实际应用与二元一次方程组与复习

合集下载

二元一次方程应用题分类复习(整理)

二元一次方程应用题分类复习(整理)

- 1 -二元一次方程应用题分类复习日期: 2月 8日1、知道用方程组解决实际问题的一般步骤2、读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.列二元一次方程组解应用题(1)列二元一次方程组解应用题的一般步骤 ①设出题中的两个未知数; ②找出题中的两个等量关系;③根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组; ④解这个方程组,求出未知数的值;⑤检验所得结果的正确性及合理性并写出答案. (2)用方程解决实际问题的几个注意事项①先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.②“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.③所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等. ④要养成“验”的好习惯,即所求结果要使实际问题有意义. ⑤不要漏写“答”,“设”和“答”都不要丢掉单位名称. ⑥分析过程可以只写在草稿纸上,但一定要认真.⑦对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程,即未知数的个数应与方程组中方程的个数相等.例1:配套问题1. 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x 人生产螺栓,y人生产螺母,则每天可生产螺栓25x 个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套- 2 -成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a 件甲产品和b 件乙产品配成一套,那么甲产品数的b 倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a 件,乙产品b件,丙产品c 件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.跟踪练习1、木工厂有28个工人,每个工人一天加工桌子数与加工椅子数的比是9:20,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?2、某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?3、现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套? 例2、数字问题2.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系 原两位数xy10x +y10x+y=x +y+9- 3 -解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.跟踪练习1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.2、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数.某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克?2、某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?- 4 -3、学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,信封个数分别为多少个?4、为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?1.在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B的距离为120千米,B到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.2.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得- 5 -()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.跟踪练习1、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

北师大版八年级上册期末复习专题:二元一次方程组实际应用专练(二)

北师大版八年级上册期末复习专题:二元一次方程组实际应用专练(二)

