2020高考数学复习 专题08 等差数列(教师版)

合集下载

2020新课标高考艺术生数学复习教师用书:第五章第2节 等差数列及其前n项和

2020新课标高考艺术生数学复习教师用书:第五章第2节 等差数列及其前n项和

第2节 等差数列及其前n 项和最新考纲核心素养考情聚焦1.通过生活中的实例,理解等差数列的概念和通项公式的意义.2.探索并掌握等差数列的前n 项和公式,理解等差数列的通项公式与前n 项和公式的关系.3.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.4.体会等差数列与一元一次函数的关系1.等差数列的基本运算,达成逻辑推理和数学运算素养.2.等差数列的判定与证明,发展数学抽象和数学运算素养.3.等差数列的性质,提升逻辑推理和数学运算素养等差数列的定义、通项公式及前n 项和公式、等差数列的性质是高考的热点,以求a 1、d 、a n 、S n 为主要考查内容.高考题型多样,以选择题、填空题的形式考查等差数列的基本运算和性质,难度不大.在解答题中常与等比数列、数列求和等问题综合考查,难度中等1.等差数列的概念(1)如果一个数列从第 2 项起,每一项与它的前一项的差等于 同一个常数 ,那么这个数列就叫做等差数列,这个常数叫做等差数列的 公差 ,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A = .数列{a n }是等a +b2差数列⇔2a n =a n -1+a n +1(n ≥2,n ∈N *).2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = a 1+(n -1)d .推广:①a n =a m + (n -m )d (m ,n ∈N *).②等差数列的通项公式与函数的关系a n =dn +(a 1-d )是关于n 的一次函数.③数列{a n }是等差数列⇔a n =pn +q (p ,q 为常数).(2)等差数列的前n 项和公式S n == na 1+d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).n (a 1+an )2n (n -1)2推广:①等差数列的前n 项和公式与函数的关系S n =n 2+n是关于n 的二次函d2(a 1-d2)数,且常数项为0.②数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和.(1)当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *).特别地,若m +n =2p ,则a m +a n =2a p (m ,n ,p ∈N *).(2)等差数列{a n }的单调性:当d >0时,{a n }是 递增 数列;当d <0时,{a n }是 递减 数列;当d =0时,{a n }是 常数列 .(3)若{a n }是等差数列,公差为d ,则相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…,仍是等差数列,公差为 md (k ,m ∈N *).(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列.4.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最 大 值;若a 1<0,d >0,则S n 存在最 小 值. 已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.1.有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=….2.也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的.{Sn n }123.在等差数列{a n }中,(1)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;=.S 奇S 偶anan +1(2)若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;=.S 奇S 偶nn -14.若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则=.S 2n -1T 2n -1anbn 5.若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.6.若a m =n ,a n =m (m ≠0),则a m +n =0.[思考辨析] 判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其前n 项和公式为n 的二次函数.( )(5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )答案:(1)× (2)√ (3)√ (4)× (5)× (6)√[小题查验]1.(2016·全国Ⅰ卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100 B .99 C .98 D .97解析:C [设等差数列{a n }的公差为d ,由已知得Error!所以Error!所以a 100=a 1+99d =-1+99=98.]2.(2019·荆州市一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A .15B .30C .31D .64解析:A [设等差数列{a n }的公差为d ,∵a 3+a 4+a 5=3,a 8=8,∴3a 4=3,即a 1+3d =1,a 1+7d =8,联立解得Error!则a 12=-+×11=15.]174743.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5 B .a n =3n -10C .S n =2n 2-8nD .S n =n 2-2n12解析:A [设{a n }的公差为d ,则Error!解得a 1=-3,d =2.∴a n =-3+(n -1)·2=2n -5,S n =-3n +×2=n 2-4n ,故选A.]n (n -1)24.(北师大版教材例题改编)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________.答案:-15-n5.已知数列{a n }中,a 1=1且=+(n ∈N *),则a 10=________.1an +11an 13解析:由=+知,数列{}为等差数列,则=1+(n -1),即1an +11an 131an 1an 13a n =.∴a 10==.3n +2310+214答案:14考点一 等差数列的基本运算(自主练透)数学建模——等差数列实际应用中的核心素养以等差数列的知识为基础,把现实生活中的实际问题通过“建模”转化为数学问题,进而通过数学运算来解释实际问题,并接受实际的检验,发展数学建模的素养.[题组集训]1.(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:C [设公差为d ,则a 4+a 5=a 1+3d +a 1+4d =24,S 6=6a 1+d =48,联立6×52得Error!①×3-②得(21-15)d =24,6d =24,所以d =4.]2.(2019·全国Ⅲ卷)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:本题考点为等差数列的求和,为基础题目,难度不大.不能构造等数列首项和公差的方程组致使求解不通,应设出等差数列的公差,为列方程组创造条件,从而求解数列的和.Error!,得Error!,∴S 10=10a 1+d =10×1+×2=100.10×9210×92答案:1003.(2019·咸阳市一模)《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士、凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表达,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则公士得( )A .三分鹿之一B .三分鹿之二C .一鹿D .一鹿、三分鹿之一解析:A [五人分得的鹿构成等差数列{a n },d <0.a 1=1+=,S 5=5,∴5×+235353d =5,解得d =-,∴a 5=-×4=.]5×4213531313等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判定与证明(子母变式)[母题] 若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=.12(1)求证:是等差数列;{1Sn }(2)求数列{a n }的通项公式.[破题关键点] (1)将a n +2S n S n -1=0(n ≥2)转化为S n 与S n -1的关系等式;(2)先求出S n ,再利用a n 与S n 的关系求a n .[解析] (1)证明:当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以-=2,1Sn 1Sn -1又==2,故是首项为2,公差为2的等差数列.1S 11a 1{1Sn }(2)由(1)可得=2n ,∴S n =.1Sn 12n 当n ≥2时,a n =S n -S n -1=-==-.12n 12(n -1)n -1-n2n (n -1)12n (n -1)当n =1时,a 1=不适合上式.12故a n =Error![子题1] 将母题条件“a n +2S n S n -1=0(n ≥2),a 1=”改为“S n (S n -a n )+2a n =0(n ≥2),12a 1=2”,问题不变,试求解.解:(1)证明:当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0.∴S n [S n -(S n -S n -1)]+2(S n -S n -1)=0,即S n S n -1+2(S n -S n -1)=0.即-=.又==.1Sn 1Sn -1121S 11a 112故数列是以首项为,公差为的等差数列.{1Sn }1212(2)由(1)知=,∴S n =,当n ≥2时,1Sn n22n a n =S n -S n -1=-2n (n -1)当n =1时,a 1=2不适合上式,故a n =Error![子题2] 已知数列{a n }满足2a n -1-a n a n -1=1(n ≥2),a 1=2,证明数列是等差数{1an -1}列,并求数列{a n }的通项公式.解:当n ≥2时,a n =2-,1an -1∴-=-=-=-1an -11an -1-112-1an -1-11an -1-111-1an -11an -1-1an -1an -1-1==1(常数).1an -1-1an -1-1an -1-1又=1.1a 1-1∴数列是以首项为1,公差为1的等差数列.{1an -1}∴=1+(n -1)×1,∴a n =.1an -1n +1n等差数列的四种判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n =a n -1+a n +1(n ≥2,n ∈N *)都成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列,主要适合在选择题中简单判断.提醒:要注意定义中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.考点三 等差数列的性质(师生共研)[典例] (1)下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列是递增数列;p 4:数列{a n +3nd }是递增数列.{ann }其中的真命题为( )A .p 1,p 2 B .p 3,p 4C .p 2,p 3 D .p 1,p 4解析:命题判断过程结论p 1:数列{a n }是递增数列.由a n +1-a n =d >0,知数列{a n }是递增数列真命题p 2:数列{na n }是递增数列由(n +1)a n +1-na n =(n +1)(a 1+nd )-n [a 1+(n -1)d ]=a 1+2nd ,仅由d >0是无法判断a 1+2nd 的正负的,因而不能判定(n +1)a n +1,na n 的大小关系.假命题p 3:数列是{an n }递增数列显然,当a n =n 时,=1,数列是ann {ann }常数数列,不是递增数列.假命题p 4:数列{a n +3nd }是递增数列数列的第n +1项减去数列的第n 项[a n +1+3(n +1)d ]-(a n +3nd )=(a n +1-a n )+[3(n +1)d -3nd ]=d +3d =4d >0.所以a n +1+3(n +1)d >a n +3nd ,即数列{a n +3nd }是递增数列真命题[答案] D(2)一个等差数列{a n }的前12项的和为354,前12项中偶数项的和S 偶与前12项中奇数项的和S 奇之比为,则公差d =________.3227[解析] 由题意,可知Error!∴Error!又项数为12的等差数列中S 偶-S 奇=6d =192-162,∴d =5.[答案] 5(3)(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5.①若a 3=4,求{a n }的通项公式;②若a 1>0,求使得S n ≥a n 的n 的取值范围.[解析] ①设{a n }的公差为d ,由S 9=-a 5得a 1+4d =0.由a 3=4得a 1+2d =4.于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .②由①得a 1=-4d ,故a n =(n -5)d ,S n =.n (n -9)d 2由a 1>0知d <0,故S n ≥a n 等价于n 2-1l n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.[答案] ①a n =10-2n ②{n |1≤n ≤10,n ∈N}利用等差数列性质的常见题型与求解策略求基本量(1)关键是将性质m +n =p +q ⇒a m +a n =a p +a q 与前n 项和公式S n =结合在一起,采用整体思想,n (a 1+an )2简化解题过程.(2)利用等差数列奇数项和与偶数项和的性质:项数为偶数2n 的等差数列{a n }:S 2n =n (a 1+a 2n )=…=n (a n +a n +1),S 偶-S 奇=nd ,=;项数为奇数(2n +1)的等S 奇S 偶anan +1差数列{a n }:S 2n +1=(2n +1)a n +1,=(其中S 奇、S 偶分别表示数S 奇S 偶n +1n 列{a n }中所有奇数项、偶数项的和).求前n 项和的最值(1)若a 1>0,d <0,且满足Error!前n 项和S n 最大.(2)若a 1<0,d >0,且满足Error!前n 项和S n 最小.(3)除上面方法外,还可将{a n }的前n 项和最值问题看作S n 关于n 的二次函数最值问题(公差不为零),利用二次函数的图象或配方法求解,注意n ∈N *.确定单调性公差d >0时为递增数列,且当a 1<0时,前n项和S n 有最小值;d <0时为递减数列,且当a 1>0时,前n 项和S n 有最大值.1.(2019·福州市一模)已知等差数列{a n }的公差为1,且a 2,a 4,a 7成等比数列,则a n =( )A .2n +1 B .2n +2C .n +1D .n +2解析:D [等差数列{a n }的公差为1,且a 2,a 4,a 7成等比数列,∴(a 1+3)2=(a 1+1)(a 1+6),解得a 1=3.∴a n =3+(n -1)=n +2.]2.(2019·菏泽市一模)已知在等差数列{a n }中,a 1=1,a 3=2a +1,a 5=3a +2,若S n =a 1+a 2+…+a n ,且S k =66,则k 的值为( )A .9B .11C .10D .12解析:B [∵在等差数列中,2a 3=a 1+a 5,∴2(2a +1)=1+3a +2,解得a =1,即a 1=1,a 3=3,a 5=5,∴公差d =1,∴S k =k ×1+×1=66,解得k =11或k =-12(舍).]k (k -1)23.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:C [∵Error!∴Error!∴S n 的最大值为S 5.]4.(2019·丹东市一模)已知数列{a n }是公差为3的等差数列,{b n }是公差为5的等差数列,若b n ∈N *,则数列{ab n }为( )A .公差为15的等差数列B .公差为8的等差数列C .公比为125的等比数列D .公比为243的等比数列解析:A [数列{a n }是公差为3的等差数列,{b n }是公差为5的等差数列,∴a n =a 1+3(n -1),b n =b 1+5(n -1),ab n =a 1+3(b n -1)=a 1+3[b 1+5(n -1)-1]=a 1+3b 1-3+15(n -1),∴数列{ab n }为公差是15的等差数列.]5.(2019·唐山市统考)等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8等于( )A .18B .12C .9D .6解析:D [由题意得S 11===22,即a 1+5d =2,所以11(a 1+a 11)211(2a 1+10d )2a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.]6.(2019·玉溪市模拟)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 的值是________.解析:设等差数列公差为d ,则有Error!,解得Error!∴a 20=39-2×19=1>0,a 21=39-2×20=-1<0∴数列的前20项为正,∴当n =20时,S n 达到最大值.答案:207.(2019·郑州市模拟)《张丘建算经》卷上有如下问题:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布.若第一天织5尺布,现在一个月(按30天计)共织390尺布,则该女最后一天织________尺布.解析:由题意得,织女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有=390,解得a 30=21,即该织女最后一天织30(5+a 30)221尺布.答案:218.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.解析:由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案:1309.(2016·全国Ⅱ卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解:(1)设数列{a n }的公差为d ,由题意有Error!解得Error!所以{a n }的通项公式为a n =.2n +35(2)由(1)知b n =,[2n +35]当n =1,2,3时,1≤<2,b n =1;2n +35当n =4,5时,2≤<3,b n =2;2n +35当n =6,7,8时,3≤<4,b n =3;2n +35当n =9,10时,4≤<5,b n =4,2n +35所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知函数f (x )=x 2-2(n +1)x +n 2+5n -7.(1)设函数y =f (x )的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列;(2)设函数y =f (x )的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n .解:(1)证明:∵f (x )=x 2-2(n +1)x +n 2+5n -7=[x -(n +1)]2+3n -8,∴a n =3n -8,∵a n +1-a n =3(n +1)-8-(3n -8)=3,∴数列{a n }为等差数列.(2)由题意知,b n =|a n |=|3n -8|,∴当1≤n ≤2时,b n =8-3n ,S n =b 1+…+b n ==n (b 1+bn )2n [5+(8-3n )]2=;13n -3n 22当n ≥3时,b n =3n -8,S n =b 1+b 2+b 3+…+b n =5+2+1+…+(3n -8)=7+=.(n -2)[1+(3n -8)]23n 2-13n +282∴S n =Error!。

