模糊控制介绍

合集下载

模糊控制理论及工程应用

模糊控制理论及工程应用

模糊控制理论及工程应用模糊控制理论是一种能够处理非线性和模糊问题的控制方法。

它通过建立模糊规则和使用模糊推理来实现对系统的控制。

本文将介绍模糊控制理论的基本原理,以及其在工程应用中的重要性。

一、模糊控制理论的基本原理模糊控制理论是由扬·托东(Lotfi Zadeh)于1965年提出的。

其基本原理是通过建立模糊规则,对系统的输入和输出进行模糊化处理,然后利用模糊推理来确定系统的控制策略。

模糊规则是一种类似于“如果...那么...”的表达式,用于描述输入和输出之间的关系。

模糊推理则是模糊控制系统的核心,它通过将模糊规则应用于模糊化的输入和输出,来确定控制的动作。

二、模糊控制理论的工程应用模糊控制理论在工程应用中具有广泛的应用价值。

下面将分别介绍其在机械控制和电力系统控制中的应用。

1. 机械控制模糊控制理论在机械控制领域有着重要的应用。

其优势在于能处理非线性和模糊问题,使得控制系统更加鲁棒和稳定。

例如,在机器人控制中,模糊控制可实现对复杂环境的适应性和灵活性控制,使机器人能够自主感知和决策。

此外,模糊控制还可以应用于精密仪器的控制,通过建立模糊规则和模糊推理,实现对仪器位置和姿态的精确控制。

2. 电力系统控制模糊控制理论在电力系统控制领域也有着重要的应用。

电力系统是一个复杂的非线性系统,模糊控制通过建立模糊规则和模糊推理,可以实现对电力系统的稳定性和性能进行优化。

例如,在电力系统调度中,模糊控制可以根据不同的负荷需求和发电能力,实现对发电机组的出力控制,保持电力系统的稳定运行。

此外,模糊控制还可以应用于电力系统中的故障诊断和故障恢复,通过模糊推理,快速准确地定位和修复故障。

三、总结模糊控制理论是一种处理非线性和模糊问题的有效方法。

其基本原理是通过建立模糊规则和使用模糊推理来实现对系统的控制。

模糊控制理论在机械控制和电力系统控制等工程领域有着广泛的应用。

它能够提高控制系统的鲁棒性和稳定性,并且能够适应复杂的环境和变化,具有良好的控制效果。

模糊控制理论及应用

模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。

本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。

一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。

在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。

模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。

最后,通过去模糊化操作将模糊集合转化为具体的输出值。

二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。

1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。

它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。

2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。

通过模糊控制,机器人可以对复杂的环境做出智能响应。

3. 交通控制:模糊控制在交通控制领域中有重要的应用。

通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。

4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。

通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。

5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。

模糊控制可以应对这些问题,提高生产过程的稳定性和质量。

三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。

未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。

通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。

2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。

例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。

3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。

控制理论中的自适应控制与模糊控制

控制理论中的自适应控制与模糊控制

控制理论中的自适应控制与模糊控制自适应控制与模糊控制是控制理论中的两种重要方法,它们都具有适应性和鲁棒性,并且在不同的工程领域中广泛应用。

本文将分别介绍自适应控制和模糊控制的原理和应用,并比较它们的优缺点。

1. 自适应控制自适应控制是一种实时调节控制器参数的方法,以实现对系统模型和动态特性的跟踪和适应。

自适应控制的基本原理是通过不断观察和检测系统的输入和输出,根据误差的大小来调整控制器的参数,从而实现对系统的控制。

自适应控制的核心是自适应算法,常用的自适应算法有最小均方(LMS)算法、普罗弗洛夫诺夫(P-N)算法等。

通过这些算法,控制系统能够根据实时的输入输出信息,对控制器的参数进行在线调整,从而实现对未知或变化的系统模型的自适应控制。

自适应控制具有以下优点:- 可适应性强:自适应控制能够根据实时的系统输入输出信息调整控制器参数,适应不同的系统模型和工作条件。

- 鲁棒性好:自适应控制对于系统参数的不确定性和变化有很好的鲁棒性,能够有效应对系统参数的变化和干扰。

然而,自适应控制也存在以下缺点:- 算法设计复杂:自适应控制的算法设计和调试较为复杂,通常需要深入了解系统模型和控制理论。

- 需要大量计算资源:自适应控制需要实时处理系统的输入输出信息,并进行参数调整,因此需要较大的计算资源和实时性能。

2. 模糊控制模糊控制是一种基于模糊逻辑的控制方法,它通过建立模糊规则和模糊推理来实现对非精确或模糊信息的处理和控制。

模糊控制的核心是模糊推理机制,通过将输入量和输出量模糊化,使用模糊规则进行推理和控制。

模糊控制的优点包括:- 不需要准确的数学模型:模糊控制可以处理非精确、模糊的输入输出信息,对于某些复杂系统,很难建立准确的数学模型,而模糊控制能够处理这种模糊性。