八年级上册期末复习专题:二元一次方程组实际应用专练(二)1.现由A、B两种货车运输救助物资,已知3辆A车和1辆B车每次可运救助物资15吨,4辆A车和3辆B车每次可运救助物资25吨.(1)1辆A车和1辆B车一次分别可运多少吨?(2)若用A,B两种货车一次运完35吨救助物资(货车均装满),该如何安排A、B两种货车的数量?请写出所有的安排方案.2.某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?3.某体育文化用品商店购进篮球和排球共200个,进价和售价如下表全部销售完后共获利润2600元.篮球排球类别价格进价(元/个)80 50售价(元/个)95 60(1)求商店购进篮球和排球各多少个?(2)王老师在元旦节这天到该体育文化用品商店为学校买篮球和排球各若干个(两种球都买了),商店在他的这笔交易中获利100元王老师有哪几种购买方案.4.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?5.5G网络,是最新一代蜂窝移动通信技术,其数据传输速率远高于以前的蜂窝网络,最高可达10Gbit/s,比4G快100倍.5G手机也成为生活、工作不可缺少的移动设备,某电商公司销售两种5G手机,已知售出5部A型手机,3部B型手机的销售额为51000元;售出3部A型手机,2部B型手机的销售额为31500元.(1)求A型手机和B型手机的售价分别是多少元;(2)该电商公司在3月实行“满减促销”活动,活动方案为:单部手机满3000元减500元,满5000元减1500元(每部手机只能参加最高满减活动),结果3月A型手机的销量是B型手机的,4月该电商公司加大促销活动力度,每部A型手机按照3月满减后的售价再降a%,销量比3月增加2a%;每部B型手机按照满减后的售价再降a%,销量比3月销量增加a%,结果4月的销售总额比3月的销售总额多a%,求a的值.6.河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.7.某大学组织“大手拉小手,义卖献爱心”活动,该校美术社团计划购买黑、白两种颜色的文化衫进行手绘创作后出售,并将所获利润全部捐给山区困难孩子.已知美术社团从批发市场花4800元购买了黑、白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表所示:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)美术社团购进黑、白文化衫各多少件?(要求列方程组解答)(2)这批文化衫手绘创作后全部售出,求美术社团这次义卖活动所获利润.8.深圳市某小区为了以崭新的面貌迎接“创文”工作,决定请甲、乙两个装饰公司对小区外墙进行装饰维护.若由甲、乙两个公司合作,需8天完成,小区需支付费用12.8万元;若由甲公司单独做4天后,剩下的由乙公司来做,还需10天才能完成,小区需支付费用12.4万元.问:甲、乙两个装饰公司平均每天收取的费用分别是多少万元?9.为保护环境的需要,电动汽车已经成为未来汽车生产和销售的大趋势,市场上各种品牌的电动汽车如雨后春笋般涌现出来.某电动汽车经销商负责销售某种品牌的A型和B型电动汽车,今年9月份共售出该品牌汽车的A型和B型电动汽车共413台,受国庆黄金周的影响,10月份该经销商售出这两种型号的汽车达到510台,其中A型和B型汽车的销量分别比9月份增长25%和20%.(1)今年10月份,该经销商销售的A型和B型汽车分别是多少台?(2)该品牌电动汽车生产厂家为了占领市场提高销量,决定对该经销商采取销售奖励活动,若A型电动汽车每台售价为10万元,B型电动汽车每台售价为12万元,奖励办法是:每销售一台A型电动汽车按每台汽车售价的a%给予奖励,每销售一台B型汽车按每台汽车售价的(a+0.2)%给予奖励,奖励办法出台后的11月份,A型汽车的销量比10月份增加了10a%,而B型汽车受到某问题零件召回的影响,销售量比10月份减少了20a%,如果11月份该经销商共获得奖励金额为355680元,求a的值.【参考学习:我们以后会学到这样的运算:①a(b+c)=ab+ac,即单项式乘以多项式就是用单项式乘以多项式的每一项,再把所得结果相加;②(a+b)(m+n)=am+an+bm+bn,即多项式乘以多项式就是用一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.此题在解方程时要用到这样的运算哦!】10.某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售款A种型号B种型号第一周4台5台20500元第二周5台10台33500元(1)求A、B两种型号的空调的销售单价;(2)求近两周的销售利润.11.某电器商场销售进价分别为120元、190元的A、B两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润=销售收入﹣进货成本):销售时段销售数量销售收入A种型号B种型号第一周 5 6 2310第二周8 9 3540 (1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这批电风扇的总利润恰好为8040元的目标?若能,请给出相应的采购方案:若不能,请说明理由.12.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.13.现有36卷相同的布料做工作服,每卷布料可制作成上衣25件,或者制作成裤子40件,一件上衣和两件裤子组成一套,问,用多少卷布料制作上衣,多少卷布料制作裤子可以使上衣和裤子正好配套?14.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?15.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月),例如,方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元,李先生家5月份用电460度,交费316元.阶梯电量电价一档0﹣180度0.6元/度二档181﹣400度二档电价三档400度及以上三档电价请解答下列问题(1)若王先生家5月用电160度,则电费多少元?(2)求二档电价和三档电价分别为多少?(3)若何女士家5月用电600度,则电费多少元?16.在2月份“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.求每只A型口罩和B型口罩的销售利润.17.某校的大学生自愿者参与服务工作,计划组织全校自愿者统一乘车去某地.若单独调配36座客车若干辆,则空出6个座位.若只调配22座客车若干辆,则用车数量将增加3辆,并有12人没有座位.(1)计划调配36座客车多少辆?该大学共有多少名自愿者?(列方程组解答)(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?18.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措.小明家先后两次在同一电商平台以相同的单价免邮购买了A、B两种型号的口罩.第一次购买20个A型口罩,30个B型口罩,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元.(1)求A、B两种型号口罩的单价;(2)“五一”期间,该电商平台举行促销活动,小明发现同样花费160元购买B型口罩,以活动价购买可以比原价多买8个,求“五一”期间B型口罩的活动价.19.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入3400元;营业员B:月销售件数300件,月总收入3700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?20.“元旦”期间,某校组织开展“班级歌咏比赛”,甲、乙班共有学生102人(其中甲班人数多于乙班人数,且甲班人数不够100人)报名统一购买服装参加演出.下面是某服装厂给出的演出服装的价格表购买服装的套数1~50 51~100 ≥101每套服装的价格/元70 60 50如果两班分别单独购买服装,总共要付款6580元(1)如果甲、乙两班联合起来购买服装,那么比各自购买服装总共可以节省多少钱?(2)甲、乙班各有多少学生报名参加比赛?(3)如果甲班有5名学生因特殊情况不能参加演出,请你为两班设计一种省钱的购买服装方案.参考答案1.解:(1)设1辆A车一次可运x吨,1辆B车一次可运y吨,依题意,得:,解得:.答:1辆A车一次可运4吨,1辆B车一次可运3吨.(2)设应安排m辆A车,n辆B车,依题意,得:4m+3n=35,∴n=.又∵m,n均为正整数,∴,,.∴共有3种安排方案,方案1:安排2辆A车,9辆B车;方案2:安排5辆A车,5辆B 车;方案3:安排8辆A车,1辆B车.2.解:(1)设A品牌的化妆品每套进价为x元,B品牌的化妆品每套进价为y元,根据题意得:,解得:.答:A品牌的化妆品每套进价为100元,B品牌的化妆品每套进价为75元.(2)设购进A品牌化妆品m套,则购进B品牌化妆品(2m+4)套,根据题意得:,解得:16≤m≤18,∴共有3种进货方案:①购进A品牌化妆品16套,购进B品牌化妆品36套;②购进A 品牌化妆品17套,购进B品牌化妆品38套;③购进A品牌化妆品18套,购进B品牌化妆品40套.3.解:(1)设商店购进篮球x个,排球y个,依题意,得:,解得:.答:商店购进篮球120个,排球80个.(2)设王老师购买篮球m个,排球n个,依题意,得:(95﹣80)m+(60﹣50)n=100,∴n=10﹣m.∵m,n均为正整数,∴m为偶数,∴当m=2时,n=7;当m=4时,n=4;当m=6时,n=1.答:王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4个,排球4个;方案3:购进篮球6个,排球1个.4.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).答:一共能生产2400个巧克力包装盒.5.解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得,解得:,答:A型手机和B型手机的售价分别是7500元和4500元;(2)设3月B型手机的销量是m部,则A型手机的销量是m部,根据题意得,[(7500﹣1500)×(1﹣a%)][m(1+2a%)]+[(4500﹣500)×(1﹣a%)][m•(1+a%)]=[m(7500﹣1500)+m(4500﹣500)](1+a%),解得:a=30或a=0(不合题意舍去),答:a的值为30.6.解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.7.解:(1)设美术社团购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:美术社团购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:美术社团这次义卖活动共获得3800元利润.8.解:设甲装饰公司平均每天收取的费用为x万元,乙装饰公司平均每天收取的费用为y 万元,依题意,得:,解得:.答:甲装饰公司平均每天收取的费用为0.6万元,乙装饰公司平均每天收取的费用为1万元.9.解:(1)设9月份,该经销商销售的A型和B型汽车分别是x台和y台,根据题意得,,解得:,∴(1+25)%x=360,(1+20)%y=150,答:今年10月份,该经销商销售的A型和B型汽车分别是360台和150台;(2)由题意得,10×360(1+10a%)×a%+12×150(1﹣20a%)×(a+0.2)%=35.568,解得:a=0.6,答a的值为0.6.10.解:(1)设A型号空调的销售单价为x元,B型号空调的销售单价为y元,依题意可得:,解得:,答:A型号空调的销售单价为2500元,B型号空调的销售单价为2100元.(2)由(1)题知A型号空调的销售单价为2500元,B型号空调的销售单价为2100元,则销售总利润为:(2500﹣2000)(4+5)+(2100﹣1700)(5+10)=10500(元);答:近两周的销售利润为10500元.11.解:(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y 元,依题意,得:,解得:.答:A种型号的电风扇的销售单价为150元,B种型号的电风扇的销售单价为260元.(2)设再次购进A种型号的电风扇m台,B种型号的电风扇n台,依题意,得:,解得:.答:该商场能实现这批电风扇的总利润恰好为8040元的目标,采购方案为:购进9台A 种型号的电风扇、111台B种型号的电风扇.12.解:设平路有x千米,坡路有y千米,由题意可知,解得,答:平路有千米,坡路有千米.13.解:设用x卷布料制作上衣,y卷布料制作裤子可以使上衣和裤子正好配套,依题意,得:,解得:.答:用16卷布料制作上衣,20卷布料制作裤子可以使上衣和裤子正好配套.14.解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.15.解:(1)160×0.6=96(元).答:王先生家5月份应交电费96元.(2)设二档电价为x元/度,三档电价为y元/度,依题意,得:,解得:.答:二档电价为0.7元/度,三档电价为0.9元/度.(3)180×0.6+220×0.7+(600﹣400)×0.9=442(元).答:何女士家5月份应交电费442元.16.解:设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元.17.解:(1)设计划调配36座新能源客车x辆,该大学共有y名自愿者,则根据题意得,解得:答:计划调配36座新能源客车6辆,该大学共有210名自愿者.(2)设需调配36座新能源客车m辆,22座新能源客车n辆,根据题意得:36m+22n=210,∴又∵m、n为正整数∴,答:需调配36座新能源客车4辆,22座新能源客车3辆.18.解:(1)设A、B两种型号口罩的单价分别是x元,y元,由题意可得,解得:,答:A、B两种型号口罩的单价分别是2元,5元,(2)设五一”期间B型口罩的活动价为a元,由题意可得:a()=160,∴a=4,答:五一”期间B型口罩的活动价为4元.19.解:(1)根据题意得:,解得:.(2)设购买一件甲服装需要a元,购买一件乙服装需要b元,购买一件丙服装需要c元,根据题意得:,(①+②)÷4,得:a+b+c=190.答:购买甲、乙、丙服装各一件共需190元.20.解:(1)由题意,得:6580﹣102×50=1480(元).即甲、乙两班联合起来购买服装比各自购买服装共可以节省1480元.(2)设甲班有x名,乙班y名学生准备参加演出.由题意,得:,解得:.所以,甲班有56名,乙班46名学生准备参加演出.(3)∵甲班有5人不能参加演出,∴甲班有56﹣5=51(人)参加演出.方案①若甲、乙两班联合购买服装,则需要60×(46+51)=5820(元),方案②甲乙各自购买服装可以节约51×60+46×70=6280(元),方案③甲、乙两班联合购买101套服装,只需50×101=5050(元),∵5050元<5820元<6280元,因此,最省钱的购买服装方案是甲、乙两班联合购买101套服装.。

二元一次方程组应用题分类复习

二元一次方程组应用题分类复习

二元一次方程组应用题(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x—9=2、抽5人后到甲工厂的人数=可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇.二人的平均速度各是多少? 解:设甲每小时走x千米,乙每小时走y千米题中的两个相等关系:1、同向而行:甲的路程=乙的路程+可列方程为:2、相向而行:甲的路程+ =可列方程为:(百分数问题)某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1。

1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有x万人,农村人口有y万人题中的两个相等关系:1、现在城镇人口+ =现在全市总人口可列方程为:2、明年增加后的城镇人口+ =明年全市总人口可列方程为:(1+0.8%)x+ =(分配问题)某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,萍果有y个题中的两个相等关系:1、萍果总数=每人分3个+可列方程为:2、萍果总数= 可列方程为:(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克. 题中的两个相等关系:1、含盐10%的盐水中盐的重量+含盐85%的盐水中盐的重量=可列方程为:10%x+ =2、含盐10%的盐水重量+含盐85%的盐水重量=可列方程为:x+y=(金融分配问题)需要用多少每千克售4。

2元的糖果才能与每千克售3。

4元的糖果混合成每千克售3。

6元的杂拌糖200千克?解:设每千克售4.2元的糖果为x千克,每千克售3.4元的糖果为y千克题中的两个相等关系:1、每千克售4.2元的糖果销售总价+ =可列方程为:2、每千克售4。

二元一次方程组复习与总结

二元一次方程组复习与总结

x+y=22, 2x+y=40.
(1) (2)
满足方程x+y=22且符合实际意义的x,y的值有哪些?
x 9 10 11 12 13 14 15 16 17 18 19
y 13 12 11 10 9
8
7
6
5
4
3
无数 从中你体会到二元一次方程有___个解 .
上表中哪对x,y的值是方程2x+y=40的解?
二元一次方程组 复习与小结
x+y=22 2x+y=40
含有两个未知数(x和y),并且含有未 知数的项的次数都是1,像这样的方程叫做 二元一次方程.
x+y=22, (1) 2x+y=40. (2) 把两个二元一次方程合在一起,就 组成了一个二元一次方程组. 要点:(1)方程组中只有两个未知数. (2)未知数的次数都是一次. (3)一共有两个方程.
分析 求解 问题 方程(组) 解答 抽象 检验
3.要注意的是,处理实际问题的方法往往是多种多样的, 应根据具体问题灵活选用.
审 清题意,找出等量关系; 设 未知数x和y; 列 出二元一次方程组;
解 方程组;
检 验; 答 题.
x+y+z=12 ① ② x=4y x+2y+5z=22 ③
都含有三个未知数,并且含有未知数
特点: 同一个未知数的系数相同或互为相反数.
基本思路: 加减消元:二元 主要步骤:加减 求解
消去一个元;
一元.
写解
写出原方程组的解.
分别求出两个未知数的值;
1.解二元一次方程组的基本思路是消元.
2.消元的方法有:代入消元和加减消元. 3.解二元一次方程组的一般步骤:消元、求 解、写解.

2024-2025学年年七年级数学人教版下册专题整合复习卷8.3 实际问题与二元同步练习(含答案)

2024-2025学年年七年级数学人教版下册专题整合复习卷8.3  实际问题与二元同步练习(含答案)

2024-2025学年年七年级数学人教版下册专题整合复习卷8.3 实际问题与二元一次方程组(1)同步练习(含答案)8.3 实际问题与二元一次方程组(1) 班级 姓名 座号 月 日 主要内容:列二元一次方程组解决实际问题 一、课堂练习: 1.手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?

2.一旅游者从下午2时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下午回到出发点,已知他走平路时每小时走4千米,爬山时每小时走3千米,下坡时每小时走6千米,问旅游者一共走了多少路? 二、课后作业: 3.解下列方程组:

(1)355135xyyx (2)32134555262yxyx

4. A市至B市的航线长1200km,一架飞机从A市顺风飞往B市需2小时30分,从B市逆风飞往A市需3小时20分.求飞机的平均速度与风速.

① ②

② 5.一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走 2km,第一天和第二天行军的平均速度各是多少?

6.从甲地到乙地的路有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分,从乙地到甲地需42分.甲地到乙地全程是多少?

三、新课预习: 7.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是32,求两种球各有多少个?若设篮球有x个,排球有y个,依题意,得到的方程组是( ) A.2332xyxy B.2332xyxy C.2323xyxy D.2323xyxy 参考答案 一、课堂练习: 1.手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元? 解:设老师捐款x元,学生捐款y元.由题意,得 2900045000yxxy

第四章二元一次方程组应用题复习课件2

第四章二元一次方程组应用题复习课件2

6、某县城为鼓励居民节约用水,对自来 某县城为鼓励居民节约用水, 水用户按分段计费方式收取水费; 水用户按分段计费方式收取水费;若每 月用水不超过7m³ 则每立方米1元收费; 7m³, 月用水不超过7m³,则每立方米1元收费; 若每立方米用水超过7m³ 立方米用水超过7m³, 若每立方米用水超过7m³,则超过部分按 每立方米2元收费,如果某居民户今年5 每立方米2元收费,如果某居民户今年5 月缴纳317元收费,那么这户居民今年5 317元收费 月缴纳317元收费,那么这户居民今年5 月份的用水量是多少m³ m³? 月份的用水量是多少m³?
解之: 解之
x=1 小明在12:00时看到的数字是 时看到的数字是16 小明在 时看到的数字是 y=6 答:小明在
9. 某项研究表明 一般情况下 人的身高 和指距 之 某项研究表明,一般情况下 人的身高y和指距 一般情况下,人的身高 和指距x之 间有关系式:y=kx+b, 测得当 测得当x=22cm时,y=178cm;当 间有关系式 时 当 x=23cm时,y=187cm. 时
出 题 目
按下列方程组: 按下列方程组: x+2y=14 2x+y=16 出一道应用题。 出一道应用题。
思考与练习
1.学校乐队 人准备参加文艺汇演.现已 学校乐队193人准备参加文艺汇演 现已 学校乐队 人准备参加文艺汇演 预备了大客车和中巴车共8辆 其中大客车 预备了大客车和中巴车共 辆,其中大客车 每辆可坐51人 中巴车每辆可坐 中巴车每辆可坐8人 刚好坐 每辆可坐 人,中巴车每辆可坐 人,刚好坐 学校准备了几辆大客车?几辆中巴车 满.学校准备了几辆大客车 几辆中巴车 学校准备了几辆大客车 几辆中巴车?
11.某景点的门票票规定如下表: 某景点的门票票规定如下表: 某景点的门票票规定如下表