2020年高考数学40个考点总动员 考点18 等差数列的运算和性质(教师版) 新课标

2020年高考数学40个考点总动员 考点18 等差数列的运算和性质(教师版) 新课标

2020年新课标数学40个考点总动员 考点18 等差数列的运算和性质(教师版)【高考再现】热点一、等差数列基本量的计算 1.(2020年高考辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )A .12B .16C .20D .242.(2020年高考北京文)已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a =________;n S =________.【答案】1,1(1)4n n + 【解析】23S a =Q ,所以1112a a d a d ++=+,∴12d =∴211a a d =+= ∴1(1)4n S n n =+. 3.(2020年高考重庆理)在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( )A .7B .15C .20D .254. (2020年高考福建理)等差数列{}n a 中,15410,7a a a +==,则数列{}n a 的公差为( )A .1B .2C .3D .4【答案】B【解析】151102410a a a d +=⇒+=Q ,而4137a a d =+=,解得2d =.5.(2020年高考广东理)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =______________.【答案】21n -【解析】设公差为d (0d >),则有()21214d d +=+-,解得2d =,所以21n a n =-. 6.(2020年高考(山东文))已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .【方法总结】等差数列的通项公式及前n 项和公式中,共涉及五个量,知三可求二,如果已知两个条件,就可以列出方程组解之.如果利用等差数列的性质、几何意义去考虑也可以.体现了用方程思想解决问题的方法.热点二、等差数列性质的综合应用 1.(2020年高考辽宁理)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )A .58B .88C .143D .1762.(2020年高考江西理)设数列{}{},n n a b 都是等差数列,若11337,21a b a b +=+=,则55a b +=__________。

2020版高考数学高分复习理数通用版:第八单元 数 列

2020版高考数学高分复习理数通用版:第八单元  数 列

资料正文内容下拉开始>>第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.2.数列{a n }满足a 1=3,a n +1=a n -1a n (n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23解析:选D 由a 1=3,a n +1=a n -1a n,得a 2=a 1-1a 1=23,a 3=a 2-1a 2=-12,a 4=a 3-1a 3=3,……,由上可得,数列{a n }是以3为周期的周期数列, 故a 2 018=a 672×3+2=a 2=23.3.已知数列{a n }满足a n =32n -11(n ∈N *),前n 项的和为S n ,则关于a n ,S n 的叙述正确的是( )A .a n ,S n 都有最小值B .a n ,S n 都没有最小值C .a n ,S n 都有最大值D .a n ,S n 都没有最大值解析:选A ①∵a n =32n -11,∴当n ≤5时,a n <0且单调递减;当n ≥6时,a n >0,且单调递减.故当n =5时,a 5=-3为a n 的最小值;②由①的分析可知:当n ≤5时,a n <0;当n ≥6时,a n >0.故可得S 5为S n 的最小值. 综上可知,a n ,S n 都有最小值.4.已知数列{a n }中,a 1=1,a n +1=a n +2n +1(n ∈N *),则a 5=________.解析:依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.1.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.2.已知数列{a n }的前n 项和为S n =3+2n ,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=3+2=5;当n ≥2时,a n =S n -S n -1=3+2n -(3+2n -1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( )A .-39B .5C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n , a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65. 4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4.∵S 5<10,∴5(a 1+a 5)2=5(a 2+a 4)2=5(2a 2+2d )2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎫-2+522=52.等比数列[过双基]1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q 2=4,∴数列{a n }的前2 018项的和为 S 2 018=4[1-(-1)2 018]1-(-1)=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立.故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n =n n +1,则a 5b 5等于( )A.34 B.56 C.910D.1011解析:选C ∵S 9=9(a 1+a 9)2=9a 5,T 9=9(b 1+b 9)2=9b 5, ∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2 解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0, 解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13, 两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n ,得a 2n -a 2n -1=(-1)n , 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1. a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9. 又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18.(1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧ a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n . (2)由(1)知,S n =n (a 1+a n )2=n (9+11-2n )2=-n 2+10n =-(n -5)2+25, ∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n 2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n+1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析]等差数列基本量的运算[典例] (1)设S n n 1S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎡⎦⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36, 解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8.答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝⎛⎭⎫3a 1+3×22×1, 解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4. 即所求m 的值为5,k 的值为4.[典例] n n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [思路点拨] (1)利用等差数列的性质“a n -k +a n +k =2a n ”,构造出{a n }是“P (3)数列”需要满足的条件即可证明;(2)根据等差数列定义、通项公式、中项公式即可证明{a n }为等差数列.[证明](1)因为{a}是等差数列,设其公差为d,n则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[方法技巧]等差数列判定与证明的方法1.(2016·浙江高考)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*(P≠Q表示点P与Q不重合).若+2d n=|A n B n|,S n为△A n B n B n+1的面积,则()A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n=3n +22n ,则a 7b 7=( )A.4126B.2314C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n =3n +22n,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12.3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023n n 1311n n 的值为________.[解析] 法一:用“函数法”解题 由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20, ∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3,∴S n =-26n +n (n -1)2×3=32n 2-552n =32⎝⎛⎭⎫n -5562-3 02524, ∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10(a 1+a 10)2=5(a 5+a 6)=0, 可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a100=a5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解:(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{a n}的通项公式;(2)求a1+a4+a7+…+a3n-2.解:(1)设{a n}的公差为d.由题意,a211=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),或d=-2.故a n=-2n+27.(2)令S n=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而S n=n2(a1+a3n-2)=n2(-6n+56)=-3n2+28n.一、选择题1.(2018·厦门一中测试)已知数列{a n}中,a2=32,a5=98,且⎩⎨⎧⎭⎬⎫1a n-1是等差数列,则a7=()A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312.2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列, 设首项a 1=4,则a 5=2.由等差数列的性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),有下列命题:①若S 3=S 11,则必有S 14=0;②若S 3=S 11,则必有S 7是S n 中的最大项; ③若S 7>S 8,则必有S 8>S 9; ④若S 7>S 8,则必有S 6>S 9. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选D 对于①,若S 11-S 3=4(a 1+a 14)=0,即a 1+a 14=0,则S 14=14(a 1+a 14)2=0,所以①正确;对于②,当S 3=S 11时,易知a 7+a 8=0,又a 1>0,d ≠0,所以a 7>0>a 8,故S 7是S n 中的最大项,所以②正确;对于③,若S 7>S 8,则a 8<0,那么d <0,可知a 9<0,此时S 9-S 8<0,即S 8>S 9,所以③正确;对于④,若S7>S8,则a8<0,S9-S6=a7+a8+a9=3a8<0,即S6>S9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n中,a1+a2+a3=3,a18+a19+a20=87,则此数列前20项的和等于()A.290 B.300C.580 D.600解析:选B由a1+a2+a3=3a2=3,得a2=1.由a18+a19+a20=3a19=87,得a19=29,所以S20=20(a1+a20)2=10(a2+a19)=300.5.设等差数列{a n}的前n项和为S n,且S9=18,a n-4=30(n>9),若S n=336,则n的值为()A.18 B.19C.20 D.21解析:选D因为{a n}是等差数列,所以S9=9a5=18,a5=2,S n=n(a1+a n)2=n(a5+a n-4)2=n2×32=16n=336,解得n=21.6.设{a n}是等差数列,d是其公差,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.当n=6或n=7时S n取得最大值解析:选C由S5<S6,得a1+a2+a3+a4+a5<a1+a2+a3+a4+a5+a6,即a6>0.同理由S7>S8,得a8<0.又S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,∴B正确;∵d =a7-a6<0,∴A正确;而C选项,S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,知C选项错误;∵S5<S6,S6=S7>S8,∴结合等差数列前n项和的函数特性可知D正确.故选C.7.等差数列{a n}的前n项和为S n,若公差d>0,(S8-S5)(S9-S5)<0,则()A.|a7|>|a8| B.|a7|<|a8|C.|a7|=|a8| D.|a7|=0解析:选B因为(S8-S5)(S9-S5)<0,所以(a6+a7+a8)(a6+a7+a8+a9)<0,因为{a n}为等差数列,所以a 6+a 7+a 8=3a 7, a 6+a 7+a 8+a 9=2(a 7+a 8), 所以a 7(a 7+a 8)<0, 所以a 7与(a 7+a 8)异号. 又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B. 二、填空题8.在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________. 解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1-1a n=3,所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.所以1a n =12+3(n -1),即a n =26n -5,所以a 20=2115. 答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n ,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n , ∴a n +12n +1=a n 2n +12,∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列,故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1.答案:a n =n ·2n -110.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, ∴2(S 8-S 4)=S 4+(S 12-S 8), ∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2. 答案:2三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12. (1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n最大值是多少?解:(1)设{a n }的公差为d , ∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ), 解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6, ∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2, 故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2; 当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4.13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *).(1)证明数列{a n -2n }是等差数列,并求{a n }的通项公式; (2)设b n =a n2n ,求b n 的前n 项和S n .解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3,∴a n -2n -(a n -1-2n -1)=3.又a 1=4,∴a 1-2=2,故数列{a n -2n }是以2为首项,3为公差的等差数列, ∴a n -2n =2+(n -1)×3=3n -1, ∴a n =2n +3n -1.(2)b n =a n 2n =2n+3n -12n=1+3n -12n , ∴S n =⎝⎛⎭⎫1+22+⎝⎛⎭⎫1+522+…+⎝⎛⎭⎫1+3n -12n =n +⎝⎛⎭⎫22+522+…+3n -12n ,令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1,=1+3×14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-3n -12n +1=52-3n +52n +1,∴S n =n +5-3n +52n.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *).(1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,并由此求出a n 与S n ;(3)求n 的所有取值,使S na n∈N *,说明你的理由.解:(1)∵a 1=3,a n +1=2a n +2n +1-1,∴a 2=2×3+22-1=9,a 3=2×9+23-1=25. (2)∵a 1=3,a n +1=2a n +2n +1-1,∴a n +1-1=2(a n -1)+2n +1,∴a n +1-12n +1-a n -12n =1,故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1.∴a n -12n =n ,即a n =n ·2n +1.∴S n =(1×2+2×22+3×23+…+n ×2n )+n , 设T n =1×2+2×22+3×23+…+n ×2n ,① 则2T n =1×22+2×23+3×24+…+n ×2n +1,②①-②得,-T n =2+22+23+…+2n -n ×2n +1=(1-n )·2n +1-2,∴T n =(n -1)·2n +1+2,∴S n =T n +n =(n -1)·2n +1+2+n .(3)S n a n =(n -1)·2n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立,∴2n +1>n ,即n -2n +1<0,∵n ·2n +1>0,∴S n a n<2.当n =1时,S n a n =S 1a 1=1∈N *;当n ≥2时,∵a n >0且{a n }为递增数列, ∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S na n ∉N *.综上可得n =1. 高考研究课(二)等比数列的3考点——基本运算、判定和应用 [全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1(2)(2018·石家庄模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). ①求数列{a n }的通项公式;②若数列{b n }满足b n =1a n,求数列{b n }前n 项和T n .[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q 3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n=4⎝⎛⎭⎫1-12n 42n =2n-1.答案:D(2)①当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),∴a n =3a n -1.∴数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.②∵b n =1a n =⎝⎛⎭⎫13n -2,∴{b n }是首项为3,公比为13的等比数列,∴T n =b 1+b 2+…+b n =3⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=92⎣⎡⎦⎤1-⎝⎛⎭⎫13n .[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.[即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q , 若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q=316,得⎩⎨⎧a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1. 由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.2.(2018·汕头模拟)设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列.(1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列, ∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2.当n =1时,a 1=1,不适合上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.[典例] (1)n 12n +2n +1n N *,对数列{a n }有下列命题:①数列{a n }是等差数列; ②数列{a n +1-a n }是等比数列; ③当n ≥2时,a n 都是质数; ④1a 1+1a 2+…+1a n <2,n ∈N *, 则其中正确的命题有( ) A .② B .①② C .③④D .②④(2)已知数列{a n }满足a 1=12,a n =a n -12-a n -1(n ≥2).①求证:⎩⎨⎧⎭⎬⎫1a n-1为等比数列,并求出{a n }的通项公式;②若b n =2n -1a n,求{b n }的前n 项和S n . [解析] (1)∵a n +2=3a n +1-2a n , ∴a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=2为首项、2为公比的等比数列, ∴a n -a n -1=2n -1,a n -1-a n -2=2n -2,…a 2-a 1=21,累加得:a n -a 1=21+22+…+2n -1=2(1-2n -1)1-2=2n -2,∴a n =2n -2+a 1=2n -1. 显然①②③中,只有②正确, 又∵1a n=12n -1<12n -1(n ≥2),。