- 鲁棒性好:模糊控制对于系统参数的变化和干扰有较好的鲁棒性,能够在一定程度上应对不确定性和噪声的干扰。

然而,模糊控制也存在以下缺点:- 规则设计困难:模糊控制的性能很大程度上依赖于设计合理的模糊规则,而模糊规则的设计需要充分的专业知识和经验。

模糊控制ppt课件

模糊控制ppt课件

可编辑课件PPT
23
5. 建立模糊控制表 模糊控制规则可采用模糊规则表4-5来描述,共
49条模糊规则,各个模糊语句之间是或的关系,由第 一条语句所确定的控制规则可以计算出u1。同理,可 以由其余各条语句分别求出控制量u2,…,u49,则控制 量为模糊集合U可表示为
uu1u2 u49
可编辑课件PPT
规则模型化,然后运用推理便可对PID参数实现最佳
调整。
可编辑课件PPT
32
由于操作者经验不易精确描述,控制过程中各种 信号量以及评价指标不易定量表示,所以人们运用 模糊数学的基本理论和方法,把规则的条件、操作 用模糊集表示,并把这些模糊控制规则以及有关信 息(如初始PID参数等)作为知识存入计算机知识库中 ,然后计算机根据控制系统的实际响应情况,运用 模糊推理,即可自动实现对PID参数的最佳调整,这 就是模糊自适应PID控制,其结构如图4-15所示。
可编辑课件PPT
31
随着计算机技术的发展,人们利用人工智能的
方法将操作人员的调整经验作为知识存入计算机中
,根据现场实际情况,计算机能自动调整PID参数,
这样就出现了智能PID控制器。这种控制器把古典的
PID控制与先进的专家系统相结合,实现系统的最佳
控制。这种控制必须精确地确定对象模型,首先将
操作人员(专家)长期实践积累的经验知识用控制
糊控制的维数。
可编辑课件PPT
10
(1)一维模糊控制器 如图所示,一维模糊控制器的 输入变量往往选择为受控量和输入给定的偏差量E。由 于仅仅采用偏差值,很难反映过程的动态特性品质, 因此,所能获得的系统动态性能是不能令人满意的。 这种一维模糊控制器往往被用于一阶被控对象。
可编辑课件PPT