备考2023年中考数学二轮复习-二元一次方程组的实际应用-鸡兔同笼问题-综合题专训及答案

备考2023年中考数学二轮复习-二元一次方程组的实际应用-鸡兔同笼问题-综合题专训及答案二元一次方程组的实际应用-鸡兔同笼问题综合题专训1、(2017山西.中考真卷) “春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2) 2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?2、(2019锦州.中考真卷) 某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A 型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?3、(2016沈阳.中考真卷) 倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?4、(2017哈尔滨.中考真卷) 威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?5、(2017孝义.中考模拟) 近年来,某市坚持绿色发展理念,着力建设生态典范城市,大力开展绿化工程建设.某校“社会实践”小组的同学为了了解该市绿地的发展情况,对市园林局进行了走访调查,获取了如下信息:信息1:2015年的绿地总面积(绿地总面积=森林面积+草场面积)为276km2,其中森林面积比上一年增长40%,草地面积比上一年增长20%.信息2:2014年的绿地总面积为200km2.求:(1)该市2014年的森林面积和草场面积分别为多少km2?(2)若该市2016年的绿地总面积为338km2,求2014年至2016年该市绿地总面积的年平均增长率为多少?6、(2017盖州.中考模拟) 某物流公司承接A,B两种货物运输业务,已知5月份A 货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?7、(2018鼓楼.中考模拟) 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:小刚:①;②;③;④.根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.8、(2018惠山.中考模拟) 下表是某校七年级小朋友小敏这学期第一周和第二周做家务事的时间统计表,已知小敏每次在做家务事中洗碗的时间相同,扫地的时间每周做家务总时间(分)洗碗次数扫地的次数第一周44 2 3第二周42 1 4(2)为鼓励小敏做家务,小敏的家长准备洗碗一次付12元,扫地一次付8元,总费用不超过100元。

《实际问题与二元一次方程组》教学反思

《实际问题与二元一次方程组》教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、发言致辞、自我鉴定、合同协议、条据文书、规章制度、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work plans, work summaries, speeches, self-evaluation, contract agreements, documents, rules and regulations, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!《实际问题与二元一次方程组》教学反思《实际问题与二元一次方程组》教学反思(精选11篇)在学习、工作、生活中,我们要在教学中快速成长,反思指回头、反过来思考的意思。

北师大版八年级数学上册期末复习:二元一次方程组实际应用(五)