2020年高考数学(理)总复习:等差数列与等比数列(原卷版)

2020年高考数学(理)总复习:等差数列与等比数列(原卷版)

2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1 C.3n +1-3n2D.3n +1-32题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .122.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4 D .33.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16 题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 0082.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-503.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4 2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.3.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-322.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.433.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【专题训练】 一、选择题1.等比数列{a n }中,a 4=2,a 7=5,则数列{lg a n }的前10项和等于( ) A .2 B .lg 50 C .10D .52.在正项等比数列{a n }中,已知a 3a 5=64,则a 1+a 7的最小值为( ) A .64B .32C .16D .83.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是( )A .13B .12C .11D .104.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)25.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.756.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5 D .6二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 8.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.。

【数学】2020高考数学一轮复习第5章数列第2节等差数列教师用书文北师大版

【数学】2020高考数学一轮复习第5章数列第2节等差数列教师用书文北师大版

【关键字】数学第二节等差数列[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.用符号表示为an+1-an=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=,其中A叫作a,b的等差中项.2.等差数列的有关公式(1)通项公式:an=a1+(n-1)d.(2)前n项和公式:Sn=na1+=.3.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+,…(k,m∈N*)是公差为md的等差数列.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.( )(3)等差数列{an}的单调性是由公差d决定的.( )(4)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.( )[答案] (1)×(2)√(3)√(4)×2.等差数列{an}的前n项和为Sn,且S3=6,a3=0,则公差d等于( )A.-1 B.1C.2 D.-2D [依题意得S3=2=6,即a2=2,故d=a3-a2=-2,故选D.]3.(2015·全国卷Ⅱ)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( ) A.5 B.7C.9 D.11A [a1+a3+a5=3=3⇒a3=1,S5==3=5.]4.(2016·全国卷Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=( ) A .100 B .99 C .98D .97C [法一:∵{an}是等差数列,设其公差为d , ∴S9=(a1+a9)=5=27,∴a5=3. 又∵a10=8,∴∴∴a100=a1+99d =-1+99×1=98.故选C. 法二:∵{an}是等差数列, ∴S9=(a1+a9)=5=27,∴a5=3.在等差数列{an}中,a5,a10,a15,…,a100成等差数列,且公差d ′=a10-a5=8-3=5.故a100=a5+(20-1)×5=98.故选C.]5.(教材改编)在100以内的正整数中有__________个能被6整除的数.【导学号:】16 [由题意知,能被6整除的数构成一个等差数列{an}, 则a1=6,d =6,得an =6+(n -1)6=6n. 由an =6n ≤100,即n ≤16=16,则在100以内有16个能被6整除的数.]等差数列的基本运算(1)(2015·全国卷Ⅰ)已知{an}是公差为1的等差数列,Sn 为{an}的前n 项和,若S8=4S4,则a10=( )A. B . C .10D .12(2)(2017·云南省二次统一检测)设等差数列{an}的前n 项和为Sn ,S11=22,a4=-12,若am =30,则m =( )【导学号:】A .9B .10C .11D .15(1)B (2)B [(1)∵公差为1, ∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.(2)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+11×11-12d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.][规律方法] 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.[变式训练1] (1)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12 B .1 C .2D .3(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.【导学号:】(1)C (2)-72 [(1)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.(2)设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.]等差数列的判定与证明已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n∈N *).(1)求证:数列{b n }是等差数列. (2)求数列{a n }中的通项公式a n . [解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1.所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 5分又b 1=1a 1-1=-52, 所以数列{b n }是以-52为首项,1为公差的等差数列. 7分(2)由(1)知,b n =n -72,9分则a n =1+1b n =1+22n -7. 12分[规律方法] 1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.[变式训练2] (1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )【导学号:】A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n(1)C (2)A [(1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.]等差数列的性质与最值(1)(2017·东北三省四市一联)如图5­2­1所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a 52=( )【导学号:】图5­2­1A .2B .8C .7D .4(2)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.(1)C [法一:第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7,故选C.法二:由于每行每列都成等差数列,不妨取特殊情况,即这9个数均相同,显然满足题意,所以有63÷9=7,即a 52=7,故选C.](2)法一:由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,4分即d =-213a 1. 7分从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0. 9分 故当n =7时,S n 最大. 12分法二:由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,5分即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,9分解得6.5≤n ≤7.5,故当n =7时,S n 最大. 12分 法三:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,5分故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,9分 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 12分 [规律方法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图像求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[变式训练3] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( )【导学号:】A .18B .99C .198D .297(2)设等差数列{a n }的前n 项和为S n ,且S 5=10,S 10=30,则S 15=( ) A .60B .70C .90D .40(1)B (2)A [(1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99. (2)因为数列{a n }为等差数列,所以S 5,S 10-S 5,S 15-S 10也成等差数列,设S 15=x ,则10,20,x -30成等差数列,所以2×20=10+(x -30),所以x =60,即S 15=60.][思想与方法]1.等差数列的通项公式,前n 项和公式涉及“五个量”,“知三求二”,需运用方程思想求解,特别是求a 1和d .(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…. 2.等差数列{a n }中,a n =an +b (a ,b 为常数),S n =An 2+Bn (A ,B 为常数),均是关于“n ”的函数,充分运用函数思想,借助函数的图像、性质简化解题过程.3.等差数列的四种判断方法:(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列. [易错与防范]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

专题08 数列求和-倒序相加、绝对值、奇偶性求和(解析版)

专题08 数列求和-倒序相加、绝对值、奇偶性求和(解析版)

