%的3年期国库券,如果他想3年后的本息和为2万元,现在应买这种国库券多少? 分析:购买国库券是为了支援国家建设,因此也无需纳利息税.2万元=20000元是3年后的本息和,因此等量关系为:现在买的国库券×(1+2.89%×3)=20000. 解:设应买这种国库券x元,则 (1+2.89%×3)x=20000 利用计算器,解得x=18404.34342; 根据实际意义x≈18405. 所以王叔叔现在应买这种国库券18405元. Ⅳ.课时小结 这节课我们主要研究储蓄问题中的几个术语和基本关系,特别是教育储蓄.基本关系有(1)本息和=本金+利息=本金(1+利率×期数).(2)利息=本金×利率×期数. Ⅴ.课后作业 1.课本P175、习题5.11. 2.预习课本P176回顾与思考. 3.做复习题A组1~6题. Ⅵ.活动与探究 亚洲某国家规定工资收入的个人所得税计算方法是:(1)月收入不超过1200元的部分不纳税;(2)收入超过1200元至1700元的部分按税率5%(这部分收入的5%,下同)征税;(3)收入超过1700元至3000元的部分按税率10%征税……已知某人本月缴纳个人所得税65元,问此人本月收入多少元? 过程:由题意可知: