四川省凉山州会理县 七年级数学下学期期末试卷含解析新人教版含答案

合集下载

凉山州 2023—2024 学年度下期期末检测试卷七年级数学

凉山州 2023—2024 学年度下期期末检测试卷七年级数学

一、选择题(共12小题,每小题只有一个正确答案,每小题2分,共24分)1.在下列四个实数中,最大的有理数是()A.-2B.12C.2√D.02.下列计算正确的是()A.(-2)2√=-2B.-63√=63√C.49√=±7D.-0.81√=-0.93.3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了解某校800名学生的睡眠时间,从13个班级中抽取50名学生进行调查,下列说法正确的是()A.800名学生是总体B.50是样本容量C.13个班级是抽取的一个样本D.每名学生是个体4.在平面直角坐标系中,第二象限内的点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为()A.(2,-3)B.(-2,3)C.(-3,2)D.(3,-2)5.如图,直线a∥b ,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果∠1=60°,那么∠2等于()A.30°B.40°C.50°D.60°6.把不等式组7x-8<9xx+12≥x ⎧⎩⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐的解集在数轴上表示出来,正确的是()A. B.C.D.7.如图,点A 的坐标为(2,0),点B 的坐标为(0,1),若将线段AB 平移至A 1B 1,则a+b 的值为()A.5B.4C.3D.2七年级数学试题卷第1页(共4页)第Ⅰ卷(选择题共24分)凉山州2023—2024学年度下期期末检测试卷七年级数学全卷共4页,满分100分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写在答题卡上,并检查条形码粘贴是否正确。

2.选择题使用2B 铅笔涂在答题卡对应题目标号的位置上;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

3.考试结束后,将答题卡收回。

【精编】2014-2015学年四川省凉山州七年级(下)期末数学试卷(解析版)

【精编】2014-2015学年四川省凉山州七年级(下)期末数学试卷(解析版)

2014-2015学年四川省凉山州七年级(下)期末数学试卷一、选择题(本大题共15小题,每小题2分,共30分,在每小题给出的四个选项中,只哟一项是符合题目要求的,请将相应的字母填入括号)1.(2分)在下列实数,3.14159265,,﹣8,,,1.103 030 030 003…(两个3之间依次多一个0),中,无理数有()A.3个 B.4个 C.5个 D.6个2.(2分)下列判断:①1的立方根是±1;②只有正数才有平方根;③﹣4是﹣16的平方根;④()2的平方根是±正确的是()A.①B.②C.③D.④3.(2分)如图,下列条件:①∠1=∠3,②∠2=∠3,③∠4=∠5,④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个 B.2个 C.3个 D.4个4.(2分)体育课上,老师测量小明跳远成绩的依据是()A.过直线上一点且垂直于这条直线的直线有且只有一条B.两点之间,线段最短C.垂线段最短D.两点确定一条直线5.(2分)下列数学表达式中:①﹣2<0,②2x+3y>0,③x=2,④x2+2xy+y2,⑤x≠3,⑥x+1>2中,不等式有()A.1个 B.2个 C.3个 D.4个6.(2分)下列调查中,最适合采用抽样调查方式的是()A.值日老师调查各班学生的出勤情况B.调查凉山州中学生参加体育锻炼的时间C.了解某班女学生的身高情况D.了解全班同学的课外读书时间7.(2分)下列方程组中,是二元一次方程组的是()A.B.C.D.8.(2分)下列四个命题中,真命题是()A.若一个角的两边分别平行于另一个角的两边,则这两个角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直9.(2分)下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A.B.C.D.10.(2分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限11.(2分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣412.(2分)如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为()A.50台B.65台C.75台D.95台13.(2分)在数轴上表示不等式组的解集,正确的是()A.B.C.D.14.(2分)过A(﹣5,﹣4)和B(﹣5,4)两点的直线一定()A.垂直于x轴B.与x轴相交但不平行于x轴C.平行于x轴D.与x轴、y轴都不平行15.(2分)在方程组中,若未知数x、y满足x+y>0,则m的取值范围应为()A.m<3 B.m>3 C.m<0 D.m>0二、填空题(本大题共7小题,每小题3分,共21分)16.(3分)在数轴上表示﹣的点离原点的距离是;的相反数是,绝对值是.17.(3分)(1)若式子在实数范围内有意义,则b的取值范围是(2)如果=2.236,=7.071,那么0.0005的平方根是.18.(3分)当a=时,P(a+1,a+4)在y轴上,到x轴的距离是.19.(3分)若关于x的方程ax+1=﹣x+2的解是正数,则a的取值范围是.20.(3分)化简:|a﹣b|﹣﹣=(其中a>0,b<0)21.(3分)如图,△DEF是由△ABC沿BC方向平移3个单位长度得到的,则点A与点D的距离等于个单位长度.22.(3分)将棱长为acm和bcm的两个正方体铁块熔化,制成一个大正方体铁块,这个大正方体铁块的棱长为.(不计损耗)三、解答题(本大题共6小题。

四川省凉山州会理县2018-2019学年七年级(下)期末数学试卷

四川省凉山州会理县2018-2019学年七年级(下)期末数学试卷

四川省凉山州会理县2018-2019学年七年级(下)期末数学试卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.4的平方根是()A.±2 B.2 C.﹣2 D.±2.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.>C.3a+1>3b+1 D.﹣2a>﹣2b3.下列各数:3.414,﹣,,π,4.,0.1010010001…,其中无理数有()A.1个B.2个C.3个D.4个4.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)5.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15°B.25°C.30°D.35°6.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图7.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直8.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6二、填空题(本题有6个小题,每小题3分,共计18分)9.点A的坐标(﹣3,4),它到y轴的距离为.10.式子的值是负数,则x的取值范围是.11.已知a,b为两个连续整数,且a<<b,则a+b= .12.如图,点O是直线AB上一点,OC⊥OD,∠AOC:∠BOD=5:1,那么∠AOC的度数是.13.对于有理数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣4)的值是.14.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.三、解答题(本题有5个小题,每小题5分,共计25分)15.计算:﹣+.16.解方程组.17.解不等式﹣≥,并把解集在数轴上表示出来.18.如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.在下面的括号中填上推理依据.证明:∵∠3=∠4(已知)∴CF∥BD∴∠5+∠CAB=180°∵∠5=∠6(已知)∴∠6+∠CAB=180°(等式的性质)∴AB∥CD∴∠2=∠EGA∵∠1=∠2(已知)∴∠1=∠EGA(等量代换)∴ED∥FB .19.如图,∠BAF=40°,∠ACE=130°,CE⊥CD.问CD∥AB吗?为什么?四、解答题(本题有3个小题,每小题6分,共计18分)20.一种口服液有大、小两种包装.3大盒,4小盒共108瓶,2大盒,3小盒共装76瓶,大盒与小盒各装多少瓶?21.已知:如图把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A'B'C'.(1)画出图中△A'B'C';(2)连接A'、A、C'、C,求四边形A'AC'C的面积.22.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分为A、B、C、D四个等级),根据调查的数据绘制成如图的条形统计图和扇形统计图.请根据以下不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= ;(2)补全条形统计图;(3)若该校九年级共有300名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)共多少人?五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB =S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP +S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.四川省凉山州会理县2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.4的平方根是()A.±2 B.2 C.﹣2 D.±【考点】平方根.【分析】依据平方根的定义即可得出答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.>C.3a+1>3b+1 D.﹣2a>﹣2b【考点】不等式的性质.【分析】根据不等式的性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a<b,则a﹣2<b﹣2,故此选项错误;B、若a<b,则<,故此选项错误;C、若a<b,则3a+1<3b+1,故此选项错误;D、若a<b,则﹣2a>﹣2b,故此选项正确;故选:D.3.下列各数:3.414,﹣,,π,4.,0.1010010001…,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式解答即可.【解答】解:∵=2,∴无理数有,π,0.1010010001…,共三个,故选C4.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点横坐标等于零,可得答案.【解答】解:由点P(a﹣4,a)在y轴上,得a﹣4=0,解得a=4,P的坐标为(0,4),故选:B.5.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15°B.25°C.30°D.35°【考点】平行线的性质.【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【解答】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.6.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图【考点】统计图的选择;折线统计图.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:∵折线统计图表示的是事物的变化情况,∴要反映自贡市一周内每天的最高气温的变化情况,宜采用折线统计图.故选(B)7.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.8.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<6.故选C.二、填空题(本题有6个小题,每小题3分,共计18分)9.点A的坐标(﹣3,4),它到y轴的距离为 3 .【考点】点的坐标.【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:点A的坐标(﹣3,4),它到y轴的距离为|﹣3|=3,故答案为:3.10.式子的值是负数,则x的取值范围是x>.【考点】解一元一次不等式.【分析】的值是负数,则必有3x﹣2>0,解得x的取值范围.【解答】解:∵的值为负数,而﹣5<0,∴3x﹣2>0,∴x>.故答案为x>.11.已知a,b为两个连续整数,且a<<b,则a+b= 7 .【考点】估算无理数的大小.【分析】根据被开方数越大对应的算术平方根越大求得a、b的值,然后利用加法法则计算即可.【解答】解:∵9<11<16,∴3<<4.∴a=3,b=4.∴a+b=3+4=7.故答案为:7.12.如图,点O是直线AB上一点,OC⊥OD,∠AOC:∠BOD=5:1,那么∠AOC的度数是75°.【考点】垂线.【分析】首先根据垂线的定义可知:∠COD=90°,从而可得到∠AOC+∠BOD=90°,然后根据设∠BOD为x,则∠AOC为5x,最后列方程求解即可.【解答】解:∵OC⊥OD,∴∠COD=90°.∴∠AOC+∠BOD=90°设∠BOD为x,则∠AOC为5x.根据题意得:x+5x=90°.解得:x=15°.∴∠AOC=5x=75°.故答案为:75°.13.对于有理数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣4)的值是﹣6 .【考点】有理数的混合运算.【分析】已知等式利用已知的新定义化简,求出a与b的值,原式再利用新定义化简后,将a与b的值代入计算即可求出值.【解答】解:根据题中的新定义化简1*2=1,(﹣3)*3=6得:,解得:,则2*(﹣4)=2×(﹣1)﹣4×1=﹣2﹣4=﹣6.故答案为:﹣614.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣2).【考点】规律型:点的坐标.【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201…5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).三、解答题(本题有5个小题,每小题5分,共计25分)15.计算:﹣+.【考点】实数的运算.【分析】原式利用平方根、立方根性质,以及二次根式性质化简即可得到结果.【解答】解:原式=﹣2﹣1+5=2.16.解方程组.【考点】解二元一次方程组.【分析】利用加减消元法解方程组.【解答】解:,①+②得4a=12,解得a=3,把a=3代入①得3+2b=1,解得b=﹣1,所以方程组的解为.17.解不等式﹣≥,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:去分母得,3(3x+1)﹣2(2x﹣5)≥8,去括号得,9x+3﹣4x+10≥8,移项得,9x﹣4x≥8﹣10﹣3,合并同类项得,5x≥﹣5,x的系数化为1得,x≥﹣1.在数轴上表示为:.18.如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.在下面的括号中填上推理依据.证明:∵∠3=∠4(已知)∴CF∥BD 内错角相等,两直线平行∴∠5+∠CAB=180°两直线平行,同旁内角互补∵∠5=∠6(已知)∴∠6+∠CAB=180°(等式的性质)∴AB∥CD 同旁内角互补,两直线平行∴∠2=∠EGA 两直线平行,同位角相等∵∠1=∠2(已知)∴∠1=∠EGA(等量代换)∴ED∥FB 同位角相等,两直线平行.【考点】平行线的判定.【分析】根据平行线的判定定理的证明步骤,补充完整题中确实的推理依据即可.【解答】证明:∵∠3=∠4(已知),∴CF∥BD(内错角相等,两直线平行),∴∠5+∠CAB=180°(两直线平行,同旁内角互补).∵∠5=∠6(已知),∴∠6+∠CAB=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行),∴∠2=∠EGA(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1=∠EGA(等量代换),∴ED∥FB(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;两直线平行,同位角相等;同位角相等,两直线平行.19.如图,∠BAF=40°,∠ACE=130°,CE⊥CD.问CD∥AB吗?为什么?【考点】平行线的判定.【分析】由CE⊥CD可得出∠DCE=90°,分解周角通过角的计算得出∠ACD=140°,再根据∠BAC+∠BAF=180°可得出∠BAC=140°,由此可得出∠BAC=∠ACD,依据“内错角相等,两直线平行”即可得出CD∥AB.【解答】解:CD∥AB,理由如下:∵CE⊥CD,∴∠DCE=90°,∵∠ACD+∠DCE+∠ACE=360°,∠ACE=130°,∴∠ACD=360°﹣130°﹣90°=140°.∵∠BAC+∠BAF=180°,∠BAF=40°,∴∠BAC=140°=∠ACD,∴CD∥AB.四、解答题(本题有3个小题,每小题6分,共计18分)20.一种口服液有大、小两种包装.3大盒,4小盒共108瓶,2大盒,3小盒共装76瓶,大盒与小盒各装多少瓶?【考点】二元一次方程组的应用.【分析】设大盒装x瓶,小盒装y瓶,根据题意可得等量关系是:3×大盒瓶数+4×小盒瓶数=108;2×大盒瓶数+3×小盒瓶数=76,依据两个等量关系可列方程组求解.【解答】解:设大盒装x瓶,小盒装y瓶,则,解得,答:大盒装20瓶,小盒装12瓶.21.已知:如图把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A'B'C'.(1)画出图中△A'B'C';(2)连接A'、A、C'、C,求四边形A'AC'C的面积.【考点】作图﹣平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)利用S四边形A'AC'C =S△A′CC′+S△A′CA即可得出结论.【解答】解:(1)如图所示;(2)S四边形A'AC'C =S△A′CC′+S△A′CA=×7×3+×7×3=+ =21.22.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分为A、B、C、D四个等级),根据调查的数据绘制成如图的条形统计图和扇形统计图.请根据以下不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80 名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= 40% ;(2)补全条形统计图;(3)若该校九年级共有300名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)共多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由等级A的人数除以所占的百分比求出调查的总学生;进一步求出B占的百分比;(2)求出C级的学生数,补全条形统计图即可;(3)求出A,B,C的百分比之和,乘以300即可得到结果.【解答】解:(1)根据题意得:4÷5%=80(人),B占的百分比b=×100%=40%;故答案为:80,40%;(2)C级的人数为80﹣(20+32+4)=24(人),补全条形图,如图所示:(3)根据题意得:300×=285(人),答:估计该校九年级同学体育测试达标的人数约为285人.五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB =S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP +S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.【考点】坐标与图形性质;三角形的面积.【分析】(1)根据点的平移规律易得点C,D的坐标;(2)先计算出S平行四边形ABOC=8,设M坐标为(0,m),根据三角形面积公式得×4×|m|=8,解得m=±4,于是可得M点的坐标为(0,4)或(0,﹣4);(3)①先计算出S梯形OCDB =7,再讨论:当点P运动到点B时,S△BOC的最小值=3,则可判断S△CDP +S△BOP<4,当点P运动到点D时,S△BOC的最大值=4,于是可判断S△CDP+S △BOP >3,所以3<S △CDP +S △BOP <4;②分类讨论:当点P 在BD 上,如图1,作PE ∥CD ,根据平行线的性质得CD ∥PE ∥AB ,则∠DCP=∠EPC ,∠BOP=∠EPO ,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO ; 当点P 在线段BD 的延长线上时,如图2,同样有∠DCP=∠EPC ,∠BOP=∠EPO ,由于∠EPO ﹣∠EPC=∠BOP ﹣∠DCP ,于是∠BOP ﹣∠DCP=∠CPO ;同理可得当点P 在线段DB 的延长线上时,∠DCP ﹣∠BOP=∠CPO . 【解答】解:(1)由平移可知:C (0,2),D (4,2); (2)∵AB=4,CO=2, ∴S 平行四边形ABOC =AB •CO=4×2=8, 设M 坐标为(0,m ), ∴×4×|m|=8,解得m=±4∴M 点的坐标为(0,4)或(0,﹣4); (3)①S 梯形OCDB =×(3+4)×2=7,当点P 运动到点B 时,S △BOC 最小,S △BOC 的最小值=×3×2=3,S △CDP +S △BOP <4, 当点P 运动到点D 时,S △BOC 最大,S △BOC 的最大值=×4×2=4,S △CDP +S △BOP >3, 所以3<S △CDP +S △BOP <4;②当点P 在BD 上,如图1,作PE ∥CD , ∵CD ∥AB , ∴CD ∥PE ∥AB ,∴∠DCP=∠EPC ,∠BOP=∠EPO , ∴∠DCP+∠BOP=∠EPC+∠EPO=∠CPO ;当点P 在线段BD 的延长线上时,如图2,作PE ∥CD , ∵CD ∥AB , ∴CD ∥PE ∥AB ,∴∠DCP=∠EPC ,∠BOP=∠EPO , ∴∠EPO ﹣∠EPC=∠BOP ﹣∠DCP , ∴∠BOP ﹣∠DCP=∠CPO ;同理可得当点P 在线段DB 的延长线上时,∠DCP ﹣∠BOP=∠CPO .。

人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。

2022-2023学年四川省凉山州七年级(下)期末数学试卷(含解析)

2022-2023学年四川省凉山州七年级(下)期末数学试卷(含解析)

2022-2023学年四川省凉山州七年级(下)期末数学试卷第I 卷(选择题)一、选择题(本大题共12小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 在实数 5,13,0,π2, 64,−1.414114111…中,无理数有( )A. 1个 B. 2个 C. 3个 D. 4个2. 16的平方根是( )A. ±4B. 4C. ±2D. 23.如图,是一个不等式组的解集在数轴上的表示,则该不等式组的解集是( )A. 1<x ≤0B. 0<x ≤1C. 0≤x <1D. 0<x <14. 线段CD 是由线段AB 平移得到的,点A (4,−1)的对应点为C (−1,5),则点B (−4,3)的对应点D 的坐标为( )A. (9,9)B. (−9,−9)C. (9,−9)D. (−9,9)5. 点P (m +3,m +1)在x 轴上,则P 点坐标为( )A. (0,―2)B. (0,―4)C. (4,0)D. (2,0)6. 已知{x =2y =1是二元一次方程ax +2y =6的一个解,则a 的值为( )A. 2B. −2C. 4D. −47. 在方程组{2x +y =1−m x +2y =2中,若未知数x 、y 满足x +y >0,则m 的取值范围应为( )A. m <3 B. m >3 C. m <0 D. m >08. 如图在一块长为12m ,宽为6m 的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m )则空白部分表示的草地面积是( )A. 70 m 2B. 60 m 2C. 48 m 2D. 18 m 29. 下列语句错误的是( )A. 连接两点的线段的长度叫做两点间的距离B. 两条直线平行,同旁内角互补C. 若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D. 平移变换中,各组对应点连成两线段平行且相等10. 已知关于x的不等式组{x+2>0x−a≤0的整数解共有4个,则a的取值范围是( )A. a>2B. a<3C. 2≤a<3D. 2<a≤311. 若1|x−2|+(2y+1)2=0,则x−4y的值为( )2A. −3B. 3C. −2D. 212. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1 C1D1,A2B2C2D2,A3B3C3D3每个正方形四条边上的整点的个数,推算出正方形A10B10C10 D10四条边上的整点共有个.( )A. 88B. 84C. 80D. 76第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)13. 若不等式x+a>ax+1的解集为x>1,则a的取值范围是______.14. 把命题“对顶角相等”改写成“如果⋅⋅⋅⋅⋅⋅,那么⋅⋅⋅⋅⋅⋅”的形式为:______ .15. 如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则b2−|a−b|=______.16. 过点M(a,−3)、N(6,−5)的直线与y轴平行,则点M关于x轴的对称点的坐标是______ .17. 如果3=1.732,30=5.477,那么0.0003的平方根是______.18. 某数的平方根为a+6和2a−3,则这个数为______.19. 已知6+1的整数部分为a,小数部分为b,a+2b2a=______ .20. 如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是______ .三、计算题(本大题共1小题,共6.0分)21. 已知:如图AB//CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.四、解答题(本大题共6小题,共46.0分。

最新四川省2022-2022年七年级下期末数学试卷含答案解析

最新四川省2022-2022年七年级下期末数学试卷含答案解析

七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.下列各式计算结果正确的是()A.a+a=a2B.a•a=a2C.(a3)2=a5D.a2÷a=22.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.3.下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.两角及一边对应相等的两个三角形全等D.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形4.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°5.下列算式能用平方差公式计算的是()A.(x﹣2)(x+1)B.(2x+y)(2y﹣x)C.(﹣2x+y)(2x﹣y)D.(﹣x﹣1)(x﹣1)6.王明的讲义夹里放了大小相同的试卷共50张,其中语文15张、数学25张、英语10张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.7.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形8.如图,垂直平分AB,交AC于点D,交AB于点E,连接BD,若AC=6cm,BC=4cm,则△BCD的周长为()A.6cm B.8cm C.10cm D.12cm9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.前2分钟,乙的平均速度比甲快B.5分钟时两人都跑了500米C.甲跑完800米的平均速度为100米/分D.甲乙两人8分钟各跑了800米10.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是()A.B.C. D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(﹣2ab2)3=.12.如图,D在AB上,E在AC上,且∠B=∠C,请添加一个条件,使△ABE≌△ACD,你添加的条件是.13.某人购进一批苹果,到市场零售,已知销售额y(元)与卖出的苹果数量x (千克)的关系如表所示,则y与x之间的关系式为数量x(千克)2345…销售额y(元)7.210.814.418.0…14.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=度.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:32﹣|﹣8|+(π﹣2016)0﹣(﹣)﹣1(2)化简求值:[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y),其中x=1,y=﹣2.16.(6分)“六一”儿童节期间,某商厦为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准哪个区域,顾客就可以获得相应的奖品.颜色奖品红色玩具熊黄色童话书绿色彩笔小明和妈妈购买了125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得童话书的概率是多少?17.(8分)我们知道,可以利用直观的几何图形形象地表示有些代数恒等式.例如:(2a+b)(a+b)=2a2+3ab+b2,可以用图1的面积关系来表示.还有许多代数恒等式也可以用几何图形面积来表示其正确性.(1)根据图2写出一个代数恒等式;(2)已知等式:(a+2b)2=a2+4ab+4b2,请你在图3的方框内画出一个相应的几何图形,利用这个图形的面积关系来表示等式的正确性.18.(8分)如图,等边△ABC中,D是AB边上的一动点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:△ACE≌△BCD;(2)判断AE与BC的位置关系,并说明理由.19.(10分)某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩色页300元/张,黑白页50元/张;印刷费与印数的关系见表.印数a(单位:千册)1≤a<55≤a<10彩色(单位:元/张) 2.2 2.0黑白(单位:元/张)0.70.6(1)直接写出印制这批纪念册的制版费为多少元;(2)若印制6千册,那么共需多少费用?(3)如印制x(1≤x<10)千册,所需费用为y元,请写出y与x之间的关系式.20.(10分)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC 的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D 三点不重合),请直接写出∠APC与α、β之间的数量关系.四、填空题(本大题共5个小题,每小题4分,共20分)21.已知a m=5,a n=2,则a2m﹣3n=.22.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,现保持盒中原来的白色和黑色弹珠数量不变,再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率是.23.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费元.24.如图,△ABC中,AB=BC=a(a为常数),∠B=90°,D是AC的中点,E是BC延长线上一点,F是BC边上一点,DE⊥DF,过点C作CG⊥BE交DE于点G,则四边形DFCG的面积为(用含a的代数式表示)25.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有(将所有正确答案的序号填写在横线上).五、解答题(本大题共3个小题,共30分)26.(8分)已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m、n的值;(2)化简求值:(m+2n+1)(m+2n﹣1)+(2m2n﹣4mn2+m3)÷(﹣m)27.(10分)2015年5月中旬,中国和俄罗斯海军在地中海海域举行了代号为“海上联合﹣2015(1)”的联合军事演习,这是中国第一次地中海举行军事演习,也是这个海军距本土最远的一次军演,某天,“临沂舰”、“潍坊舰”两舰同时从A、B 两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束,已知B刚位于A港、C港之间,且A、B、C在一条直线上,如图所示,l临、l潍分别表示“临沂舰”、“潍坊舰”离B港的距离行驶时间x(h)变化的图象.(1)A港与C岛之间的距离为;(2)分别求出“临沂舰”、“潍坊舰”的航速即相遇时行驶的时间;(3)若“临沂舰”、“潍坊舰”之间的距离不超过2km时就属于最佳通讯距离,求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.28.(12分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.下列各式计算结果正确的是()A.a+a=a2B.a•a=a2C.(a3)2=a5D.a2÷a=2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】结合同底数幂的乘除法、幂的乘方与积的乘方的概念和运算法则进行判断求解即可.【解答】解:A、a+a=2a≠a2,本选项错误;B、a•a=a2,本选项正确;C、(a3)2=a6≠a5,本选项错误;D、a2÷a=a≠2,本选项错误.故选B.【点评】本题考查了同底数幂的乘除法、幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的概念和运算法则.2.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选D.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.两角及一边对应相等的两个三角形全等D.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意买一张电影票,座位号是偶数是随机事件;打开电视机,正在播放动画片是随机事件;两角及一边对应相等的两个三角形全等是必然事件;三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件,故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.下列算式能用平方差公式计算的是()A.(x﹣2)(x+1)B.(2x+y)(2y﹣x)C.(﹣2x+y)(2x﹣y)D.(﹣x﹣1)(x﹣1)【考点】平方差公式.【分析】利用平方差公式的结构特征判断即可.【解答】解:能用平方差公式计算的是(﹣x﹣1)(x﹣1)=(﹣1)2﹣x2=1﹣x2,故选D【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.王明的讲义夹里放了大小相同的试卷共50张,其中语文15张、数学25张、英语10张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵王明的讲义夹里放了大小相同的试卷共50张,其中数学25张,∴他随机地从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为=;故选A.【点评】本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.8.如图,垂直平分AB,交AC于点D,交AB于点E,连接BD,若AC=6cm,BC=4cm,则△BCD的周长为()A.6cm B.8cm C.10cm D.12cm【考点】线段垂直平分线的性质.【分析】由DE垂直平分AB,根据线段垂直平分线的性质,可得AD=BD,继而可求得△BDC的周长.【解答】解:∵DE垂直平分AB,∴AD=BD,∵AC=6cm,BC=4cm,∴△BDC的周长为:BC+CD+BD=BC+CD+AD=BC+AC=6+4=10(cm).故选:C.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.前2分钟,乙的平均速度比甲快B.5分钟时两人都跑了500米C.甲跑完800米的平均速度为100米/分D.甲乙两人8分钟各跑了800米【考点】函数的图象.【分析】根据函数图象可以判断各选项是否正确,从而可以解答本题.【解答】解:前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项A正确;由图可知,5分钟时两人都跑了500米,故选项B正确;由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项C正确;由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项D错误;故选D.【点评】本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.10.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是()A.B.C. D.【考点】剪纸问题.【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案.【解答】解:如图所示:故选A.【点评】本题考查了学生动手操作能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力.二、填空题(本大题共4个小题,每小题4分,共16分)11.(﹣2ab2)3=﹣8a3b6.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.【解答】解:(﹣2ab2)3,=(﹣2)3a3(b2)3,=﹣8a3b6.【点评】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号的运算.12.如图,D在AB上,E在AC上,且∠B=∠C,请添加一个条件,使△ABE≌△ACD,你添加的条件是AC=AB.【考点】全等三角形的判定.【分析】添加的条件是AC=AB,由∠A=∠A,根据有两角和夹边对应相等的两三角形全等即可得到答案.【解答】解:添加的条件是AC=AB,∵∠A=∠A,∠B=∠C,AC=AB,∴△ABE≌△ACD.故答案为:AC=AB.【点评】本题主要考查对全等三角形的判定定理的理解和掌握,解此题的关键是添加正确的条件.13.某人购进一批苹果,到市场零售,已知销售额y(元)与卖出的苹果数量x (千克)的关系如表所示,则y与x之间的关系式为y=3.6x数量x(千克)2345…销售额y(元)7.210.814.418.0…【考点】函数关系式.【分析】观察表格可得到苹果的单价,然后依据总价=单价×数量可得到y与x 的函数关系式.【解答】解:根据表格可知苹果的单价为3.6元/千克,则y=3.6x.故答案为:y=3.6x.【点评】本题主要考查的是列函数关系式,求得苹果的单价是解题的关键.14.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=10度.【考点】三角形的外角性质;翻折变换(折叠问题).【分析】根据直角三角形两锐角互余求出∠B,再根据翻折的性质可得∠CA1D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,由翻折的性质得,∠CA1D=∠A=50°,所以∠A1DB=∠CA1D﹣∠B=50°﹣40°=10°.故答案为:10.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,以及翻折变换的性质,熟记各性质并准确识图是解题的关键.三、解答题(本大题共6个小题,共54分)15.(12分)(2016春•武侯区期末)(1)计算:32﹣|﹣8|+(π﹣2016)0﹣(﹣)﹣1(2)化简求值:[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y),其中x=1,y=﹣2.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)先求出每一部分的值,再算加减即可;(2)先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)原式=9﹣8+1﹣(﹣2)=4;(2)[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y)=[4x2﹣y2﹣4x2+12xy﹣9y2]÷(﹣2y)=(12xy﹣10y2)÷(﹣2y)=﹣6x+5y,当x=1,y=﹣2时,原式=﹣6×1+5×(﹣2)=﹣16.【点评】本题考查了整式的混合运算和求值,零指数幂,负整数指数幂的应用,能正确根据知识点进行计算和化简是解此题的关键.16.“六一”儿童节期间,某商厦为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准哪个区域,顾客就可以获得相应的奖品.颜色奖品红色玩具熊黄色童话书绿色彩笔小明和妈妈购买了125元的商品,请你分析计算:(1)小明获得奖品的概率是多少?(2)小明获得童话书的概率是多少?【考点】几何概率.【分析】(1)看有颜色部分的面积占总面积的多少即为所求的概率.(2)看黄色部分的面积占总面积的多少即为所求的概率.【解答】解:(1)∵转盘被平均分成16份,其中有颜色部分占6份,∴小明获得奖品的概率==.(2)∵转盘被平均分成16份,其中黄色部分占2份,∴小明获得童话书的概率==.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.17.我们知道,可以利用直观的几何图形形象地表示有些代数恒等式.例如:(2a+b)(a+b)=2a2+3ab+b2,可以用图1的面积关系来表示.还有许多代数恒等式也可以用几何图形面积来表示其正确性.(1)根据图2写出一个代数恒等式;(2)已知等式:(a+2b)2=a2+4ab+4b2,请你在图3的方框内画出一个相应的几何图形,利用这个图形的面积关系来表示等式的正确性.【考点】完全平方公式的几何背景;多项式乘多项式.【分析】(1)找出图形的长和宽,即可得出等式;(2)画一个边长为a+2b的正方形,再分割即可得出答案.【解答】解:(1)(2a+b)(a+2b)=2a2+5ab+2b2;(2)如图所示:.【点评】本题考查了完全平方公式和多项式乘以多项式的应用,能够数形结合是解此题的关键.18.如图,等边△ABC中,D是AB边上的一动点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:△ACE≌△BCD;(2)判断AE与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的边相等和角为60°得:BC=AC,DC=CE,∠ACB=∠DCE=60°,所以∠BCD=∠ACE,根据SAS可证明△ACE≌△BCD;(2)证明∠CAE=∠ACB,得AE∥BC.【解答】证明:(1)∵△ABC和△DCE都是等边三角形,∴BC=AC,DC=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCA=∠DCE﹣∠DCA,即∠BCD=∠ACE,在△ACE和△BCD中,∵,∴△ACE≌△BCD(SAS);(2)AE∥BC,理由是:∵△ACE≌△BCD,∴∠CAE=∠ABC,∵△ABC是等边三角形,∴∠ABC=∠ACB,∴∠CAE=∠ACB,∴AE∥BC.【点评】本题考查了三角形全等的性质和判定、等边三角形的性质;熟练掌握全等三角形的判定方法:SAS、AAS、ASA、SSS,对于两边的位置关系:平行或垂直.19.(10分)(2016春•武侯区期末)某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩色页300元/张,黑白页50元/张;印刷费与印数的关系见表.印数a(单位:千册)1≤a<55≤a<10彩色(单位:元/张) 2.2 2.0黑白(单位:元/张)0.70.6(1)直接写出印制这批纪念册的制版费为多少元;(2)若印制6千册,那么共需多少费用?(3)如印制x(1≤x<10)千册,所需费用为y元,请写出y与x之间的关系式.【考点】一次函数的应用.【分析】(1)根据制版费=彩页制版费+黑白制版费,代入数据即可求出数值;(2)根据总费用=制版费+印刷费,代入数据即可求出数值;(3)分1≤x<5和5≤x<10两种情况找出y关于x的函数关系式,合并在一起即可得出结论.【解答】解:(1)印制这批纪念册的制版费为:300×4+50×6=1500(元),∴印制这批纪念册的制版费为1500元.(2)印制6千册时,需要的费用为:1500+(2×4+0.6×6)×6000=71100(元),∴若印制6千册,那么共需71100元的费用.(3)由已知得:当1≤x<5时,y=1500+(2.2×4+0.7×6)×1000x=13000x+1500;当5≤x<10时,y=1500+(2×4+0.6×6)×1000x=11600x+1500.综上可知:y与x之间的关系式为y=.【点评】本题考查了一次函数的应用,解题的关键是:(1)(2)根据数量关系列式计算;(3)根据数量关系找出y关于x的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列式计算(或找出函数关系式)是关键.20.(10分)(2016春•武侯区期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为110度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D 三点不重合),请直接写出∠APC与α、β之间的数量关系.【考点】平行线的性质.【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【解答】(1)解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P在BD延长线上时,∠CPA=∠α﹣∠β;如图所示,当P在DB延长线上时,∠CPA=∠β﹣∠α.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.四、填空题(本大题共5个小题,每小题4分,共20分)21.已知a m=5,a n=2,则a2m﹣3n=.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,可得幂的乘方,根据幂的成方,可得答案.【解答】解:a2m﹣3n=a2m÷a3n=(a m)2÷(a n)3=52÷23=,故答案为:.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.22.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,现保持盒中原来的白色和黑色弹珠数量不变,再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率是.【考点】列表法与树状图法.【分析】根据概率公式得到得=,解得x=6,然后再利用概率公式计算再往盒中放进18颗同样的白色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率.【解答】解:根据题意得=,解得x=6,再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.解决本题的关键是理解概率公式.23.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费38.8元.【考点】函数的图象.【分析】根据图形可以写出两段解析式,即可求得自来水公司的收费数.【解答】解:将(10,18)代入y=ax得:10a=18,解得:a=1.8,故y=1.8x(x≤10)将(10,18),(15,31)代入y=kx+b得:,解得:,故解析式为:y=2.6x﹣8(x>10)把x=18代入y=2.6x﹣8=38.8,故答案为:38.8【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质.24.如图,△ABC中,AB=BC=a(a为常数),∠B=90°,D是AC的中点,E是BC延长线上一点,F是BC边上一点,DE⊥DF,过点C作CG⊥BE交DE于点G,则四边形DFCG的面积为a2(用含a的代数式表示)【考点】全等三角形的判定与性质;等腰直角三角形.【分析】连结BD,根据等腰直角三角形的性质得到BD=CD,∠FBD=∠GCD=45°,根据等角的余角相等可得∠BDF=∠CDG,根据ASA证明△BDF ≌△CDG,再根据三角形面积公式即可求解.【解答】解:连结BD,∵△ABC中,AB=BC=a(a为常数),∠B=90°,D是AC的中点,∴BD=CD,∠FBD=∠FCD=45°,∵CG⊥BE,∴∠FBD=∠GCD=45°,∵DE⊥DF,∴∠BDF=∠CDG,在△BDF与△CDG中,,∴△BDF≌△CDG,∴四边形DFCG的面积=三角形CDF的面积+三角形CDG的面积=三角形CDF的面积+三角形BDF的面积═三角形BCD的面积=×三角形ABC的面积=a2.故答案为:a2.【点评】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,关键是根据ASA证明△BDF≌△CDG.25.如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有①④(将所有正确答案的序号填写在横线上).【考点】全等三角形的判定与性质;三角形的外角性质.【分析】①根据角平分线的定义得到∠EBC=∠ABC,∠DCE=ACD,根据外角的性质即可得到结论;②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;③由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论;④由BG=GE,CH=EH,于是得到BG﹣CH=GE﹣EH=GH.即可得到结论.【解答】解:①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,。

凉山州2019—2020年七年级下期数学试卷+答题卷+参答及评分标准

一、选择题(共10个小题,每小题2分,共20分)1.下面图形表示绿色食品、节水、节能和低碳四个标志,其中是轴对称图形的是()A.B.C.D.2.清代诗人袁枚一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084()A.84×10-6 B.8.4×10-7C.0.84×10-5D.8.4×10-63.关于y 的方程2m+y=m 与3y-3=2y-1的解相同,则m 的值为()A.0B.2C.-12D.-24.在直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x+3y=7,则满足条件的点有()A.1个B.2个C.3个D.4个5.下列说法正确的有()①同位角相等;②过一点有且只有一条直线与已知直线平行;③对顶角相等;④三角形两边长分别为3和5,则第三边c 的范围是2<c<8.A.1个B.2个C.3个D.4个6.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A.B.C.D.七年级数学试题卷第1页(共4页)第Ⅰ卷(选择题共20分)凉山州2019要2020学年度下期期末检测七年级数学试题注意事项:全卷共8页(试题卷4页,答题卷4页),考试时间为120分钟,满分100分;请将自己的学校、姓名、考号写在答题卷密封线内,答题只能答在答题卷上,答题时用蓝黑墨水笔(芯)书写。

考试结束后,只将答题卷交回。

7.如果点M(3a-9,1+a)是第二象限的点,则a 的取值范围在数轴上表示正确的是()8.如图,将四边形ABCD 先向左平移3个单位长度,再向下平移3个单位长度,那么点D 的对应点D′的坐标是()A.(0,1)B.(6,1)C.(6,-1)D.(0,-1)9.若关于x 的不等式组2x<3(x-3)+1,3x+24>x+a ⎧⎩⏐⏐⏐⏐⎨⏐⏐⏐⏐有四个整数解,则a 的取值范围是()A.-114<a≤-52B.-114≤a<-52C.-114≤≤-52D.-114<a<-5210.某运行程序如图,从“输入一个值m 到结果是否>107”为一次程序操作,若操作进行两次停止,则m 的取值范围是()A.m>11B.m≤35C.1≤m<35D.11<m≤35第Ⅱ卷(非选择题共80分)二、填空题(共9小题,每空3分,共30分)11.25√的算术平方根是,立方根是它本身的数是.12.把“同角的补角相等”改成“如果…那么…”的形式.13.已知点P 在第四象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是.14.已知2x+y-1=0,则52x ·5y =.15.如图,已知直线l 1∥l 2,∠1=30°,则∠2+∠3=.16.如图,由4个形状大小相同的长方形,拼成1个面积为81的大正方形,若中间小正方形的面积为9,则1个长方形的长、宽分别是.七年级数学试题卷第2页(共4页)第15题图第19题图第16题图×17.已知x 和y 满足方程组3x+y=6x+3y=4{,则x+y 的值为.18.已知(m+4)x -3+6>0是关于x 一元一次不等式,则m 的值为.19.如图,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其排列顺序为图中“→”所指方向,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2020个点的横坐标为.三、解答题(本大题共7小题,共50分)20.计算(共8分,每小题4分)(1)计算:-12018+(π-3)0+(-12)-3(2)2√(2-2√)+((-12)2√+2783√21.(5分)解方程组:3x+4y=2,2x-y=5.{22.(5分)解不等式组x-4≤32(2x-1)2x-1+3x 2<1⎧⎩⏐⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐⏐把解集表示在数轴上,并求出不等式组的整数解.23.(8分)如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD 的顶点与点E 都是格点.E 点坐标是(1,5),(1)作出平面直角坐标系,并写出四边形ABCD 各点坐标;(2)若把四边形ABCD 向上平移2个单位,再向右平移2个单位得到四边形A′B′C′D′,请在图中画出四边形A′B′C′D′,并写出点A′、B′、C′、D′的坐标.(3)求四边形ABCD 面积.七年级数学试题卷第3页(共4页)m七年级数学试题卷第4页(共4页)24.(8分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?25.(8分)如图,已知∠1、∠2互为补角,且∠3=∠B(1)求证:∠AFE=∠C;(2)若CE 平分∠ACB,且∠1=85°,∠3=50°,求∠AFE 的度数。

人教版七年级下学期期末考试数学试卷及答案解析(共五套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A. B. C. D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40°B.∠COE=130° C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C. D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3) C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块 D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= .14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是()A.B.C.D.【分析】根据无理数的三种形式求解.【解答】解: =8, =4, =3, =2,无理数为.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤1【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= ﹣1 .【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣=﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【分析】由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x、y的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E 作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC =S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC =S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是( )A.B.C.D.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°6.二元一次方程组的解是( )A.B.C.D.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c 9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案直接填在答题纸对应的位置上)13.计算|1﹣|﹣=__________.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是__________.15.已知关于x的不等式组的解集是x>4,则m的取值范围是__________.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是__________.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC 于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(__________),又∵DF∥AC,∴∠DEC=∠EDF(__________),∠C=∠FDB(__________),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=__________=180°.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D 2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2019-2020学年七年级有1200名学生,能否由此估计出该校2019-2020学年七年级学生骑自行车上学的人数,为什么?23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?参考答案一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.4考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故选B.点评:本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A.B.C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=8,=4,=3,=2,无理数为.故选D.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤1考点:解一元一次不等式.分析:先移项合并同类项,然后系数化为1求解.解答:解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°考点:垂线;对顶角、邻补角分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.解答:解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.点评:本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°考点:平行线的性质.分析:首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.解答:解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.二元一次方程组的解是( )A.B.C.D.考点:解二元一次方程组.分析:运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y 的值,得到方程组的解.解答:解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.点评:本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.。

人教版七年级数学下册期末测试题及答案解析含答案(共六套)

人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号12345678答案1.如图所示,下列条件中,不能判断l 1∥l 2的是..A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生(第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3.下列计算中,正确的是A .x 3÷x =x 2B .a 6÷a 2=a 3C .x ⋅x 3=x 3D .x 3+x 3=x 64.下列各式中,与(a -1)2相等的是A .a 2-1B .a 2-2a +1C .a 2-2a -1 D .a 2+15.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有A .4个B .5个C .6个D .无数个6.下列语句不正确的是...A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7.下列事件属于不确定事件的是A .太阳从东方升起 B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直.尺.和.圆.规.作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根1DBD ′B ′OC A O ′C ′A ′(第8题图)据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为cm .10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y=.11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.(第16题图)13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:m正面朝上的频率试验者试验次数n 正面朝上的次数mn布丰404020480.5069德·摩根费勤409210000204849790.50050.4979那么估计抛硬币正面朝上的概率的估计值是 .A 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、P OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:OC ①PC=P′C;P′②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一B 个正确结果的序号:.(第16题图)三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC 全等且有一个公共顶点的格点△A 'B 'C ';在图②中画出与△ABC 全等且有一条公共边的格点△A ''B ''C ''.218.计算或化简:(每小题4分,本题共8分)(1)(—3)+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x3-x(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)⎧x=150-2y(1)⎨(2)4x+3y=300⎩⎧x+y=300⎨⎩5%x+53%y=25%⨯300⎧ax+by=3⎧x=2 21.(本题共8分)已知关于x、y的方程组⎨的解是⎨,bx+ay=7y=1⎩⎩3求a +b 的值.22.(本题共9分)如图,AB=EB ,BC=BF ,∠ABE =∠CBF .EF 和AC 相等吗?为什么?CFB(第22题图)EA23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费50金额/元60504030短信费月功能费4%基本话费 40%长途话费短信费金额/元5(1)请将表格补充完整;(2)请将条形统计图补充完整.42010长途话费 36%(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。

2020-2021学年四川省凉山州七年级(下)期末数学试卷(含解析)

2020-2021学年四川省凉山州七年级(下)期末数学试卷一、选择题(本大题共10小题,共20.0分)1.甲骨文是汉字始祖,下列甲骨文中,不是轴对称图形的是()A. B. C. D.2.今年4月14日,我国青海省玉树发生了7.1级强烈地震.截至4月18日,来自各方参加救援的人员超过了17600人.那么17600这个数用科学记数法表示为()A. 176×102B. 17.6×103C. 1.76×104D. 0.176×1053.若关于y的方程3y+3k=1与3y+5=0的解相同,则k的值为()A. −2B. 34C. 2 D. −434.如图,在矩形OABC中,点B的坐标是(1,3),则A、C两点间的距离是()A. 4B. √13C. √10D. 2√25.已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是()A. 对顶角B. 相等但不是对顶角C. 邻补角D. 互补但不是邻补角6.如图是一个不完整的正方体平面展开图,需再添上一个面,折叠后才能围成一个正方体.下面是四位同学补画的情况(图中阴影部分),其中正确的是()A. B. C. D.7.把不等式x+2>4的解表示在数轴上,正确的是()A. B.C. D.8.在平面直角坐标系中,点A(−1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A. (−1,2)B. (2,1)C. (2,−1)D. (3,−1)9. 关于x 的不等式组{2x +a >0x −1≤x−13的整数解有4个,那么a 的取值范围( )A. 4<a <6B. 4≤a <6C. 4<a ≤6D. 2<a ≤410. 某公司经营甲、乙两种商品,甲种商品每件进价10万元,乙种商品每件进价6万元,现准备购进甲、乙两种商品共20件,所用资金不低于170万元,不高于180万元,该公司共有进货方案( )A. 2种B. 3种C. 4种D. 5种二、填空题(本大题共9小题,共30.0分)11. 若x 、y 满足√x +1+(y −3x −1)2=0,则y 2−5x 的平方根是______. 12. 写出“同位角相等,两直线平行”的题设为______ ,结论为______ . 13. 17.如果等式(x −4)2x =1成立,则那么满足它的所有整数x 的值是 . 14. 若2x +y −3=0,则4x ×2y = ______ .15. 已知直线a 、b 、c 在同一平面内,且满足a//b ,b ⊥c ,那么直线a 与c 的位置关系是:a ______c.(从“//”或“⊥”中选择)16. 小工骑车在江南新区窦江路上匀速行驶,发现从背后每隔20分钟开过来一辆环湖公交车,而迎面每隔5分钟有一辆环湖公交车驶来,若环湖公共汽车是匀速行驶,且不计乘客上、下车的时间,那么公交站相同方向每隔______分钟开出一辆公共汽车?17. 已知关于x ,y 的二元一次方程组{ax +y =32x −by =1的解为{x =2y =1,则a −b 的值为______18. 如图,已知四个有理数m 、n 、p 、q 在一条缺失了原点和刻度的数轴上对应的点分别为M 、N 、P 、Q ,且m +p =0,则在m ,n ,p ,q 四个有理数中,绝对值最小的一个是______.19. 正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3…按如图放置,其中点A 1、A 2、A 3…在x 轴正半轴上,点B 1、B 2、B 3…在直线y =−x +2上,依此类推…,则点A 5的坐标是______.三、计算题(本大题共1小题,共6.0分)20. 解方程(组)(1)1−x +23=x −12(2){2x +3y =73x −4y =2四、解答题(本大题共6小题,共44.0分) 21. (1)计算:√49−√273+|1−√2|;(2)解方程组:{x +y =1①3x +y =5②.22. 解不等式组{x−12<11−2(x −2)<3,并把解集在数轴上表示出来.23. 如图,△ABC 的顶点A 在原点,B 、C 坐标分别为B(3,0),C(2,2),将△ABC 向左平移1个单位后再向下平移2单位,可得到△A′B′C′. (1)请画出平移后的△ABC 的图形(2)写出△A′B′C′各个顶点的坐标;S△ABC,若存在,请写出P点的坐标,若不(3)在x轴上是否存在点P,值S△ACP=12存在请说明理由.24.天河某中学七年级甲、乙两个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值),根据以下图、表提供的信息,回答问题分数两班人数之和50~60460~7070~802680~902590~100(1)请把三个统计图(表)补充完整;(2)在扇形统计图中,“90~100分”所占的扇形圆心角是多少度?(3)你认为这三种图表各有什么特点?25.已知:如图,AB//ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC//EF.26.以下是小勋到商店购买布丁和棒棒糖时和老板的对话:根据上文,求布丁和棒棒糖的单价相差多少元?答案和解析1.【答案】D【解析】解:A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项符合题意;故选:D.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2.【答案】C【解析】解:17600=1.76×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同:当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:解方程3y+5=0,得y=−53,解方程3y+3k=1,得y=1−3k3,∵关于y的方程3y+3k=1与3y+5=0的解相同,∴1−3k3=−53,即1−3k=−5,解得x=2.故选:C.可以分别解出两方程的解,两解相等,就得到关于k的方程,从而可以求出k的值.本题考查了同解方程,先求出同解方程的解,再求出k的值.4.【答案】C【解析】解:在矩形OABC中,OB=AC,∵B(1,3),∴OB=√12+32=√10,故选:C.根据矩形的性质即可求出答案.本题考查矩形,解题的关键是熟练运用矩形的性质以及勾股定理,本题属于基础题型.5.【答案】A【解析】解:∵∠1与∠2是邻补角,∠2是∠3的邻补角,∴∠1与∠3是对顶角,故选:A.根据对顶角、邻补角的概念和性质进行判断即可.本题考查的是对顶角、邻补角的概念和性质,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.6.【答案】B【解析】解:选项A,C,D折叠后有一行两个面无法折起来,而且都缺少一个面,不能折成正方体.B可成正方体.故选B.利用正方体及其表面展开图的特点解题.只要有“田”字格的展开图都不是正方体的表面展开图.7.【答案】B【解析】试题分析:利用解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1,进行解方程.移项得x>4−2,合并同类项得x>2,把解集画在数轴上,故选B.8.【答案】C【解析】解:如图所示,点A向右平移两个单位再向下平移3个单位得A1(1,2),再将线段OA1绕原点O顺时针旋转90°得到OA2,A2坐标(2,−1).故选:C.根据平移、旋转画出图形,即可解决问题.本题考查平移、旋转中点的变化规律,解决问题的关键是正确画出图形,考查学生的画图能力,属于中考常考题型.9.【答案】C,【解析】解:解不等式2x+a>0,得:x>−a2,得:x≤1,解不等式x−1≤x−13∵不等式组的整数解有4个,∴不等式组的整数解为1、0、−1、−2,<−2,则−3≤−a2解得:4<a≤6,故选:C.先根据一元一次不等式组解出x的取值,再根据不等式组的整数解有4个,求出实数a 的取值范围.本题考查了一元一次不等式组的整数解.关键是先解每一个不等式,再根据整数解的个数,确定含a的代数式的取值范围.10.【答案】B【解析】解:设购进甲商品x件,则购进乙商品(20−x)件,由题意,得170≤10x+6(20−x)≤180,解得:12.5≤x≤15.∵x为整数,∴x=13,14,15∴有3种购买方案:方案1:甲种商品购买13件,乙种商品购买7件,方案2:甲种商品购买14件,乙种商品购买6件,方案3:甲种商品购买15件,乙种商品购买5件.故选:B.设购进甲商品x件,则购进乙商品(20−x)件,根据购买需要的资金不低于170万元不高于180万元建立不等式组,求出其解即可.本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,一次函数的解析式的性质的运用,解答时建立不等式组和求出一次函数的解析式是关键.11.【答案】±3【解析】解:由题意可知:x+1=0,y−3x−1=0,∴x=−1,y=3x+1=−3+1=−2,∴y2−5x=4+5=9,∴9的平方根是±3,即y2−5x的平方根是±3.故答案为:±3.根据绝对值的性质以及二次根式的性质即可求出答案.本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.12.【答案】同位角相等;两直线平行【解析】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故答案为:同位角相等;两直线平行.命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.“同位角相等,两直线平行”的条件是同位角相等,结论是两直线平行.本题考查了命题与定理的知识,命题有题设和结论两部分组成,命题的题设是已知事项,结论是由已知事项推出的事项.13.【答案】0,3,5【解析】14.【答案】8【解析】解:2x+y−3=0,2x+y=3,则4x×2y=22x×2y=22x+y=23=8,故答案为:8.根据幂的乘方,可化成同底数幂的乘法,根据同底数幂的乘法,可得答案.本题考查了幂的乘方,利用了幂的乘方,同底数幂的乘法.15.【答案】⊥【解析】解:如图所示:∵a//b,∴∠1=∠2,∴b⊥c,∴∠2=90°,∴∠1=90°,∴a⊥c.故答案为:⊥.根据平行线的性质进行解答即可.本题考查的是平行公理及其推论,即若两条平行线中的一条垂直于另一条直线,那么另一条也垂直于这条直线.16.【答案】8【解析】解:设相邻汽车间距离为L ,汽车速为V 1,自行车为V 2,公交车车站每间隔时间为t 分钟开出一辆公共汽车.则5v 1+5v 2=L ,5=LV 1+V 2,则根据题意,得{ L =V 1⋅t①5=L V 1+V 2②20=L V 1−V 2③ 由② ③,得V 1=53V 2,④将①、④代入②,解得t =8.故答案是:8.设相邻汽车间距离为L ,汽车速为V 1,自行车为V 2,公交车车站每间隔时间为t 分钟开出一辆公共汽车,根据题意列出三元一次方程组、并解方程组即可.本题考查了三元一次方程组的应用.解答此题的关键是列出方程组,用代入消元法或加减消元法求出方程组的解. 17.【答案】−2【解析】解:根据题意知{2a +1=34−b =1, 解得:{a =1b =3, 则a −b =1−3=−2,故答案为:−2.将{x =2y =1代入{ax +y =32x −by =1可得{2a +1=34−b =1,解之求得a 、b 的值,继而计算可得. 本题主要考查二元一次方程组的解,解题的关键是根据方程组的解的概念得出关于a 、b 的方程,并求出a 、b 的值.18.【答案】q【解析】解:绝对值最小的数是q,故答案为:q根据题意得到m与p化为相反数,且中点为坐标原点,即可找出绝对值最小的数.此题考查了有理数大小比较,数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.19.【答案】(3116,0)【解析】解:∵四边形OA1B1C1是正方形,∴A1B1=B1C1.∵点B1在直线y=−x+2上,∴设B1的坐标是(x,−x+2),∴x=−x+2,x=1.∴B1的坐标是(1,1).∴点A1的坐标为(1,0).∵A1A2B2C2是正方形,∴B2C2=A1C2,∵点B2在直线y=−x+2上,∴B2C2=B1C2,∴B2C2=12A1B1=12,∴OA2=OA1+A1A2=1+12,∴点A2的坐标为(1+12,0).同理,可得到点A3的坐标为(1+12+122,0),…,依此类推,点A5的坐标为(1+12+14+18+116,0),即(3116,0).故答案为:(3116,0).先根据直线的解析式,分别求得B1,B2,B3…的坐标,可以得到一定的规律,从而求得A1,A2,A3…的坐标,得到规律,据此即可求解.此题主要考查了一次函数的性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.20.【答案】解:(1)6−2(x +2)=3(x −1),6−2x −4=3x −3,−2x −3x =−3−6+4,−5x =−5,x =1;(2){2x +3y =7①3x −4y =2②, ①×4+②×3,得:17x =34,解得:x =2,将x =2代入①,得:4+3y =7,解得:y =1,所以方程组的解为{x =2y =1.【解析】(1)依次去分母、去括号、移项、合并同类项、系数化为1计算可得;(2)利用加减消元法求解可得.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.【答案】解:(1)原式=7−3+√2−1=3+√2;(2)②−①得:2x =4,解得:x =2,把x =2代入①得:y =−1,则方程组的解为{x =2y =−1.【解析】(1)原式利用平方根、立方根性质,以及绝对值的代数意义计算即可求出值;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,以及实数的运算,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】解:不等式可化为:{x −1<21−2x +4<3,即:{x <3x >1;在数轴上可表示为:∴不等式的解集为:1<x <3.【解析】首先分别求得两个不等式的解集,然后在数轴上表示出来,公共部分即为不等式组的解集.注意在解不等式系数化一时:(1)系数为正,不等号的方向不变,(2)系数为负,不等号的方向改变.在数轴上表示时:x <3,空心点,方向向左;x >1,空心点,方向向右.23.【答案】解:(1)△A′B′C′如图所示;(2)A′(−1,−2),B′(2,−2),C′(1,0);(3)设点P(0,x)∵S △ABC =12×3×2=3.∴由题意,得:12⋅|x|×2=12×3,解得:x =32或x =−32,则点P(32,0)或(−32,0).【解析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;S△ABC建立关于x的方程,解之可得.(3)设点P(0,x),由S△ACP=12本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.【答案】解:(1)具体如下:图1是40−2−5−8−12=13人,图2是1−35%−10%−5%−20%=30%,图3分别是5+40×10%=9,8+40×20%=16,如图:分数两班人数之和50~60460~70 970~802680~902590~100 16(2)圆心角是:360°×20%=72度;(3)直方图能够显示数据的分布情况,扇形统计图能够显示部分在总体中所占的百分比,频数统计表能够显示每组中的具体数据情况.【解析】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.(1)根据频数分布直方图中每一组内的频数总和等于总数据个数,知图一中80~90分的人数为40−2−5−8−12=13(人);图2中,80~90分所占的百分比是1−35%−10%−5%−20%=30%;用乙班的学生总数乘以各部分所占的百分比可得个2分数段的具体人数,再加上甲班的人数可得图三中的数据;(2)圆心角的度数=360°×所占的百分比;(3)结合各统计图的特点回答.25.【答案】证明:(1)∵AB//ED ,∴∠A =∠D ,∵AF =DC ,∴AC =DF ,在△ABC 和△DEF 中,{AB =DE ∠A =∠D AC =DF,∴△ACB≌△DEF .(2)∵△ACB≌△DEF∴∠BCF =∠EFD ,∴BC//EF .【解析】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是熟练应用全等三角形的判定和性质解决问题,属于基础题中考常考题型.(1)根据SAS 即可证明△ACB≌△DEF ;(2)利用全等三角形的性质即可证明.26.【答案】设布丁的单价为x 元/个,棒棒糖y 元/个,由题意得,{2x12y =2002x10y =180, 解得:{x =40y =10, 则布丁和棒棒糖的单价相差:40−10=30(元).答:布丁和棒棒糖的单价相差30元.【解析】设布丁的单价为x 元/个,棒棒糖y 元/个,根据题意可得:2个布丁和10根棒棒糖200−20元,2个布丁和12根棒棒糖200元,据此列方程组求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省凉山州会理县2015-2016学年七年级(下)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.在实数,﹣,0.1,0,2π,中,无理数的个数是()A.0个B.1个C.2个D.3个3.南涧无量樱花谷的樱花在12月中旬左右盛开,花朵绚丽迷人,吸引了众多海内外游客,去年到樱花谷参观的游客约为150000人,将这个数据用科学记数法表示为()A.1.5×103B.1.5×104C.0.15×105D.1.5×1054.下列各式运算正确的是()A.2a+3b=5ab B.﹣2x2﹣x2=﹣3x4C.﹣1.5﹣2=﹣4 D.﹣32=(﹣3)25.不等式2x﹣3>1的解集是()A.x<1 B.x>﹣1 C.x<2 D.x>26.如图,能判断AB∥CE的条件是()A.∠A=∠ACE B.∠A=∠ECD C.∠B=∠BCA D.∠B=∠ACE7.下列图形中,属于正方体平面展开图的是()A.B.C.D.8.下列说法中,不正确的是()A.1的立方根是1 B.负数没有立方根C.9的算术平方根是3 D.的平方根是±2二、填空题:本大题共6小题,每小题3分,共18分9.单项式的系数是______,它是______次单项式.10.若式子3x﹣2与的值相等,则x的值为______.11.如图所示,直线AB,CD被直线EF所截,若∠1=∠2,则∠AEF+∠CFE=______度.12.若(m﹣1)2+=0,则(m+n)2015的值是______.13.过点P(2,﹣3)且垂直于y轴的直线交y轴于点Q,那么Q点的坐标为______.14.用同样大小的笑脸按如图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需要笑脸______张.(用含n的代数式表示)三、解答题:本大题共9小题,共58分15.计算:|﹣1|﹣22×(﹣)+.16.先化简,再求值:2(ab﹣b2)﹣(ab﹣a2)+3(b2﹣a2),其中a=﹣1,b=.17.解方程组:.18.解不等式组:.19.如图,∠ABC=50°,∠ACB=60°,∠ABC、∠ACB的角平分线BO、CO交于O点,过O点作DE∥BC,求出∠BOC的大小.20.如图,∠B=∠C,∠B+∠D=180°,那么BC平行DE吗?为什么?21.如图每个小方格都是边长为1个单位的正方形,△ABC在平面直角坐标系的位置如图所示,先将△ABC向左平移4个单位,再向上平移2个单位,得到△A1B1C1(1)画出△ABC平移后的△A1B1C1;(3)写出A1、B1、C1的坐标.22.某中学为了了解该校学生周末活动情况,学校决定围绕“看电视、玩手机、看书以及其他活动中,你最喜欢的活动种类是什么.”(只选一类)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后,绘制成两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该校一共抽取了多少名学生进行问卷调查?(2)补全条形统计图.(3)在扇形统计图中,“其他”所在扇形圆心角的度数为______度;(4)若全校有920名学生,请你估计该校周末喜欢“看书”类的学生人数约为多少人?23.小华的家乡正在进行新农村建设,他爸爸在南涧水泥厂购买了100吨水泥,经与水泥厂老板协商,计划租用该厂A、B两种型号的汽车共6辆,用这6辆汽车一次将水泥全部运走,其中每辆A型汽车最多能装该种水泥16吨,每辆B型汽车最多能装该种水泥18吨,已知租用1辆A型汽车和2辆B型汽车共需要费用2500元,租用2辆A型汽车和1辆B型汽车共需要费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆A型汽车、一辆B型汽车的费用分别为多少元?(2)小华的爸爸计划此次租车费用不超过5000元,通过计算求出小华的爸爸有哪几种租车方案?参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.在实数,﹣,0.1,0,2π,中,无理数的个数是()A.0个B.1个C.2个D.3个【考点】无理数.【分析】无根据无理数的定义进行解答即可.理数就是无限不循环小数.【解答】解:在实数,﹣,0.1,0,2π,中,无理数有﹣,2π,共有2个;故选C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.3.南涧无量樱花谷的樱花在12月中旬左右盛开,花朵绚丽迷人,吸引了众多海内外游客,去年到樱花谷参观的游客约为150000人,将这个数据用科学记数法表示为()A.1.5×103B.1.5×104C.0.15×105D.1.5×105【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:150000=1.5×105.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.4.下列各式运算正确的是()A.2a+3b=5ab B.﹣2x2﹣x2=﹣3x4C.﹣1.5﹣2=﹣4 D.﹣32=(﹣3)2【考点】合并同类项;有理数的乘方.【分析】A、原式不能合并,错误;B、原式合并得到结果,即可作出判断;C、原式计算得到结果,即可作出判断;D、原式利用乘方的意义计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=﹣3x2,错误;C、原式=﹣4,正确;D、﹣32=﹣9,(﹣3)2=9,错误,故选C【点评】此题考查了合并同类项,以及有理数的乘方,熟练掌握运算法则是解本题的关键.5.不等式2x﹣3>1的解集是()A.x<1 B.x>﹣1 C.x<2 D.x>2【考点】解一元一次不等式.【分析】根据一元一次不等式的解法解答.【解答】解:移项,得2x>1+3,合并同类项,得2x>4,系数化为1,得x>2.故选D.【点评】本题考查了解一元一次不等式,理解不等式的性质是解题的关键.6.如图,能判断AB∥CE的条件是()A.∠A=∠ACE B.∠A=∠ECD C.∠B=∠BCA D.∠B=∠ACE【考点】平行线的判定.【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【解答】解:∵∠A=∠ACE,∴AB∥CE.故选A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.7.下列图形中,属于正方体平面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】正方体的平面展开图有:“一四一”形、“一三二”形、“三个二成阶梯”形、“三个二、日相连”形;异层必有“日”,“凹、田”不能有.故用排除法选D【解答】解:因为,选项A、B、C折叠起来均有重叠的面,所以,选D【点评】本题考查了正方体的平面展开图,解题的关键是要理解立体图形与其平面展开图之间的关系以及空间想象能力.8.下列说法中,不正确的是()A.1的立方根是1 B.负数没有立方根C.9的算术平方根是3 D.的平方根是±2【考点】立方根;平方根;算术平方根.【分析】根据立方根的定义,即可解答.【解答】解:A、1的立方根是1,正确;B、负数有立方根,故错误;C、9的算术平方根是3,正确;D、=4,4的平方根是±2,正确;故选:B.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.二、填空题:本大题共6小题,每小题3分,共18分9.单项式的系数是﹣,它是四次单项式.【考点】单项式.【分析】根据单项式的系数、次数的概念求解.【解答】解:单项式的系数是﹣,它是四次单项式.故答案为:﹣,四.【点评】本题考查了多项式的系数、次数的概念.单项式的系数是指单项式中的数字因数,次数为单项式中字母的指数和.10.若式子3x﹣2与的值相等,则x的值为 1 .【考点】解一元一次方程.【分析】先根据题意列出关于x的方程,再去分母,去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:由题意得,3x﹣2=,去分母得,2(3x﹣2)=x+1,去括号得,6x﹣4=x+1,移项得,6x﹣x=1+4,合并同类项得,5x=5,x的系数化为1得,x=1.故答案为:1.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.11.如图所示,直线AB,CD被直线EF所截,若∠1=∠2,则∠AEF+∠CFE= 180 度.【考点】平行线的判定与性质.【分析】由∠1=∠2可以得到AB∥CD,由此可以推出∠AEF+∠CFE=180°.【解答】解:∵直线AB,CD被直线EF所截,∠1=∠2,∴AB∥CD,∴∠AEF+∠CFE=180°.故填空答案:180.【点评】本题应用的知识点为:同位角相等,两直线平行;两直线平行,同旁内角互补.12.若(m﹣1)2+=0,则(m+n)2015的值是﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据几个非负数的和等于0,则每个数等于0,据此求得m和n的值,进而求得代数式的值.【解答】解:根据题意得:,解得:,则原式=(1﹣2)2015=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质,初中范围内的非负数有:算术平方根,偶次幂以及绝对值三个.13.过点P(2,﹣3)且垂直于y轴的直线交y轴于点Q,那么Q点的坐标为(0,﹣3).【考点】点的坐标.【分析】根据P(2,﹣3),PQ⊥y轴,得出点Q的纵坐标,再根据点Q在y轴上,得出点Q的横坐标即可.【解答】解:∵P(2,﹣3),PQ⊥y轴,∴点Q的纵坐标为﹣3,又∵点Q在y轴上,∴点Q的横坐标为0,∴Q点的坐标为(0,﹣3).故答案为:(0,﹣3).【点评】本题主要考查了点的坐标,解题时注意:与y轴垂直的直线上的点的纵坐标相同,与x轴垂直的直线上的点的横坐标相同.14.用同样大小的笑脸按如图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需要笑脸3n+1 张.(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第1个图形需要笑脸4张;第2个图形需要笑脸4+3=7张;第3个图形需要笑脸4+3+3=10张;…第n个图形需要笑脸4+3(n﹣1)=(3n+1)张.故答案为:3n+1.【点评】本题考查了图形的变化类,主要培养学生的观察能力和空间想象能力.三、解答题:本大题共9小题,共58分15.计算:|﹣1|﹣22×(﹣)+.【考点】实数的运算.【分析】根据实数的运算,即可解答.【解答】解:原式=﹣1﹣4×+2=﹣1﹣1+2=.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.16.先化简,再求值:2(ab﹣b2)﹣(ab﹣a2)+3(b2﹣a2),其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】先进行整式的加减,再代入求值.【解答】解:2(ab﹣b2)﹣(ab﹣a2)+3(b2﹣a2),=ab﹣b2﹣ab++3b2﹣=2b2﹣a2,当a=﹣1,b=时,原式=﹣(﹣1)2=2×﹣1=﹣1=﹣.【点评】本题考查了整式的加减,解决本题的关键是先把多项式化简.17.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:10x=20,即x=2,把x=2代入②得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<2,由②得,x≥﹣1,故不等式组的解集为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.19.如图,∠ABC=50°,∠ACB=60°,∠ABC、∠ACB的角平分线BO、CO交于O点,过O点作DE∥BC,求出∠BOC的大小.【考点】平行线的性质.【分析】根据角平分线的定义求出∠OBC、∠OCB,再根据三角形的内角和定理列式计算即可得解.【解答】解:∵∠ABC、∠ACB的平分线交于点O,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°,在△OBC中,∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣25°﹣30°=125°.【点评】本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记概念并准确识图是解题的关键.20.如图,∠B=∠C,∠B+∠D=180°,那么BC平行DE吗?为什么?【考点】平行线的判定.【分析】根据∠B=∠C,得两直线AB∥CD;又由已知条件∠B+∠D=180°及等量代换证明同旁内角∠C+∠D=180°,所以两直线 BC∥DE.【解答】证明:BC与DE能平行.理由:∵∠B=∠C,∴AB∥CD,又∵∠B+∠D=180°(已知),∴∠C+∠D=180°(等量代换),∴BC∥DE(同旁内角互补,两直线平行).【点评】本题考查了平行线的判定与性质.解答本题的关键是找出∠C与∠D的关系.21.如图每个小方格都是边长为1个单位的正方形,△ABC在平面直角坐标系的位置如图所示,先将△ABC向左平移4个单位,再向上平移2个单位,得到△A1B1C1(1)画出△ABC平移后的△A1B1C1;(3)写出A1、B1、C1的坐标.【考点】作图-平移变换.【分析】利用点平移的坐标规律,写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【解答】解:(1)如图,△A1B1C1为所作;(2)A1、B1、C1的坐标分别为(2,2),(﹣3,0),(0,0).【点评】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.某中学为了了解该校学生周末活动情况,学校决定围绕“看电视、玩手机、看书以及其他活动中,你最喜欢的活动种类是什么.”(只选一类)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后,绘制成两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该校一共抽取了多少名学生进行问卷调查?(2)补全条形统计图.(3)在扇形统计图中,“其他”所在扇形圆心角的度数为36 度;(4)若全校有920名学生,请你估计该校周末喜欢“看书”类的学生人数约为多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可以求得该校一共抽取了多少名学生进行问卷调查;(2)根据统计图可以求得看书的学生数,从而可以将条形统计图补充完整;(3)根据其他占所抽取的学生的百分比可以求得在扇形统计图中,“其他”所在扇形圆心角的度数;(4)根据统计图中的数据可以求得估计该校周末喜欢“看书”类的学生人数.【解答】解:(1)由题意可得,本次抽取的学生有:80÷40%=200(名),即该校一共抽取了200名学生进行问卷调查;(2)看书的学生有:200﹣80﹣60﹣20=40(名),故补全的条形统计图如右图所示,(3)由题意可得,在扇形统计图中,“其他”所在扇形圆心角的度数为:360°×=36°,故答案为:36;(4)920×=184(人),即该校周末喜欢“看书”类的学生人数约为184人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23.小华的家乡正在进行新农村建设,他爸爸在南涧水泥厂购买了100吨水泥,经与水泥厂老板协商,计划租用该厂A、B两种型号的汽车共6辆,用这6辆汽车一次将水泥全部运走,其中每辆A型汽车最多能装该种水泥16吨,每辆B型汽车最多能装该种水泥18吨,已知租用1辆A型汽车和2辆B型汽车共需要费用2500元,租用2辆A型汽车和1辆B型汽车共需要费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆A型汽车、一辆B型汽车的费用分别为多少元?(2)小华的爸爸计划此次租车费用不超过5000元,通过计算求出小华的爸爸有哪几种租车方案?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”.【解答】解:解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y 元.由题意得,;解得:,答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元);∵5000>4950>4900;∴最低运费是方案三的费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.【点评】本题考查不等式组的应用,二元一次方程组的应用,解题关键是要读懂题目的意思,找出(1)合适的等量关系:1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)根据租车费用不超过5000元列出方程组,再求解.。

相关文档
最新文档