模糊控制与神经网络控制

模糊控制与神经网络控制

模糊控制与神经网络控制模糊控制和神经网络控制是现代控制领域中的两个重要研究方向,它们通过不同的方法和理论来解决复杂系统的控制问题。

本文将就这两种控制方法进行介绍和对比,并探讨它们在实际应用中的优劣势。

一、模糊控制模糊控制是一种基于模糊逻辑理论的控制方法,它通过将输入和输出之间的关系进行模糊化来实现系统的控制。

模糊控制器的设计通常包括模糊化、规则库的建立、推理机制以及解模糊化等步骤。

在模糊控制中,输入和输出以模糊集形式表示,通过一系列的模糊规则进行推理得到控制信号。

模糊规则库中存储了专家知识,根据实际问题的需求可以设计不同的规则。

推理机制使用模糊规则进行推理,最后通过解模糊化将模糊输出转化为具体的控制量。

模糊控制的优点之一是适用于非线性和不确定性系统,它能够通过模糊化处理来处理实际系统中的不确定性和模糊性。

此外,模糊控制能够利用专家经验进行控制器的设计,无需准确的系统数学模型。

然而,模糊控制也存在一些局限性。

首先,模糊控制的规则库和参数通常需要由专家进行手动设计,这对专家的经验和知识有一定的要求。

其次,模糊控制的性能也会受到模糊规则的数量和质量的影响,如果规则库设计不当,控制性能可能无法满足要求。

二、神经网络控制神经网络控制是一种基于人工神经网络的控制方法,它通过将系统模型表示为神经网络结构来实现控制。

神经网络是一种模仿生物神经系统结构和功能的计算模型,具有自适应学习和适应性处理的能力。

在神经网络控制中,神经网络被用作控制器来学习系统的映射关系。

通过输入和输出的样本数据,神经网络根据误差信号不断调整权重和阈值,使得输出逼近于期望输出。

神经网络控制通常包括网络的结构设计、学习算法的选择和参数调整等步骤。

与模糊控制相比,神经网络控制具有更好的自适应性和学习能力。

它能够通过学习过程来建立系统的非线性映射关系,并且对于未知系统具有较好的鲁棒性。

此外,神经网络控制不需要准确的系统模型,对系统的数学模型要求相对较低。

自动化系统的模糊控制与神经网络控制

自动化系统的模糊控制与神经网络控制

自动化系统的模糊控制与神经网络控制自动化系统的控制方法多种多样,其中模糊控制和神经网络控制是两种常见而有效的控制方法。

本文将就自动化系统的模糊控制与神经网络控制进行详细的介绍和对比。

一、模糊控制模糊控制是指在系统的控制过程中,根据模糊集合和模糊规则进行推理,以实现对系统的控制。

模糊控制通过模糊集合来描述控制对象的特征,通过模糊规则来描述控制的策略。

模糊控制的主要优点是对系统模型要求不高,适用于复杂的非线性系统。

模糊控制的缺点是控制效果不稳定,对系统的响应较慢。

二、神经网络控制神经网络控制是指利用人工神经网络对系统进行建模,并通过神经网络进行系统控制。

神经网络控制通过训练神经网络来获得系统的映射关系,并通过不断的优化训练来提高控制效果。

神经网络控制的主要优点是适应性强,可以对复杂的非线性系统进行较好的控制。

神经网络控制的缺点是需要大量的训练数据和计算资源。

三、模糊控制与神经网络控制的对比1. 建模方法模糊控制使用模糊集合和模糊规则进行建模,而神经网络控制使用人工神经网络进行建模。

模糊控制的建模过程相对简单,只需通过专家知识确定模糊集合和规则即可。

而神经网络控制的建模过程相对复杂,需要通过大量的训练数据进行神经网络的训练和优化。

2. 控制效果模糊控制对系统的控制效果常常较差,对于复杂的非线性系统,模糊控制的精度和稳定性均较低。

而神经网络控制对系统的控制效果较好,可以对复杂的非线性系统进行较精确的控制。

神经网络控制可以通过不断的训练和优化提高控制效果,并适应系统动态变化。

3. 训练需求模糊控制的训练过程相对简单,只需确定模糊集合和规则即可。

而神经网络控制的训练过程相对复杂,通常需要大量的训练数据和计算资源。

神经网络控制的训练需要通过反向传播算法等方法来不断优化网络参数,提高控制效果。

4. 适用范围模糊控制适用于复杂的非线性系统,特别是对于模糊规则较为明确的系统。

神经网络控制适用于复杂的非线性系统,并且对于系统的模糊规则不敏感,对于模糊性较强的系统具有更好的控制效果。

机械控制系统的模糊控制技术

机械控制系统的模糊控制技术在机械控制系统中,为了实现对机器设备的精确控制,模糊控制技术应运而生。

模糊控制技术是一种基于模糊逻辑原理的控制方法,可以在模糊环境下进行控制,使得机械控制系统具有较强的适应性和鲁棒性。

本文将介绍机械控制系统的模糊控制技术及其在实际应用中的优势。

一、模糊控制技术的基本原理模糊控制技术是一种基于模糊逻辑的控制方法,通过模糊推理和模糊集合运算来实现对机械设备的控制。

其基本原理可以归纳为以下几点:1. 模糊化:将输入输出的实际值转化为模糊集合,用语言词汇来描述系统状态。

2. 规则库的建立:根据专家经验和实际观测数据,建立一套模糊规则库,其中包含了输入输出之间的关系。

3. 模糊推理:通过将输入模糊集合与规则库中的规则进行匹配,得到输出的模糊集合。

4. 解模糊化:将输出的模糊集合转化为实际值,供机械设备进行控制。

二、模糊控制技术的优势相比于传统的控制方法,模糊控制技术具有以下几个优势:1. 简化建模过程:传统的控制方法需要建立精确的数学模型,而模糊控制技术可以通过专家经验和模糊规则库来建立控制模型,简化了建模的过程。