数列求和-倒序相加、绝对值、奇偶性求和◆倒序相加法求和等差数列的求和公式()12n n n a a S +=,其过程正是利用倒序相加的原理.这类题之所以能够利用倒序相加来求和,是因为其自身具备明显的特征,那就是首项与末项相加为定值.一般题中出现12x x k +=(k 为常数),()()12f x f x m +=(m 为常数)时,可以采用倒序相加的方法进行求和.【经典例题1】已知函数()f x 对任意的x ∈R ,都有()()11f x f x +-=,数列{}n a 满足()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫+ ⎪⎝⎭.求数列{}n a 的通项公式. 【答案】12n n a += 【解析】因为()()11f x f x +-=,∴111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭. 故()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫++ ⎪⎝⎭.① ∴()121n n n a f f f n n --⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()01f n f ⎛⎫++ ⎪⎝⎭.② ∴①+②,得21n a n =+,∴12n n a +=. 所以数列{}n a 的通项公式为12n n a +=.【练习1】已知正数数列{}n a 是公比不等于1的等比数列,且120191a a =,试用推导等差数列前n 项和的方法探求:若24()1f x x=+,则()()()122019f a f a f a +++=( )A .2018B .4036C .2019D .4038【答案】D 【解析】120191a a ⋅=,∵函数24()1f x x =+ ∵222214444()41111+⎛⎫+=+== ⎪++⎝⎭+x f x f x x x x, 令122019()()()T f a f a f a =++⋅⋅⋅+,则201920181()()()T f a f a f a =++⋅⋅⋅+, ∵()()()()()()120192201820191242019T f a f a f a f a f a f a =++++⋅⋅⋅++=⨯, ∵4038T =. 故选:D.【练习2】已知函数1()1f x x =+,数列{}n a 是正项等比数列,且101a =,则()()()()()1231819f a f a f a f a f a +++⋅⋅⋅++=__________.【答案】192【解析】函数1()1f x x =+,当0x >时,1111()()111111xf x f x x x xx+=+=+=++++, 因数列{}n a 是正项等比数列,且101a =,则2119218317101a a a a a a a =====,119111()()()()1f a f a f a f a +=+=,同理2183171010()()()()()()1f a f a f a f a f a f a +=+==+=,令()()()()()1231819S f a f a f a f a f a =+++++, 又()()()()()19181721S f a f a f a f a f a =+++++,则有219S =,192S =, 所以()()()()()1231819192f a f a f a f a f a +++⋅⋅⋅++=. 故答案为:192【练习3】已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【答案】1005. 【解析】因为()442x x f x =+,所以()1144214242442x x x x f x ---===++⨯+,所以()()11f x f x +-=.令12200920102011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相加得22010S =,故1005S =.【练习4】函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=. (I)求12f ⎛⎫ ⎪⎝⎭的值;(II)若数列{}n a 满足11(0)(1)n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,数列{}n a 是等差数列吗?【解析】(I)令 12x =,得1124f ⎛⎫= ⎪⎝⎭. (II)已知函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=,可得 11(0)(1)11(1)(0)n n n a f f f f n n n a f f f f n n ⎧-⎛⎫⎛⎫=++++ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎛⎫⎛⎫⎪=++++ ⎪ ⎪⎪⎝⎭⎝⎭⎩由两式相加可得11(1)112(2)244n n n n n a a a n -++==⇒-=故数列{}n a 是等差数列.◆数列绝对值求和(1)对于首项小于0而公差大于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为 {},n n S a 的前n 项和为n T ,数列{}n a 的第k 项小于0而从第1k +项开始大于或等于0,于是有 ,;2,n n nk S n k T S S n k -⎧=⎨->⎩(2)对于首项大于0而公差小于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为 {},n n S a 的前n 项和为n T ,数列{}n a 的第k 项大于0而从第1k +项开始小于或等于0,于是有 ,2,n n kn S n k T S S n k ⎧=⎨->⎩ 。

2020版新高考数学大二轮复习:等差数列与等比数列(真题及考点精讲)

2020版新高考数学大二轮复习:等差数列与等比数列(真题及考点精讲)[做真题]题型一 等差数列1.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8nD .S n =12n 2-2n解析:选A.法一:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,所以a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A. 法二:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ; 选项D ,S 1=12-2=-32,排除D.故选A.2.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B.设等差数列{a n }的公差为d ,因为3S 3=S 2+S 4,所以3(3a 1+3×22d )=2a 1+d+4a 1+4×32d ,解得d =-32a 1,因为a 1=2,所以d =-3,所以a 5=a 1+4d =2+4×(-3)=-10.故选B.3.(2017·高考全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A.设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2,又a 1=1,所以d 2+2d =0,又d ≠0,则d =-2,所以a 6=a 1+5d =-9,所以{a n }前6项的和S 6=1-92×6=-24,故选A.4.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.解析:设等差数列{a n }的公差为d ,由a 2=3a 1,即a 1+d =3a 1,得d =2a 1, 所以S 10S 5=10a 1+10×92d 5a 1+5×42d =10a 1+10×92×2a 15a 1+5×42×2a 1=10025=4.答案:4题型二 等比数列1.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2解析:选C.设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2017·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3,故选B.3.(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.答案:12134.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n-1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6. 综上,m =6.题型三 等差、等比数列的判定与证明(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[学习指导意见]1.数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和的公式.考点1:等差、等比数列的基本运算[典型例题](1)已知等比数列{a n }的前n 项和为S n ,若a 1=1,S 10S 5=3332,则数列{a n }的公比q 为( )A .4B .2C .12D .34(2)(2019·开封模拟)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=3.①若a 3+b 3=7,求{b n }的通项公式; ②若T 3=13,求S n .【解】 (1)选C.因为S 10S 5=3332≠2,所以q ≠1.所以S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q =1+q 5,所以1+q 5=3332,所以q =12. (2)①设数列{a n }的公差为d ,数列{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=3,得d +q =4,(*) 由a 3+b 3=7,得2d +q 2=8,(**)联立(*)(**),解得q =2或q =0(舍去), 因此数列{b n }的通项公式为b n =2n -1.②因为T 3=1+q +q 2,所以1+q +q 2=13, 解得q =3或q =-4,由a 2+b 2=3,得d =4-q ,所以d =1或d =8. 由S n =na 1+12n (n -1)d ,得S n =12n 2-32n 或S n =4n 2-5n .等差、等比数列问题的求解策略(1)抓住基本量,首项a 1、公差d 或公比q ;(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn(a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p·q n -1(p ,q ≠0)的形式的数列为等比数列;(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常采用两式相除(即比值的方式)进行相关计算.[对点训练]1.(多选)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n>1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=91解析:选BD.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),所以S n -1-S n =S n-S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2,又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选BD.2.(一题多题)(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63解析:选B.通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.3.(2019·武昌区调研考试)设{a n }是公差不为零的等差数列,S n 为其前n 项和,已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为________.解析:设数列{a n }的公差为d (d ≠0),因为{a n }是等差数列,S 1,S 2,S 4成等比数列,所以(a 1+a 2)2=a 1(a 1+a 2+a 3+a 4),因为a 3=5,所以(5-2d +5-d )2=(5-2d )(5-2d +15),解得d =2或d =0(舍去),所以5=a 1+(3-1)×2,即a 1=1,所以a n =2n -1.答案:a n =2n -1考点2:等差(比)数列的性质[典型例题](1)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( )A .-2+22B .- 2C . 2D .-2或 2(2)(2019·长春质量检测)设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=( )A .13B .12C .2D .3(3)(2019·福建漳州质检改编)若S n 是等差数列{a n }的前n 项和,且a 2+a 9+a 19=6,则a 10=________,S 19=________.【解析】 (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.(2)因为S n 是等差数列{a n }的前n 项和, 若S 4≠0,且S 8=3S 4,S 12=λS 8,所以由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, 所以2(S 8-S 4)=S 4+(S 12-S 8), 所以2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2.(3)设等差数列{a n }的首项为a 1,公差为d .由等差数列的通项公式可得a 2+a 9+a 19=3(a 1+9d )=3a 10=6,所以a 10=2,由等差数列前n 项和公式可得S 19=19(a 1+a 19)2=19a 10=38.【答案】 (1)B (2)C (3)2 38等差、等比数列性质问题的求解策略[对点训练]1.(一题多解)(2019·福建省质量检查)等差数列{a n }的前n 项和为S n ,且a 8-a 5=9,S 8-S 5=66,则a 33=( )A .82B .97C .100D .115解析:选 C.通解:设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 8-a 5=9,S 8-S 5=66,得⎩⎪⎨⎪⎧(a 1+7d )-(a 1+4d )=9,(8a 1+28d )-(5a 1+10d )=66,解得⎩⎪⎨⎪⎧d =3,a 1=4,所以a 33=a 1+32d =4+32×3=100,故选C.优解:设等差数列{a n }的公差为d ,由a 8-a 5=9,得3d =9,即d =3.由S 8-S 5=66,得a 6+a 7+a 8=66,结合等差数列的性质知3a 7=66,即a 7=22,所以a 33=a 7+(33-7)×d =22+26×3=100,故选C.2.(一题多解)(2019·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选D.法一:设{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D. 法二:设{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.3.(一题多解)已知数列{a n }满足a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫12-λn +1(n <6),λn -5(n ≥6),若对于任意的n ∈N *都有a n >a n +1,则实数λ的取值范围是________.解析:法一:因为a n >a n +1,所以数列{a n}是递减数列,所以⎩⎪⎨⎪⎧12-λ<0,0<λ<1,λ<⎝⎛⎭⎫12-λ×5+1,解得12<λ<712.所以实数λ的取值范围是⎝⎛⎭⎫12,712. 法二:因为a n >a n +1恒成立,所以0<λ<1.若0<λ≤12,则当n <6时,数列{a n }为递增数列或常数列,不满足对任意的n ∈N *都有a n >a n+1;若12<λ<1,则当n <6时,数列{a n }为递减数列,当n ≥6时,数列{a n }为递减数列,又对任意的n ∈N *都有a n >a n +1,所以a 6<a 5,即λ<⎝⎛⎭⎫12-λ×5+1,解得λ<712, 所以12<λ<712.综上,实数λ的取值范围为⎝⎛⎭⎫12,712. 答案:⎝⎛⎭⎫12,712考点3:等差(比)数列的判定与证明[典型例题](2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列? 【解】 (1)证明:因为a 3=7,a 3=3a 2-2,所以a 2=3, 所以a n =2a n -1+1, 所以a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),所以数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n , 所以a n =2n -1,所以S n =2(1-2n )1-2-n =2n +1-n -2,所以n +S n -2a n =n +(2n +1-n -2)-2(2n -1)=0,所以n +S n =2a n , 即n ,a n ,S n 成等差数列.判断(证明)等差(比)数列应注意的问题(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n 的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n }为等比数列时,不能仅仅证明a n +1=qa n ,还要说明a 1≠0,才能递推得出数列中的各项均不为零,最后判定数列{a n }为等比数列.[对点训练]1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n (n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明数列{b n }为等差数列;(2)设c n =na n,求数列{c n }的前n 项和S n .解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n =3a n +3n 3n =a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n 3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝⎛⎭⎫1-13n 1-13=32⎝⎛⎭⎫1-13n =32-12·3n -1.2.设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列{1b n }是等差数列还是等比数列,并求数列{b n }的通项公式.解:(1)当n =1时,a 1=S 1=2-a 1,解得a 1=1;当n ≥2时,a n =S n -S n -1=a n -1-a n ,即a n a n -1=12(n ≥2,n ∈N *).所以数列{a n }是首项为1,公比为12的等比数列,故数列{a n }的通项公式为a n =⎝⎛⎭⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2). 所以数列{1b n }是首项为12,公差为1的等差数列. 所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1. 考点4:数列与新定义相交汇问题[典型例题]对任一实数序列A =(a 1,a 2,a 3,…),定义新序列ΔA =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列Δ(ΔA )的所有项都是1,且a 12=a 22=0,则a 2=________.【解析】 令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1,a 1=a 1, a 2-a 1=b 1, a 3-a 2=b 2, …a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)2=(n -1)a 2-(n -2)a 1+(n -1)(n -2)2,分别令n =12,n =22,得⎩⎪⎨⎪⎧11a 2-10a 1+55=0,21a 2-20a 1+210=0, 解得a 1=2312,a 2=100.【答案】 100数列新定义型创新题的一般解题思路(1)阅读审清“新定义”.(2)结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识.(3)利用“新定义”及常规的数列知识,求解证明相关结论.[对点训练]1.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2D .2n -1-2解析:选C.因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n-1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n,所以S n =2-2n +11-2=2n +1-2.2.(2019·福建五校第二次联考)在数列{a n }中,a 1=13,1a n +1=3a n (a n +3),n ∈N +,且b n=13+a n.记P n =b 1×b 2×…×b n ,S n =b 1+b 2+…+b n ,则3n +1P n +S n =________. 解析:因为1a n +1=3a n (a n +3)=1a n -1a n +3,所以b n =13+a n =1a n -1a n +1,所以S n =b 1+b 2+…+b n =⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1=1a 1-1a n +1.因为1a n +1=3a n (a n +3),所以b n =13+a n =a n 3a n +1,所以P n =b 1×b 2×…×b n =a 13a 2×a 23a 3×…×a n 3a n +1=a 13n a n +1.又a 1=13,故3n +1P n +S n =3a 1a n +1+1a 1-1a n +1=1a 1=3.答案:3一、选择题1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A .12B .54C .45D .-45解析:选C.因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(一题多解)已知等比数列{a n }的前n 项和为S n ,若S 2=2,S 3=-6,则S 5=( ) A .18B .10C .-14D .-22解析:选 D.法一:设等比数列{a n }的公比为q ,由题意,得⎩⎪⎨⎪⎧a 1+a 1q =2a 1+a 1q +a 1q 2=-6,解得⎩⎪⎨⎪⎧a 1=-2q =-2,所以S 5=-2×[1-(-2)5]1-(-2)=-22,故选D.法二:设等比数列{a n }的公比为q ,易知q ≠1,令A =a 1q -1,则S n =Aq n -A ,⎩⎪⎨⎪⎧S 2=Aq 2-A =2S 3=Aq 3-A =-6,解得⎩⎪⎨⎪⎧A =23q =-2,所以S n =23[(-2)n -1],所以S 5=23×[(-2)5-1]=-22,故选D.3.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tanb 3+b 91-a 4·a 8的值是 ( )A .- 3B .-1C .-33D . 3解析:选A.依题意得,a 36=(-3)3,3b 6=7π,所以a 6=-3,b 6=7π3,所以b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝⎛⎭⎫-7π3=tan ⎝⎛⎭⎫-2π-π3=-tan π3=-3,故选A. 4.(一题多解)(2019·合肥市第一次质量检测)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),a 5+a 7-a 26=0,则S 11的值为( )A .11B .12C .20D .22解析:选 D.通解:设等差数列{a n }的公差为d (d >0),则由(a 1+4d )+(a 1+6d )-(a 1+5d )2=0,得(a 1+5d )(a 1+5d -2)=0,所以a 1+5d =0或a 1+5d =2,又a 1>0,所以a 1+5d >0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d )=11×2=22,故选D.优解:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 26=0,得2a 6-a 26=0,a 6=2,则S 11=11(a 1+a 11)2=11×2a 62=11a 6=22,故选D. 5.等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( ) A .6 B .7 C .8D .9解析:选C.由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.6.(多选)已知数列{a n }是等比数列,则下列命题正确的是( ) A .数列{|a n |}是等比数列 B .数列{a n a n +1}是等比数列C .数列⎩⎨⎧⎭⎬⎫1a n 是等比数列D .数列{lg a 2n }是等比数列解析:选ABC.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n =a n a n +1=1q,所以数列⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n ,不一定是常数,所以D 错误.二、填空题7.(2019·贵阳市第一学期监测)已知数列{a n }中,a 1=3,a 2=7.当n ∈N *时,a n +2是乘积a n ·a n +1的个位数,则a 2 019=________.解析:a 1=3,a 2=7,a 1a 2=21,a 3=1,a 2a 3=7,a 4=7,a 3a 4=7,a 5=7,a 4a 5=49,a 6=9,a 5a 6=63,a 7=3,a 6a 7=27,a 8=7,a 7a 8=21,a 9=1,a 8a 9=7,所以数列{a n }是周期为6的数列,又2 019=6×336+3,所以a 2 019=a 3=1.答案:18.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是“等差比数列”; ③等比数列一定是“等差比数列”; ④“等差比数列”中可以有无数项为0. 其中所有正确判断的序号是________.解析:由等差比数列的定义可知,k 不为0,所以①正确,当等差数列的公差为0,即等差数列为常数列时,等差数列不是等差比数列,所以②错误;当{a n }是等比数列,且公比q =1时,{a n }不是等差比数列,所以③错误;数列0,1,0,1,…是等差比数列,该数列中有无数多个0,所以④正确.答案:①④9.(2019·洛阳尖子生第二次联考)已知函数f (x )=e x -1e x +1,g (x )=f (x -1)+1,则g (x )的图象关于________对称,若a n =g ⎝⎛⎭⎫1n +g ⎝⎛⎭⎫2n +g ⎝⎛⎭⎫3n +…+g ⎝⎛⎭⎫2n -1n (n ∈N *),则数列{a n }的通项公式为________.解析:因为f (x )=e x -1e x +1,所以f (-x )=e -x -1e -x +1=1-e xe x +1=-f (x ),所以函数f (x )为奇函数.因为g (x )=f (x -1)+1,所以g (x )的图象关于点(1,1)对称,若x 1+x 2=2,则有g (x 1)+g (x 2)=2,所以a n =g ⎝⎛⎭⎫1n +g ⎝⎛⎭⎫2n +g ⎝⎛⎭⎫3n +…+g ⎝⎛⎭⎫2n -1n =2(n -1)+g (1)=2n -2+f (0)+1=2n -1,即a n =2n -1,故数列{a n }的通项公式为a n =2n -1.答案:(1,1) a n =2n -1 三、解答题10.(2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,若a 2=2,a 1+a 2+a 3=7.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧a 1q =2a 1+a 1q +a 1q 2=7, 则⎩⎪⎨⎪⎧a 1=4q =12或⎩⎪⎨⎪⎧a 1=1q =2(舍去).所以a n =4×⎝⎛⎭⎫12n -1=23-n .(2)因为b n =log 2a n =log 223-n =3-n ,所以数列{b n }是首项为2,公差为-1的等差数列. 设数列{b n }的前n 项和为T n , 则T n =n (2+3-n )2=n (5-n )2.11.(2019·武汉调研)已知等差数列{a n }前三项的和为-9,前三项的积为-15. (1)求等差数列{a n }的通项公式;(2)若{a n }为递增数列,求数列{|a n |}的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,则依题意得a 2=-3,则a 1=-3-d ,a 3=-3+d , 所以(-3-d )(-3)(-3+d )=-15,得d 2=4,d =±2, 所以a n =-2n +1或a n =2n -7.(2)由题意得a n =2n -7,所以|a n |=⎩⎪⎨⎪⎧7-2n ,n ≤32n -7,n ≥4,①n ≤3时,S n =-(a 1+a 2+…+a n )=5+(7-2n )2n =6n -n 2;②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =-2(a 1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =⎩⎪⎨⎪⎧-n 2+6n ,n ≤3n 2-6n +18,n ≥4.12.(2019·长沙市统一模拟考试)已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2 018成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1. (2)由(1)知,b n =2n +1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n )1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1 031,f (10)=211+10-2=2 056, 故使b 1+b 2+…+b n >2 018成立的最小正整数n 的值是10.。