北师大版八年级数学上册期末复习:二元一次方程组实际应用(五)1.现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.2.某商场花9万元从厂家购买A型和B型两种型号的电视机共50台,其中A型电视机的进价为每台1500元,B型电视机的进价为每台2500元.(1)求该商场购买A型和B型电视机各多少台?(2)若商场A型电视机的售价为每台1700元,B型电视机的售价为每台2800元,不考虑其他因素,那么销售完这50台电视机该商场可获利多少元?3.5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?4.由于电力紧张,某地决定对工厂实行鼓励错峰用电,规定:在每天的7:00~24:00为用电高峰期,电价为a元/kW•h;每天0:00~7:00为用电平稳期,电价为b元/kW •h.下表为某厂四、五月份的用电量和电费的情况统计表:月份用电量(万千瓦时)电费(万元)四12 6.4五16 8.8 若四月份在平稳期的用电量占当月用电量的,五月份在平稳期的用电量占当月用电量的,求a,b的值.5.小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?6.如图,某工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨7500元的产品运到B地.已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费2.6万元,铁路运输费15.6万元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)若不计人力成本,这批产品盈利多少元?(盈利=销售款﹣原料费﹣运输费)7.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?8.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的15%,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的40%.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?9.阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.10.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是请你根据图2所示的算筹图,列出方程组,并求解.参考答案1.解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.2.解:(1)设该商场购买A型电视机x台,B型电视机y台,由题意得,解得:答:该商场购买A型电视机35台,B型电视机15台.(2)35×(1700﹣1500)+15×(2800﹣2500)=7000+4500=11500(元)答:销售完这50台电视机该商场可获利11500元.3.解:设甲种商品的销售单价为x元/件,乙种商品的销售单价为y元/件,根据题意得:,解得:.答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.4.解:根据题意可知四月份在平稳期和高峰期的用电量分别为12×=4万千瓦时,8万千瓦时;五月份在平稳期和高峰期的用电量分别为16×=4万千瓦时,12万千瓦时,根据题意得:解得:.答:a,b的值分别为0.6和0.4.5.解:设小颖投中x个,小颖爸爸投中y个.则解得答:小颖投中5个,小颖爸爸投中15个.6.解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意得:,整理得:,解得,答:工厂从A地购买了500吨原料,制成运往B地的产品400吨;(2)产品销售额为400×7500=3000000元原料费为500×2000=1000000元∴运费为26000+156000=182000元,∴3000000﹣(1000000+182000)=1818000(元)答:这批产品的销售额比原料费和运费的和多1818000元.7.解:设用x张铁皮做桶身,y张铁皮做桶底,根据题意得:解得:答:需要用56张铁皮做桶身,7张铁皮做桶底.8.解:(1)设公司第一次改装了y辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为x.依题意得方程组:,化简得:(100﹣y)=(100﹣2y),解得:,20+20=40(辆).答:公司共改装了40辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降了40%.(2)设一次性改装后,m天可以收回成本,则:100×80×40%×m=4000×100,解得:m=125.答:125天后就可以从节省的燃料费中收回成本.9.解:(1)设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=10×6=60.故每个小长方形的面积为60;(2)设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则12x+y=12×1+8=20.即小明把13个纸杯整齐叠放在一起时,它的高度约是20cm.(3)设小长方形的长为x,宽为y,根据题意得,解得,∴S阴影=19×(7+3×3)﹣8×10×3=64.故答案为:64.10.解:依题意,得由①,得y=7﹣2x.③把③代入②,得x+3(7﹣2x)=11解这个方程,得x=2.把x=2代入①,得y=3.∴这个方程组的解是.。

《二元一次方程组》小结与复习教学设计

第八章二元一次方程组小结与复习教学设计教学设计思想本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。

首先让学生思考回答:①二元一次方程组的解题思路及基本方法。

②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。

教学目标知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。

过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。

情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。

教学方法:复习法,练习法。

重、难点重点:解二元一次方程组、列二元一次方程组解应用题。

难点:如何找等量关系,并把它们转化成方程。

解决办法:反复读题、审题,用简洁的语言概括出相等关系。

课时安排1课时。

教具准备投影片教学过程设计(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。

(二)整体感知本章含有两个主要思想:消元和方程思想。

所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。

(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。

(四)练习1.2x -5y=18找学生写出它的五个解。

2.4(x y 1)3(1y)2y x 223--=--⎧⎪⎨+=⎪⎩分别用代入消元法、加减消元法求出它的解来。

答案:{x 2y 3==3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、列方程(组)解应用题的一般步骤
1、审题: 2、设未知数; 3、找出相等关系,列方程(组); 4、解
方程(组); 5、检验,作答;
二、列方程(组)解应用题常见类型题及其等量关系;
1、工程问题
(1)基本工作量的关系:工作量=工作效率×工作时间 (2)常见的等量关系:甲
的工作量+乙的工作量=甲、乙合作的工作总量 (3)注意:工程问题常把总工程看作
“1”,水池注水问题属于工程问题
2、行程问题
(1)基本量之间的关系:路程=速度×时间 (2)常见等量关系: 相遇问题:
甲走的路程+乙走的路程=全路程 追及问题(设甲速度快): 同时不同地:
甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同
时:甲的时间=乙的时间–时间差;甲的路程=乙的路程
3、水中航行问题: 顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的
速度–水流速度
4、增长率问题: 常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的
量×(1+增长率);
5、数字问题: 基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×
100
6、利润问题 利润=售价-进价,利润率= %100-×进价 进价 售价
7、盈亏问题:解这类问题关键是从盈利(过剩)、亏(不足)两个角度来把握事物的总
量; 8、年龄问题:解这类问题的关键是抓住两人年龄的增长率相等这一特征;
三、列方程解应用题的常用方法
1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根
据代数之间的内在联系找出等量关系。
2、线示法:就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内
在联系,