2. 适应性强:模糊控制技术可以在模糊环境下进行控制,对于输入参数的模糊性和不确定性具有较好的适应性。

3. 鲁棒性好:模糊控制技术对于机械设备参数的变化和外部干扰具有较好的鲁棒性,可以保持较稳定的控制性能。

4. 知识表示灵活:模糊控制技术使用自然语言词汇描述系统状态和规则,便于人们理解和调整系统。

三、模糊控制技术的应用领域模糊控制技术在机械控制系统中有广泛的应用,以下是一些典型的应用领域:1. 机器人控制:模糊控制技术可以用于机器人的轨迹控制、力控制和路径规划等方面,实现对机器人的精确控制。

2. 电机控制:模糊控制技术可以用于电机的速度调节、力矩控制和位置控制,提高电机系统的稳定性和精度。

3. 汽车控制:模糊控制技术可以应用于汽车的刹车系统、转向系统和巡航控制,提高汽车的安全性和舒适性。

模糊控制重心法

模糊控制重心法一、引言模糊控制是一种基于模糊逻辑的控制方法,它模拟人类的思维方式,将模糊的输入转化为模糊的输出,适用于复杂的非线性系统。

而重心法则是模糊控制中的一种常用规则,用于确定输出的模糊值。

本文将介绍模糊控制的基本原理以及重心法的应用。

二、模糊控制的基本原理模糊控制系统包括模糊化、模糊推理和解模糊三个主要部分。

模糊化将输入的实际值转换为模糊值,模糊推理根据预设的规则进行推理,得出模糊输出,解模糊将模糊输出转换为实际值。

模糊控制的关键在于模糊推理,其中重要的一环就是模糊规则的表达。

模糊规则由条件部分和结论部分组成,条件部分是输入的模糊集合,结论部分是输出的模糊集合。

模糊推理的方法有很多种,其中一种常用的方法就是基于重心法的推理。

三、重心法的原理重心法是一种基于几何思想的模糊推理方法,它利用模糊集合的特征值来确定输出的模糊值。

对于模糊集合来说,它可以看作是在数轴上的一个分布,其中心位置就是重心。

重心法的基本思想是将输入集合和输出集合在数轴上表示出来,通过计算它们的重心位置来确定输出的模糊值。

具体来说,重心法首先将模糊集合的隶属度函数进行插值,得到一个连续的函数。

然后,通过对连续函数进行积分,求解出其重心位置。

最后,根据重心位置确定输出的模糊值。

四、重心法的应用重心法在模糊控制中的应用非常广泛。

例如,在温度控制系统中,可以通过重心法来确定加热或降温的程度;在汽车制动系统中,可以通过重心法来确定刹车力度的大小。

以温度控制系统为例,假设输入是温度的模糊集合,输出是加热程度的模糊集合。

通过重心法,可以根据输入的模糊值和对应的隶属度函数,计算出输出的模糊值。

具体来说,可以通过将输入和输出模糊集合进行插值,得到连续函数。

然后,通过对连续函数进行积分,求解出其重心位置,即输出的模糊值。

五、总结模糊控制重心法是一种基于模糊逻辑的控制方法,它通过计算模糊集合的重心位置来确定输出的模糊值。

重心法在模糊控制中有着广泛的应用,可以用于各种复杂的非线性系统。

控制系统中的模糊控制算法设计与实现

控制系统中的模糊控制算法设计与实现现代控制系统在实际应用中,往往面临着多变、复杂、非线性的控制问题。

传统的多变量控制方法往往无法有效应对这些问题,因此,模糊控制算法作为一种强大的控制手段逐渐受到广泛关注和应用。

本文将从控制系统中的模糊控制算法的设计和实现两个方面进行介绍,以帮助读者更好地了解和掌握这一领域的知识。

一、模糊控制算法的设计1. 模糊控制系统的基本原理模糊控制系统是一种基于模糊逻辑的控制系统,其基本思想是通过将输入和输出变量模糊化,利用一系列模糊规则来实现对系统的控制。

模糊控制系统主要由模糊化、规则库、模糊推理和解模糊四个基本部分组成,其中规则库是模糊控制系统的核心部分,包含了一系列的模糊规则,用于描述输入和输出变量之间的关系。