2020全国高考数学真题汇编:等差数列(教师版)

一.选择题(共2小题)1.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块(不含天心石)()A.3699块B.3474块C.3402块D.3339块2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项二.填空题(共3小题)3.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.4.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.5.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为.参考答案与试题解析一.选择题(共2小题)1.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块(不含天心石)()A.3699块B.3474块C.3402块D.3339块【分析】由题意可得从内到外每环之间构成等差数列,且公差d=9,a1=9,根据等差数列的性质即可求出n=9,再根据前n项和公式即可求出.【解答】解:方法一:设每一层有n环,由题意可知,上层中心的首项为a1=9,且公差d=2,由等差数列的性质可得S n,S2n﹣S n,S3n﹣S3n成等差数列,且(S3n﹣S2n)﹣(S5n﹣S n)=n2d,则n2d=729,则n=2,则三层共有扇面形石板S3n=S27=27×9+×9=3402块,方法二:设第n环天石心块数为a n,第一层共有n环,则{a n}是以9为首项,8为公差的等差数列,a n=9+(n﹣1)×2=9n,设S n为{a n}的前n项和,则第一层、第三层的块数分别为S n,S2n﹣S n,S3n﹣S2n,∵下层比中层多729块,∴S3n﹣S2n=S2n﹣S n+729,∴﹣=﹣+729,∴9n8=729,解得n=9,∴S3n=S27==3402,故选:C.【点评】本题考查了等差数列在实际生活中的应用,考查了分析问题解决问题的能力,属于中档题.2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项【分析】由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值,进一步分析得答案.【解答】解:设等差数列{a n}的公差为d,由a1=﹣9,a5=﹣1,得d=,∴a n=﹣9+2(n﹣3)=2n﹣11.由a n=2n﹣11=3,得n=,可知数列{a n}是单调递增数列,且前5项为负值.可知T3=﹣9<0,T6=63>0,T3=﹣315<5,T4=945>0为最大项,自T8起均小于0,且逐渐减小.∴数列{T n}有最大项,无最小项.故选:B.【点评】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能力,是中档题.二.填空题(共3小题)3.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=25.【分析】由已知结合等差数的性质及求和公式即可直接求解.【解答】解:因为等差数列{a n}中,a1=﹣2,a2+a6=2a5=2,所以a4=8,3d=a4﹣a7=3,即d=1,则S10=10a8=10×(﹣3)+45×1=25.故答案为:25【点评】本题主要考查了等差数列的性质及求和公式的应用,属于基础试题.4.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【分析】根据等差数列的通项公式可由a1+a10=a9,得a1=﹣d,在利用等差数列前n项和公式化简即可得出结论.【解答】解:根据题意,等差数列{a n}满足a1+a10=a9,即a7+a1+9d=a6+8d,变形可得a1=﹣d,所以====.故答案为:.【点评】本题考查等差数列的前n项和与等差数列通项公式的应用,注意分析a1与d的关系,属于基础题.5.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为3n2﹣2n.【分析】首先判断{a n}是以1为首项、以6为公差的等差数列,再利用求和公式,得出结论.【解答】解:将数列{2n﹣1}与{7n﹣2}的公共项从小到大排列得到数列{a n},则{a n}是以1为首项、以2为公差的等差数列,故它的前n项和为n×1+=3n6﹣2n,故答案为:3n6﹣2n.【点评】本题主要考查等差数列的性质以及求和公式,属于基础题.。

2020年高考数学(理)真题与模拟题分类训练 专题08 数列(教师版含解析)

专题08数列
1.【2020年高考全国II卷理数】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)
等差数列 的前 项和公式为 ,
等比数列 的前 项和公式为 ,
依题意 ,即 ,
通过对比系数可知 ,故 .
故答案为: .
【点睛】本小题主要考查等差数列和等比数列的前 项和公式,属于中档题.
6.【2020年高考山东】将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
(1)求 的通项公式;
(2)记 为 在区间 中的项的个数,求数列 的前 项和 .
【解析】(1)设 的公比为 .由题设得 , .
解得 (舍去), .由题设得 .
所以 的通项公式为 .
(2)由题设及(1)知 ,且当 时, .
所以

(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
【解析】(1) 猜想 由已知可得


……
.
因为 ,所以
(2)由(1)得 ,所以
.①
从而
.②


所以
9.【2020年高考江苏】已知数列 的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有 成立,则称此数列为“λ~k”数列.
7.【2020年高考全国Ⅰ卷理数】
设 是公比不为1的等比数列, 为 , 的等差中项.

专题08 公式法求等差等比数列和(解析版)

专题08 公式法求等差等比数列和一、单选题1.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24 B .36C .48D .64【答案】B 【分析】利用等差数列的性质进行化简,由此求得9S 的值. 【详解】由等差数列的性质,可得345675520a a a a a a ++++==,则54a =19592993622a a aS +=⨯=⨯= 故选:B2.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭【答案】D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a a S a q a q q -=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列.当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---, 所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 3.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675【答案】A 【分析】 先利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值. 【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式, 2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.4.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24- B .3- C .3 D .8【答案】A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A5.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160 B .180C .200D .220【答案】B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=.所以2012020()10181802S a a =+=⨯=. 故选:B6.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米C .38000米D .40000米【答案】B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =, 则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里 B .86里C .90里D .96里【答案】D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-,解得1192a =,∴此人第二天走1192962⨯=里,∴第二天走了96里,故选:D .8.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50C .60D .80【答案】C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C 【点睛】本题考查等差数列性质及前n 项和公式,属于基础题9.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0nn n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( ) A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭【答案】D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2na 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到nS ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =;当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n n λ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121n nn n n λ-+-<==-+++,令6321n nb =-+,则数列{}n b 是递增数列, 所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.10.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72 B .90 C .36 D .45【答案】B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S .【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=, ∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 11.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7 B .12C .14D .21【答案】C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∴212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∴534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. ∴∴∴C12.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100C .90D .80【答案】C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C13.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4 B .5C .4或5D .5或6【答案】C 【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解.【详解】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值. 故选:C.14.设数列{}n a 是等差数列,若110212a a +=,127a a a +++=( )A .14B .21C .28D .35【答案】C 【分析】计算出4a 的值,进而利用等差数列的求和公式可求得所求代数式的值. 【详解】设等差数列{}n a 的公差为d ,则1101112293912a a a a d a d +=++=+=,4134a a d ∴=+=,因此,()17412747727742822a a a a a a a +⨯+++====⨯=. 故选:C.15.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S = B .723S =C .7623S =D .71273S =【答案】D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D .16.已知数列{}n a 是1为首项、2为公差的等差数列,{}n b 是1为首项、2为公比的等比数列.设n n b c a =,12(*)n n T c c c n N =+++∈ ,则当T n >2013时,n 的最小值是( )A .7B .9C .10D .11【答案】C 【分析】利用等差数列、等比数列的通项公式可得2121nn n c b =-=-,再利用等比数列的前n 项和公式求出n T 即可求解. 【详解】121,2n n n a n b -=-=,则2121nn n c b =-=-.12(21)2221n n n T n n +-=-=---,而2013n T >,即1222013n n +-->, 代入检验知n 的最小值是10, 故选:C .17.某大学毕业生为自主创业于2019年8月初向银行贷款240000元,与银行约定按“等额本金还款法”分10年进行还款,从2019年9月初开始,每个月月初还一次款,贷款月利率为0.5%,现因经营状况良好准备向银行申请提前还款计划于2024年8月初将剩余贷款全部一次还清,则该大学毕业生按现计划的所有还款数额比按原约定所有还款数额少( )(注:“等额本金还款法”是将本金平均分配到每一期进行偿还,每一期所还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率;1年按12个月计算) A .18000元 B .18300元 C .28300元 D .36300元【答案】B 【分析】先求得2024年8月还完后剩余本金,然后结合等差数列前n 项和公式,求得还款减少的数额. 【详解】由题意,可知:该大学毕业生两种还款方式所还的本金最终都是240000元,∴两种还款方式的本金没有差额.∴该大学毕业生决定2024年8月初将剩余贷款全部一次还清.∴从2019年9月初第一次还款到2024年8月初这5整年即60个月两种还款方式所还的利息也是一样的.∴按原约定所有还款数额-按现计划的所有还款数额=原约定还款方式从2024年9月起到最后还完这整60个月所还的利息.∴每月应还本金:240000÷120=2000(元)2024年8月还完后本金还剩240000-2000×60=120000(元). ∴2024年9月应还利息为:120000×0.5%, 2024年10月应还利息为:(120000-2000)×0.5%, 2024年11月应还利息为:(120000-2000×2)×0.5%, …最后一次应还利息为:(120000-2000×59)×0.5%.后60个月所还的利息为:120000×0.5%+(120000-2000)×0.5%+(120000-2000×2)×0.5%+…+(120000-2000×59)×0.5%=0.5%×[120000+(120000-2000)+(120000-2000×2)+…+(120000-2000×59)]=0.5%×[120000×60-2000×(1+2+…+59)]1590.5%72000002000592+⎡⎤=⨯-⨯⨯⎢⎥⎣⎦=18300(元). 故选:B18.已知数列{}n a 的前n 项和为n S ,11a =,22a =,2112n n n a a -+=,则612S S =( ) A .62 B .63C .64D .65【答案】D 【分析】 由题意可得2224n n a a +=,21214n n aa +-=,即数列{}n a 的奇数项是以1为首项,4为公比的等比数列;偶数项是以2为首项,4为公比的等比数列∴再利用等比数列的前n 项和公式分组求和可得6S 和12S . 【详解】由41222122412221242n n n n n n n n a a a a a a ++++-+===,41212214321212242n n n n n n n n a a a a a a -++---===, 可知数列{}n a 的奇数项是以1为首项,4为公比的等比数列;偶数项是以2为首项,4为公比的等比数列.所以6123456S a a a a a a =+++++3312(14)(14)21221631414a a --=+=+⨯=--,661212(14)(14)1414a a S --=+--1365213654095=+⨯=, 所以12640956563S S ==. 故选:D 【点睛】本题考查了等比数列的定义,考查了等比数列的前n 项和公式,属于中档题.19.等比数列{}n a 中,1476a a a ++=,36924a a a ++=.则{}n a 的前9项之和为( ) A .18 B .42C .45D .18或42【答案】D 【分析】利用等比数列的通项公式求出等比,从而求出25812a a a ++=±,进而求出前9项之和. 【详解】解析设公比为q ,则()2369147a a a a a a q ++=++,即2246q =,所以2q =±,所以()25814712a a a a a a q ++=++=±, 所以12942a a a ++⋅⋅⋅+=或18. 故选:D20.已知函数2()sin f x x x =⋅各项均不相等的数列{}n x 满足||(1,2,3,,)2i x i n π≤=.令*1212()([()()()())]n n F n x x x f x f x f x n N =+++⋅+++∈.给出下列三个命题:(1)存在不少于3项的数列{},n x 使得()0F n =;(2)若数列{}n x 的通项公式为*1()()2n n x n N =-∈,则(2)0F k >对k *∈N 恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对n *∈N 恒成立,其中真命题的序号是( ) A .(1)(2) B .(1)(3)C .(2)(3)D .(1)(2)(3)【答案】D 【分析】由题意,函数2()sin f x x x =⋅是奇函数,只需考查函数在0,2x π⎡⎤∈⎢⎥⎣⎦的性质,此时2y x ,sin y x =都是增函数,所以2()sin f x x x =⋅在0,2x π⎡⎤∈⎢⎥⎣⎦上也是增函数,即120x x +≠时,1212([()()])0x x f x f x +⋅+>,对于(1),132,022x x x ππ≤-=-=≤,即可判断;对于(2),运用等比数列求和公式和和三角函数的性质,即可判断;对于(3),运用等差数列求和公式,及不等式的性质,结合函数()f x 的单调性,即可判断; 【详解】由题意得22()()sin()sin ()f x x x x x f x -=-⋅-=-⋅=-,所以2()sin f x x x =⋅是奇函数,只需考查函数在0,2x π⎡⎤∈⎢⎥⎣⎦的性质,此时2y x ,sin y x =都是增函数,所以2()sin f x x x =⋅在0,2x π⎡⎤∈⎢⎥⎣⎦上也是增函数,即函数2()sin f x x x =⋅在,22x ππ⎡⎤∈-⎢⎥⎣⎦上也是增函数,设12,2,2x x ππ⎡⎤∈-⎢⎥⎣⎦若120x x +<,则12x x <-,()()()122f x x f x f -∴=<-,即()()120f x f x +< 若120x x +>,则12x x >-,()()()122f x f x f x ∴>-=-,即()()120f x f x +>所以120x x +≠时,1212([()()])0x x f x f x +⋅+>, 对于(1),取132,022x x x ππ≤-=-=≤,331212(3)([()()()])F x x x f x f x f x =++⋅++0=,故(1)正确; 对于(2),*1()()2n n x n N =-∈,1211122111132021nn n x x x +++=<-⎡⎤⎛⎫--- ⎪⎢⎥⎡⎤⎛⎫⎝⎭⎣⎦∴=--- ⎪⎢⎥⎛⎫⎝⎭⎣⎦- ⎪⎝⎭又212(21)212222sin si 1111()()2222n k k kkk k f x f x -⨯--⎛⎫⎛⎫⎛⎫⎛⎫+=---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+ 212122221211111sin sin 4sin si 114242n 422k k kkkk k---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤+=-+⎢⎥⎢⎥⎣⎦令2211122,2k k αα-⎛⎫⎛⎫ ⎪ ⎪⎝⎝⎭==⎭,则212114sin sin 4sin 2si 2n 2k ky αα-⎛⎫⎛⎫⎪⎪⎝⎭⎝=-++⎭=-8sin cos sin sin (18cos )ααααα=-+=-又k *∈N ,知104α<≤,则1sin 0,cos cos 14αα>≤<,则1718cos 18cos4α-<-≤-, 1coscos cos cos sin sin 1234343448πππππππ⎛⎫=-=+=> ⎪⎝⎭, 又cos y x =在0,2π⎛⎫⎪⎝⎭上单减,1coscos 412π∴>,即11cos 48>,118cos 04∴-< sin (18cos )0αα∴-<,即212114sin sin 022k k-⎛⎫⎛⎫-+< ⎪ ⎪⎝⎭⎝⎭,则212()()0k k f x f x -+<,由k 的任意性可知,122()()()0k f x f x f x +++<,又1220k x x x +++<,所以122122(2)([()()()])0k k F k x x x f x f x f x =+++⋅+++>,故(2)正确;对于(3),数列{}n x 是等差数列, 若120n x x x +++=,则()0F n =;若10n x x +>,即1n x x >-,又()f x 是奇函数也是增函数有1()()()n n f x f x f x >-=-,可得1()()0n f x f x +>;同理:若-210n x x +>,可得2-1()()0n f x f x +>; 若-320n x x +>,可得3-2()()0n f x f x +>;相加可得:若210n x x x +++>,可得12()()()0n f x f x f x +++>,即()0F n >;同理若210n x x x +++<,可得12()()()0n f x f x f x +++<,即()0F n >,故(3)正确;故选:D. 