实际应用与二元一次方程组精选
1.经营户小熊在蔬菜批发市场上了解到以下信息内容:

他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完。
请你计算出小熊能赚多少钱?
解:设小熊在市场上批发了红辣椒x千克,西红柿y千克。

蔬菜品种 红辣椒 黄瓜 西红柿 茄子
批发价(元/公斤) 4 1.2 1.6 1.1
零售价(元/公斤) 5 1.4 2.0 1.3
2.商场销售AB,两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300
件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B种
衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有
变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?

3.医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5克单位蛋白质和
1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质,若病人每餐需要35单位蛋白
质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?

4.某工程由甲乙两队合做6天完成,厂家需付甲乙两队共8700元;乙丙两队合做10天完
成,厂家需付乙丙两队共9500元;甲丙两队合做5天完成全部工程的23,厂家需付甲丙
两队共5500元.
(1)求甲、乙、丙各队单独完成全部工程各需多少天?
(2)若要求不超过15天完成全啊工程,问可由哪队单独完成此项工程花钱最少?

5.(08济南市)如图,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一
束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜
花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花
的价格.
6.(某同学在A、B两家超市发现他看中的随身听的单价相同,•书包单价也相同.随身听
和书包单价之和是452元,且随身听的单价比书包单价的4•倍少8元.
(1)求该同学看中的随身听和书包的单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场
购满100元返购物券30元销售(不足100元不返券,购物券全场通用),•但他只带了400
元钱,如果他只在一家超市购买看中的这两样物品,•你能说明他可以选择哪一家购买吗?
若两家都可以选择,在哪一家购买更省钱?

(2)宏泰毛纺厂购进由甲、乙两种原料配成的两种材料,已知一种材料按甲:乙=5:4配
料,每吨50元;另一种材料按甲:乙=3:2配料,每吨48.6元.求甲、•乙两种原料的
价格各是多少?

7.某球迷协会组织36名球迷拟租乘汽车赴比赛场地,•为参加亚洲杯决赛的中国队加油
助威,可租用的汽车有两种:一种是每辆可乘8人,另一种是每辆可乘4人,要求租用
的车子不留空位,也不超载.
(1)请你给出不同的租车方案(至少三种);
(2)若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,•
请你设计出费用最少的租车方案,并说明理由.

8. 某商店出售的某种茶壶每只定价20元,茶杯每只定价3元,该商店在营销淡季特规定
一项优惠方法,即买一只茶壶赠送一只茶杯.小明爸爸所在的单位花了170元,买回茶壶
和茶杯一共38只,问小明爸爸所在的单位买回茶壶和茶杯各多少只?

9、小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路。她跑步去学校共用了
16分,已知小颖在上坡路上的平均速度是4.8千米/小时,而她在下坡路上平均速度是12
千米/小时。小颖上坡、下坡各用了多长时间?
10. 一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次
租用这两种货车的情况如下表:
第一次 第二次
甲种货车辆数(辆)
2 5
乙种货车辆数(辆)
3 6
累计运货吨数(吨) 15.5
35
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30
元计算,问货主应付运费多少元?

11. 某制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天
可制作这种衬衫3件或裤子5条.
(1)若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?
(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求
每天获得利润2100元,则需要安排多少名工人制作衬衫?

12、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销
售,每吨利润可达4500元;经精加工后销售,每吨利润可涨至7500元。当地一家农产品
工商公司收获这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,
每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,
受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或加工完毕,为此公司研
制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精
加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余
蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多?为什么?

相关文档
最新文档