2. 模糊控制算法的设计步骤(1)确定输入和输出变量:首先需要明确系统中的输入和输出变量,例如温度、压力等。

(2)模糊化:将确定的输入和输出变量进行模糊化,即将其转换为模糊集合。

(3)建立模糊规则库:根据实际问题和经验知识,建立一系列模糊规则。

模糊规则关联了输入和输出变量的模糊集合之间的关系。

(4)模糊推理:根据当前的输入变量和模糊规则库,利用模糊推理方法求解输出变量的模糊集合。

(5)解模糊:将求解得到的模糊集合转换为实际的输出值,常用的方法包括最大值法、加权平均法等。

3. 模糊控制算法的设计技巧(1)合理选择输入和输出变量的模糊集合:根据系统的实际需求和属性,选择合适的隶属函数,以便更好地描述系统的特性。

(2)精心设计模糊规则库:模糊规则库的设计是模糊控制算法的关键,应根据实际问题与经验知识进行合理的规则构建。

可以利用专家经验、试验数据或者模拟仿真等方法进行规则的获取和优化。

(3)选用合适的解模糊方法:解模糊是模糊控制算法中的一项重要步骤,选择合适的解模糊方法可以提高控制系统的性能。

常用的解模糊方法有最大值法、加权平均法、中心平均法等,应根据系统的需求进行选择。

模糊控制实际应用研究

模糊控制实际应用研究模糊控制是一种基于模糊逻辑的控制方法,它可以在模糊的环境中进行决策和控制,其核心思想就是用人类的经验和语言来描述系统。

在实际应用中,模糊控制被广泛应用于各种领域,比如工业控制、智能交通、机器人控制、医疗、金融等。

本文将从几个方面介绍模糊控制在实际应用中的研究进展和应用案例。

一、工业控制在工业生产中,模糊控制被广泛应用于生产流程控制、机器人控制、自适应控制等方面。

其中,以炼油、化工、冶金等高危行业为代表的控制系统,风险高、控制难度大,传统控制方法难以适应。

而模糊控制正是满足了这种场景下的特殊需要。

例如,对于温度、压力等参数的控制,传统控制方法需要传感器读取实时数据,根据PID算法进行计算和调整,但是这样的调节方法需要不断地“试错”,耗费时间和人力。

相比之下,模糊控制的优势就体现出来了。

它不需要提前确定具体的输入量、输出量以及参数,只需要用文字传达控制要求,系统便可以自动地“学习”调节方法,从而提供最优的控制方案。

二、智能交通随着城市化进程的加速,城市交通越来越拥堵,安全问题也愈发凸显。

智能交通系统就是为了解决城市交通压力和安全问题而出现的。

模糊控制在智能交通系统中也起到了重要的作用。

首先,模糊控制可以对交通信号灯进行控制,提高交通流量,并降低交通拥堵。

其次,模糊控制可以结合路况、气象等不同因素,对车辆行驶速度进行控制,提高整个道路网络的通行效率,从而减轻交通拥堵的程度。

最后,模糊控制还可以根据路段交通的实时情况,对城市路网进行动态优化,从而使整个交通系统更加智能化、高效化。

三、机器人控制机器人技术是当代科技领域的一个热点,而机器人控制是机器人技术中的一个重要分支。

机器人控制的核心是对机器人进行快速、准确的控制,以达到预期的效果。

模糊控制在机器人控制中的应用也非常广泛。

比如在工业机器人的控制中,可以通过模糊控制对机器人的运动和运行参数进行灵活控制,从而实现自适应控制。

同时,模糊控制也可以应用于机器人的智能决策中,使其能够自主化地进行决策和行动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊控制介绍附件:一、模糊控制概况模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。

1965年,美国的L.A.Zadeh创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。

1974年,英国的E.H.Mamdani 首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。

这一开拓性的工作标志着模糊控制论的诞生。

模糊控制实质上是一种非线性控制,从属于智能控制的范畴。

模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。

模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。

近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。

其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。

二、模糊控制基础模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。

模糊控制器(Fuzzy Controller,即FC)获得巨大成功的主要原因在于它具有如下一些突出特点:模糊控制是一种基于规则的控制。

它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。

由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用。

基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统的语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。