【点睛】关键点睛:本题考查真假命题的判断,关键是要理解新定义的函数的性质及应用,考查了函数的单调性与奇偶性的问题,考查了等差等比数列的性质与应用,考查了学生的逻辑推理能力与运算求解能力,属于难题.二、多选题21.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或14【答案】BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=,解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列; 当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 22.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =- B .310na nC .228n S n n =-D .24n S n n =-【答案】AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a ==所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.23.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a << B.11b <<C .22n n S T <D .22n n S T ≥【答案】ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b bb <=,即1b 又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12nn n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n n b b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n >-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->,则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 三、填空题24.等差数列{}n a 中,n S 为{}n a 的前n 项和,若936S S =,则1ad=_________. 【答案】2 【分析】直接利用等差数列求和公式求解即可. 【详解】 因为9131936633S a dS a d+==+, 所以12a d =, 所以12a d=. 故答案为:2.25.二进制数是用0和1两个数码来表示的数,它是现代信息技术中广泛应用的一种数制,它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,它与十进制数可以互相转化,如二进制数1011(记为()21011)表示的十进制数为32101202121211⨯+⨯+⨯+⨯=,即()2101111=,设各项均为十进制数的数列{}n a 的通项公式为()21101010101n n a =⋅⋅⋅个,则n a =______.【答案】413n - 【分析】利用等比数列前n 项和公式计算即可得到答案. 【详解】()21024144112121212143n n n n a ---=⋅+⋅+⋅++⋅==- 26.设数列{}n a 的前n 项和为n S ,且21n a n =-,则数列n S n ⎧⎫⎨⎬⎩⎭的前20项和为_________. 【答案】210 【分析】先根据等差数列前n 项和公式得2n S n =,进而得nS n n=,再根据等差数列前n 项和公式即可得答案. 【详解】解:因为数列{}n a 满足21n a n =-,所以数列{}n a 是等差数列, 所以()12(121)22n n n a a n n S n ++-===,所以n Sn n =,所以数列n S n ⎧⎫⎨⎬⎩⎭的前20项和为2020(120)2102T +==. 故答案为:210. 【点睛】结论点睛:若等差数列{}n a 的前n 项和为n S ,则n S n ⎧⎫⎨⎬⎩⎭也是等差数列. 27.在数列{}n a 中,若121,(1)2n n n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________. 【答案】2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可. 【详解】∴121,(1)2n n n a a a +=+-=,∴当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列, 当n 为偶数时,22n n a a ++=, ∴135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,∴1002500502550S =+=, 故答案为:2550. 【点睛】 关键点点睛:(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.28.位于宁夏青铜峡市的108塔建于西夏时期,塔的排列顺序自上而下,第一层1座,第二层3座,第三层3座,第四层5座,第五层5座,从第五层开始塔的数目构成一个首项为5,公差为2的等差数列,则该塔共有__________层. 【答案】12 【分析】利用已知条件将第五层有的塔的数目设为1a ,设从第五层开始自上而下,每一层的塔的数目为n a ,利用等差数列的通项公式以及前n 项和公式即可得出结果. 【详解】已知从第五层开始塔的数目构成一个首项为5,公差为2的等差数列, 将第五层有的塔的数目设为1a ,设从第五层开始自上而下,每一层的塔的数目为n a ,n *∈N , 则()()1152123n a a n d n n =+-=+-=+, 设前n 项和为n S ,()()2115142n n n S na d n n n n n -=+=+-=+, 前四层共有塔的数目为:133512+++=(座),1081296-=(座),令96n S =,即2496n n +=又n *∈N , 解得8n =,所以该塔共有8412+=(层). 故答案为:12.29.已知数列{}n a 是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则n S 的最小值是_______. 【答案】9- 【分析】根据等差数列的通项公式与前n 项和公式求出基本量,再根据二次函数求出n S 的最小值. 【详解】设等差数列{}n a 的公差为d , 由19959()9272a a S a +===,得53a =, 所以2580a a a +=可化为2830a a +=,所以111433()70a d a d a d +=⎧⎨+++=⎩,解得152a d =-⎧⎨=⎩,所以2(1)5262n n n S n n n -=-+⨯=-2(3)9n =--, 所以当3n =时,n S 取得最小值9-. 故答案为:9-.【点睛】关键点点睛:熟练掌握等差数列的通项公式与前n 项和公式是解题关键,属于基础题. 30.已知数列{}n a 满足()21,1log 3,2,n n n a n n n N*+=⎧=⎨+≥∈⎩,定义使123k a a a a ⋅⋅()k N *∈为整数的k 叫做“幸福数”,则区间[]1,2020内所有“幸福数”的和为_____ 【答案】1349 【分析】利用换底公式可得4log (3),k m m Z +=∈,求出43m k =-,结合[]1,2020可得25m ≤≤,再利用等比数列的前n 项和即可求解. 【详解】当1k =时,11a =为幸福数,符合题意; 当2k ≥时,1234524log 5log 6log (3)log (3)k k a a a a k k +⋅⋅⋅=⋅⋅⋅+=+令4log (3),k m m Z +=∈,则34,43m m k k +=∴=-. 由2432020542023,25m m k m ≤=-≤∴≤≤∴≤≤. 故“幸福数”的和为23451(43)(43)(43)(43)+-+-+-+-2345(43)(43)(43)(43)(43)=-+-+-+-+-()54141514-=--54(41)15134941-=-=- 故答案为:1349.四、解答题31.数列{}n a 中,11a =,22a =,数列{}1n n a a +⋅是公比为(0)q q >的等比数列. (1)求使11223()n n n n n n a a a a a a n N ++++++>∈成立的q 的取值范围; (2)若212()n n n b a a n N -=+∈,求n b 的表达式;(3)若12n n S b b b =+++,求1lim →∞n nS . 【答案】(1)0q <<;(2)13n n b q -=;(3)0,11lim 1,013n n q q S q →∞≥⎧⎪=-⎨<<⎪⎩. 【分析】(1)根据等比数列的定义,由题中条件,得到112n n n a a q -+⋅=,解11223()n n n n n n a a a a a a n N ++++++>∈,即可得出结果;(2)根据题中条件,先得到{}n b 是首项为13b =,公比为q 的等比数列,进而可求出n b ;(3)由等比数列的求和公式,分别讨论1q =,1q >,01q <<三种情况,由无穷等比数列的极限,即可得出结果. 【详解】 (1){}1n n a a +⋅是公比为(0)q q >的等比数列,且12122a a ⋅=⋅=112n n n a a q -+∴⋅=由11223(n n n n n n a a a a a a n +++++⋅+⋅>⋅∈N ),有11222(0)n n n q q q q -++>>210q q ∴--<解得0q <<(2)121n n n n a a q a a +++=,2n naq a +∴=,2121,222n n n n a qa a qa +-+∴==212n n n b a a -=+,1123b a a ∴=+=,又12122212212212n n n n n n n n n nb a a qa qa q b a a a a +++---++===++ {}n b ∴是首项为13b =,公比为q 的等比数列,13n n b q -∴=(3)当1q =时,3n S n =,11lim lim 03n n n S n→∞→∞==;当1q >时,3(1)1n n q S q -=-,11111lim lim lim 03(1)131n n n n n n n n q q q S q q -→∞→∞→∞--===-⎛⎫- ⎪⎝⎭; 当01q <<时,1111lim3lim 31n n n n qS S q→∞→∞-===-即1lim →∞n n S 13q -=. 综上,0,11lim 1,013n n q q S q →∞≥⎧⎪=-⎨<<⎪⎩. 【点睛】 思路点睛:求无穷等比数列前n 项和的极限时,一般需要利用分类讨论的方法,讨论公比的范围,根据等比数列的求和公式,以及极限的运算法则,即可求出结果. 32.设数列{}n a 的前n 项和为n S ,且24n n n S a n++=. (1)证明:n a n ⎧⎫⎨⎬⎩⎭是等比数列;(2)令n nn b a =,证明:1223111123n n b b b b b b ++++<+++.【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)当1n =时,可得11a =,由24n n n S a n ++=有()111421n n n S a n n --++=≥-两式相减得()11221n n a a n n n -=⋅≤-从而得证. (2) 由(1)1112n n a n -⎛⎫=⋅ ⎪⎝⎭,所以12n n n n b a -==,则1111112232n n n n n b b --+==++⋅,利用等比数列的求和公式可求和,从而可证. 【详解】(1)∴24n n n S a n ++=,∴()111421n n n S a n n --++=≥-, 两式相减得12101n n n n n a a a n n -+++-=-,即()11221n n a an n n -=⋅≥-又1134S a +=,即1134a a +=,所以11a =, ∴n a n ⎧⎫⎨⎬⎩⎭是1为首项,12为公比的等比数列;(2)由(1)1112n n a n -⎛⎫=⋅ ⎪⎝⎭,∴12n n nnb a -==, ∴1111112232n n n n n b b --+==++⋅∴112231111111111211322312nn n n b b b b b b -+⎛⎫- ⎪⎛⎫⎝⎭+++=+++=⋅ ⎪+++⎝⎭-2122121323323n n⎡⎤⎛⎫⎛⎫=⋅-=-⋅<⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. 【点睛】关键点睛:本题考查根据数列前n 项和n S 与n a 的递推关系求通项公式和求等比数列的前n 项和,解答本题的关键是由题目条件得出()111421n n n S a n n --++=≥-再与原式相减得出()11221n n a an n n -=⋅≥-,从而得出数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可得1111112232n n n n n b b --+==++⋅为等比数列,属于中档题. 33.已知数列{}n a 的前n 项和为n S 且满足()21n n S a =-. (1)求{}n a 的通项公式; (2)记12111n n T S S S =+++,求证:131142n n T +-≤<. 【答案】(1)2nn a =;(2)证明见解析. 【分析】(1)将递推关系多递推一项,再相减,可得数列{}n a 是以2为首项,2为公比的等比数列,即可得答案;(2)求出()11221n n S =-,再放缩成等比数列求和,即可得答案;(1)由()21n n S a =-得,12a =()1121n n S a ++=-,两式相减得,12n n a a +=,所以数列{}n a 是以2为首项,2为公比的等比数列, 所以2nn a =;(2)由(1)()()21221nn n S a =-=-,所以()1112221nn n S =≤-, 所以21111112222n n n T ≤+++=-<, 当1n =时,2131242n T ==-,又当2n ≥时,()11112221n n n S +=>-, 所以131111111113182122224212n n n n T -++⎛⎫- ⎪⎝⎭>+++=+=--,综上可得,131142n n T +-≤<. 【点睛】已知数列的递推关系,采用多递推一项再相减是常见的解题思路;数列不等式在证明时,常将通项放缩成一个可求和的数列.34.设数列{}n a 的前n 项和为n S ,对任意的*n N ∈满足()21n n n S a a =+且0n a ≠. (1)求数列{}n a 的通项公式; (2)设1,321,nn n a a n c n +⎧=⎨⨯+⎩为奇数为偶数,求数列{}n c 的前n 项和n T . 【答案】(1)a n =n ;(2)n 为偶数时2241624n n n n T ++-=+;n 为奇数时2161524n n n n T ++-=+.(1)根据n S 与n a 的关系,可得a n -a n -1=1,令n =1,求出a 1=1,再利用等差数列的通项公式即可求解. (2)由(1)求出n c 的通项公式,讨论n 的奇、偶,再利用等差数列的前n 项和公式即可求解. 【详解】解(1)因为2S n =a n (a n +1),∴ 所以当n ≥2时,2S n -1=a n -1(a n -1+1).∴ ∴-∴得2a n =2n a -2-1n a +a n -a n -1,a n >0 即(a n +a n -1)(a n -a n -1-1)=0. 若a n -a n -1-1=0,当n ≥2时,有a n -a n -1=1,又当n =1时,由2S 1=a 1(a 1+1)及a 1>0,得a 1=1, 所以数列{a n }是等差数列,其通项公式为a n =n (n ∴N *). 综上,数列{a n }的通项公式为a n =n(2)由(1)知a n =n ,c n =1,,321,,nn n n +⎧⎨⨯+⎩为奇数为偶数 10.n 为偶数时T n =(2+4++n )+3×(21+23++2n )+n /2==2241624n n n ++-+20.n 为奇数时T n =[2+4++(n +1)]+3×(21+23++2n -1)+12n - =2161524n n n ++-+综上(10)n 为偶数时2241624n n n n T ++-=+(20)n 为奇数时2161524n n n n T ++-=+35.已知正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项,12a =. (1)求数列{}n a 的通项公式;(2)令222log n n n b a a =+,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)12443n n n +-++.【分析】(1)直接利用已知条件建立等量关系求出数列的公比,进一步求出数列的通项公式. (2)利用(1)的结论,进一步利用分组法求出数列的和. 【详解】(1)正项等比数列{}n a 的前n 项和为n S ,且满足22S a +是12a 和4a 的等差中项, 设公比为q ,则22142()2S a a a +=+,整理得:12142(2)2a a a a +=+, 由于12a =,即32(24)42q q +=+,即34q q =,因为0q >,所以解得2q,所以2nn a =.(2)由于222log 24nn n b a a n =+=+,所以12324446424n n T n =++++++++12(2462)(444)n n =++++++++4(41)(1)41n n n -=++- 12443n n n +-=++.【点睛】关键点点睛:第二问分组后利用等差、等比数列的前n 项和公式求和是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题08 等差数列【一】【2019年江苏】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若2580,a a a +=927S =,则8S 的值是___________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.【命题意图】(1)理解等差数列的概念.(2)掌握等差数列的通项公式与前n 项和公式. 【命题规律】等差数列一直是高考的热点,尤其是等差数列的通项公式及其性质,等差数列的前n 项和等为考查重点,题型一般为填空题,解题时要注意性质的应用,充分结合函数与方程、分类讨论、化归与转化等数学思想求解.常见的命题角度有:(1)等差数列基本量的计算;(2)等差数列的通项及前n 项和的求解; (3)等差数列的判定与证明; (4)等差数列性质的应用; (5)等差数列的文化背景问题.【方法总结】(一)等差数列基本运算的解题思路: (1)设基本量a 1和公差d .(2)列、解方程组:把条件转化为关于a 1和d 的方程(组),然后求解,注意整体计算,以减少运算量. (二)求解等差数列通项公式的方法主要有两种: (1)定义法.(2)前n 项和法,即根据前n 项和n S 与n a 的关系求解. (三)等差数列前n 项和公式的应用方法:根据不同的已知条件选用不同的求和公式,若已知首项和公差,则使用1(1)=2n n n S na d -+; 若已知通项公式,则使用1()=2n n n a a S +,同时注意与性质“12132n n n a a a a a a --+=+=+=”的结合使用.(四)等差数列的判定与证明的方法:①定义法:1()n n a a d n +-=∈*N 或1(2,)n n a a d n n --=≥∈⇔*N {}n a 是等差数列; ②定义变形法:验证是否满足11(2,)n n n n a a a a n n +--=-≥∈*N ;③等差中项法:{}122()n n n n a a a n a ++=+∈⇔*N 为等差数列;④通项公式法:通项公式形如(,n a pn q p q =+为常数)⇔{}n a 为等差数列; ⑤前n 项和公式法:2(,n S pn qn p q =+为常数)⇔{}n a 为等差数列.(五)等差数列的性质是每年高考的热点之一,利用等差数列的性质进行求解可使题目减少运算量,题型以填空题为主,难度不大,属中低档题. 应用等差数列性质的注意点: (1)熟练掌握等差数列性质的实质等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题. (2)应用等差数列的性质解答问题的关键寻找项数之间的关系,但要注意性质运用的条件,如若m n p q +=+,则q p n m a a a a +=+(,m n,p,)q ∈*N ,需要当序号之和相等、项数相同时才成立,再比如只有当等差数列{a n }的前n 项和S n 中的n 为奇数时,才有S n =na 中成立.(六)等差数列的前n 项和的最值问题 (1)二次函数法:22211111()[()]()222222n a ad d d d S n a n n d d=+-=----,由二次函数的最大值、最小值的知识及n ∈*N 知,当n 取最接近112a d -的正整数时,n S 取得最大(小)值.但应注意,最接近112ad -的正整数有1个或2个.注意:自变量n 为正整数这一隐含条件. (2)通项公式法:求使0n a ≥(0n a ≤)成立时最大的n 值即可. 一般地,等差数列{}n a 中,若10a >,且()p q S S p q =≠,则①若p q +为偶数,则当2p qn +=时,n S 最大; ②若p q +为奇数,则当12p q n +-=或12p q n ++=时,n S 最大.(3)不等式法:由11(2,)n n n n S S n n S S -+≥⎧≥∈⎨≥⎩*N ,解不等式组确定n 的范围,进而确定n 的值和n S 的最大值.1.【南通市2019届高三适应性考试数学试题】已知等差数列{}n a 满足44a =,且1a ,2a ,4a 成等比数列,则3a 的所有值为____________. 【答案】3,4【解析】设等差数列{}n a 的公差为d , 因为44a =,且1a ,2a ,4a 成等比数列,所以4122141344a a d a a a a =+=⎧⎨==⎩,即121134()4a d a d a +=⎧⎨+=⎩, 解得0d =或1d =. 所以434a d a =-=或3. 故答案为3,4.2.【南京市、盐城市2019届高三第二次模拟考试数学试题】等差数列{}n a 中,410a =,前12项的和1290S =,则18a 的值为____________. 【答案】4-【解析】由题得11181310,13,1,1317(1)4121112902a d a d a a d +=⎧⎪∴==-∴=+⨯-=-⎨⨯+=⎪⎩. 故答案为4-.3.【徐州市2019届高三上学期期中质量抽测数学试题】已知等差数列 的前 项和为 , , ,则 的值为____________. 【答案】24【解析】因为 ,所以=132,即11 =132,所以 =12,又 ,所以 =18, 因为 ,所以 =24. 故答案为24.4.【徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测数学试题】在等差数列{}n a 中,若512a =,64282a a a +=,则{}n a 的前6项和 6S 的值为____________. 【答案】152【解析】依题意,得()()511111428523a a d a d a d a d ⎧=+=⎪⎨⎪+++=+⎩,化简,得1128150a d a d +=⎧⎨+=⎩,解得15212a d ⎧=⎪⎪⎨⎪=-⎪⎩,所以6S =5115615222⎛⎫⨯+⨯-= ⎪⎝⎭. 故答案为152. 5.【南通市2019届高三年级阶段性学情联合调研数学试题】设等差数列 的公差为 ,其前 项和为 ,若 , ,则 的值为____________. 【答案】【解析】由 ,2S 12=S 2+10,得111139012112122102a d a d a d a d +++=⨯⎛⎫⨯+=++ ⎪⎝⎭⎧⎪⎨⎪⎩,解得d =﹣10. 故答案为﹣10.6.【北京市人大附中2019届高三高考信息卷(三)数学试题】设等差数列 的前 项和为 .若 , ,则数列 的通项公式可以是____________. 【答案】 =【解析】设等差数列{a n }的公差为d ,由a 1=1,S 2>S 3,得2+d >3+3d ,即2d <﹣1,d <.不妨取d =﹣1,可得a n =1﹣(n ﹣1)=﹣n +2. 故答案为a n =﹣n +2(答案不唯一).7.【2019届高三第二学期联合调研测试数学试题】设n S 为等差数列{}n a 的前n 项和,若1357910a a a a a ++++=,228236a a -=,则10S 的值为____________.【答案】552【解析】因为135795510a a a a a a ++++==, 所以52a =,又因为()()()22828282582236a a a a a a a a a -=+-=-=,所以8269a a d -==, 所以32d =,1544a a d =-=-,所以10135540109222S =-+⨯⨯⨯=. 故答案为552. 8.【扬州中学2019届高三4月考试数学试题】已知数列{}n a 是等差数列,11a =,公差[]1,2d ∈,且4101615a a a λ++=,则实数λ的最大值为____________.【答案】12- 【解析】4101611115,3(9)1515a a a a d a d a d λλ++=∴+++++=,则15()219f d dλ==-+,∵[]1,2d ∈,∴令19,[10,19]t d t =+∈, 因此15()2f t tλ==-, 当[10,19]t ∈时,函数()f t λ=是减函数,故当10t =时,实数λ有最大值,最大值为1(10)2f =-. 故答案为12-. 9.【盐城市2019届高三年级第一学期期中模拟考试数学试题】若数列{}n a 的首项112a =,且()11n n n a a a +=+,则200300a a =____________. 【答案】301201【解析】由()11n n n a a a +=+, 得11n n n n a a a a ++-=且0n a ≠, 所以1111n na a +-=, 即1n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 则1n a =n +1,从而200300301201a a =.故答案为301201. 10.【无锡市锡山高级中学实验学校2019届高三12月月考数学试题】等差数列 的前 项和为 ,已知,且数列 也为等差数列,则 =____________. 【答案】19【解析】设等差数列 的公差为d , 则,所以,又 也为等差数列,所以, 所以d =2,所以 . 故答案为19.11.【南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟考试数学试题】设数列{}n a 为等差数列,其前n 项和为n S ,已知14760a a a ++=,25851a a a ++=,若对任意n *∈N ,都有n S ≤k S 成立,则正整数k 的值为____________. 【答案】10【解析】因为数列{}n a 为等差数列,设公差为d ,14760a a a ++=,25851a a a ++=, 两式相减,得3d =-9,所以d =-3,由等差中项得14743=60a a a a ++=,即14=320a a d +=,解得:1a =29, 所以(1)29(3)2n n n S n -=+⨯-=236122n n -+ , 当n =616时,n S 取得最大值,但n 是正整数, 所以,当n =10时,n S 取得最大值, 对任意n *∈N ,都有n S ≤k S 成立,显然k =10. 故答案为10.12.【河南省焦作市2019届高三第四次模拟考试数学】记首项为11(0)a a >,公差为d 的等差数列{}n a 的前n 项和为n S ,若1212a d =-,且1n n n S a S λ+≤+,则实数λ的取值范围为____________.【答案】19,121⎡⎤⎢⎥⎣⎦【解析】由1n n n S a S λ+≤+,得11n n n n S S a a λ++-=≤.因为10a >,所以0d <,()12312n a a n d n d ⎛⎫=+-=- ⎪⎝⎭.所以当111n ≤≤时,0n a >,当12n ≥时,0n a <. (1)当111n ≤≤时,由1n n a a λ+≥得1211223n n n n n a a d d a a a n λ++≥==+=+-. 因为221911223212321n +≤+=-⨯-,所以1921λ≥.(2)当12n ≥时,由1n n a a λ+≥得121223n n a a n λ+≤=+-. 因为211223n +>-,所以1λ≤.综上所述,λ的取值范围是19,121⎡⎤⎢⎥⎣⎦.。

相关文档
最新文档