模糊控制算法是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。

模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,尤其适合于非线性、时变及纯滞后系统的控制。

模糊控制系统的基本结构如图1所示:图1模糊控制系统框图(见附件一)其中s为系统的设定值,y为系统输出,e和c分别是系统偏差和偏差的微分信号,也就是模糊控制器的输入,u为控制器输出的控制信号,E、C、U为相应的模糊量。

由图可知模糊控制器主要包含三个功能环节:用于输入信号处理的模糊量化和模糊化环节,模糊控制算法功能单元,以及用于输出解模糊化的模糊判决环节。

模糊控制器设计的基本方法和主要步骤大致包括:1、选定模糊控制器的输入输出变量,并进行量程转换。

选取方法一般如图1所示,即分别取e、c和u。

2、确定各变量的模糊语言取值及相应的隶属函数,即进行模糊化。

模糊语言值通常选取3、5或7个,例如取为{负,零,正},{负大,负小,零,正小,正大},或{负大,负中,负小,零,正小,正中,正大}等。

然后对所选取的模糊集定义其隶属函数,可取三角形隶属函数(如图2所示)或梯形,并依据问题的不同取为均匀间隔或非均匀的;也可采用单点模糊集方法进行模糊化。

图2隶属函数取法示意(见附件二)3、建立模糊控制规则或控制算法。

这是指规则的归纳和规则库的建立,是从实际控制经验过渡到模糊控制器的中心环节。

控制律通常由一组if-then结构的模糊条件语句构成,例如:if e=N and c=N,then u=PB……等;或总结为模糊控制规则表,如表1中所示,可直接由e和c查询相应的控制量u。

表1 模糊控制规则表举例(见附件三)4、确定模糊推理和解模糊化方法。

常见的模糊推理方法有最大最小推理和最大乘积推理两种,可视具体情况选择其一:解模糊化方法有最大隶属度法,中位数法,加权平均,重心法,求和法或估值法等等,针对系统要求或运行情况的不同而选取相适应的方法,从而将模糊量转化为精确量,用以实施最后的控制策略。

三、模糊控制应用研究现状模糊控制具有良好控制效果的关键是要有一个完善的控制规则。

但由于模糊规则是人们对过程或对象模糊信息的归纳,对高阶、非线性、大时滞、时变参数以及随机干扰严重的复杂控制过程,人们的认识往往比较贫乏或难以总结完整的经验,这就使得单纯的模糊控制在某些情况下很粗糙,难以适应不同的运行状态,影响了控制效果。

常规模糊控制的两个主要问题在于:改进稳态控制精度和提高智能水平与适应能力。

在实际应用中,往往是将模糊控制或模糊推理的思想,与其它相对成熟的控制理论或方法结合起来,发挥各自的长处,从而获得理想的控制效果。

由于模糊规则和语言很容易被人们广泛接受,加上模糊化技术在微处理器和计算机中能很方便的实现,所以这种结合展现出强大的生命力和良好的效果。

对模糊控制的改进方法可大致的分为模糊复合控制,自适应和自学习模糊控制,以及模糊控制与智能化方法的结合等三个方面。

1、模糊复合控制:Fuzzy-PID复合控制:即模糊PID控制,通常是当误差较大时采用模糊控制,而误差较小时采用PID控制,从而既保证动态响应效果,又能改善稳态控制精度;一种简便有效的做法是模糊控制器和I调节器共同合成控制作用。

模糊-线性复合控制:如模糊-前馈补偿控制等,实际利用了模糊控制是变增益PI控制器的特点,在实际系统的控制中取得了较好的效果。

史密斯-模糊控制器:针对系统的纯滞后特性设计,用模糊控制器替代PID可以解决常规史密斯-PID控制器对参数变化适应能力较弱的缺陷;此外模糊推理和模糊规则的运用有利于在一定程度上适应时延的变化,在更复杂的情况下对对象的纯滞后进行有效的补偿。

三维模糊控制器:一种是利用误差E,误差变化Ec和误差变化速率Ecc作为三维变量,可以解决传统二维模糊控制器的快速响应与稳定性要求之间的矛盾;另一种方法是利用E,Ec和误差的累积和ΣE,这相当于变增益的PID控制器,提高了模糊控制的稳态精度。

多变量模糊控制:一般采用结构分解和分层分级结构,利用多个简单的模糊控制器进行组合,并兼顾多规则集之间的相互关系。

2、自适应和自学习模糊控制:自校正模糊控制器:修改控制规则的自校正模糊控制器,从响应性能指标的评价出发,利用模糊集合平移或隶属函数参数的改变,来实现控制规则的部分或全面修正,也可通过修正规则表或隶属函数本身来进行调整;基于模糊模型的自校正模糊控制器,包括利用模糊集理论辨识系统模型的语言化方法,基于参考模糊集的系统模糊关系模型辨识方法,以及由I/O数据建立模糊规则模型,并以此作为自校正控制器设计的基础等。

参数自调整模糊控制:自调整比例因子的模糊控制,引入性能测量和比例因子调整的功能,在线改变模糊控制器的参数,较大的增强了对环境变化的适应能力;基于模糊推理的PID自整定控制,如参数自整定模糊PD控制,以及类似的PI及PID控制等。

模型参考自适应模糊控制器:利用参考模型输出与控制作用下系统输出间的偏差来修正模糊控制器的输出,包括比例因子、解模糊策略、模糊控制规则等。

具有自学习功能的模糊控制:包括多种对外扰影响或重复任务的性能具有自学习功能的模糊控制方法,以及自寻优模糊控制器等,其关键在于学习和寻优算法的设计,尤其是提高其速度和效率。

自组织模糊控制器:将参考模型和自组织机制相结合的模糊模型参考学习控制,及自适应递阶模糊控制等更高级的自组织形式具有很大的发展潜力。

3、模糊控制与其它智能控制方法的结合:尽管模糊控制在概念和理论上仍然存在着不少争议,但进入90年代以来,由于国际上许多著名学者的参与,以及大量工程应用上取得的成功,尤其是对无法用经典与现代控制理论建立精确数学模型的复杂系统特别显得成绩非凡,因而导致了更为广泛深入的研究,事实上模糊控制已作为智能控制的一个重要分支确定了下来。

4、专家模糊控制:专家系统能够表达和利用控制复杂过程和对象所需的启发式知识,重视知识的多层次和分类的需要,弥补了模糊控制器结构过于简单、规则比较单一的缺陷,赋予了模糊控制更高的智能;二者的结合还能够拥有过程控制复杂的知识,并能够在更为复杂的情况下对这些知识加以有效利用。

5、基于神经网络的模糊控制:神经网络实现局部或全部的模糊逻辑控制功能,前者如利用神经网络实现模糊控制规则或模糊推理,后者通常要求网络层数多于三层;自适应神经网络模糊控制,利用神经网络的学习功能作为模型辨识或直接用作控制器;基于模糊神经网络的隶属函数及推理规则的获取方法,具有模糊连接强度的模糊神经网等,均在控制中有所应用;模糊系统与遗传算法相结合的控制器设计方法则提供了更为新颖的思路。

此外,模糊预测控制,模糊变结构方法,模糊系统建模及参数辨识,模糊模式识别等的研究,也都属于较为前沿的研究方向。

四、模糊控制研究方向展望模糊控制仍然是一个充满争议的领域。

由于它的发展历史还不长,理论上的系统性和完善性,技术上的成熟性和规范性都还是不够的,有待人们的进一步提高。

模糊系统理论还有一些重要的理论课题没有解决。

其中两个重要的问题是:如何获得模糊规则及隶属函数,这在目前完全凭经验来进行;以及如何保证模糊系统的稳定性。

大体说来,在模糊控制理论和应用方面应加强研究的主要课题为:适合于解决工程上普遍问题的稳定性分析方法,稳定性评价理论体系;控制器的鲁棒性分析,系统的可控性和可观测性判定方法等。

模糊控制规则设计方法的研究,包括模糊集合隶属函数的设定方法,量化水平,采样周期的最优选择,规则的系数,最小实现以及规则和隶属函数参数自动生成等问题;进一步则要求我们给出模糊控制器的系统化设计方法。

模糊控制器参数最优调整理论的确定,以及修正推理规则的学习方式和算法等。

模糊动态模型的辨识方法。

模糊预测系统的设计方法和提高计算速度的方法。

神经网络与模糊控制相结合,有望发展一套新的智能控制理论。

模糊控制算法改进的研究:由于模糊逻辑的范畴很广,包含大量的概念和原则;然而这些概念和原则能真正的在模糊逻辑系统中得到应用的却为数不多。

这方面的尝试有待深入。

最优模糊控制器设计的研究:依据恰当提出的性能指标,规范控制规则的设计依据,并在某种意义上达到最优。

相关文档
最新文档