空间正方体的外接球和内切球问题

合集下载

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。

具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。

例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。

第二种类型为对棱相等模型,补形为长方体。

在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。

例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。

除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。

设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。

例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

3)正四面体的各条棱长都为2,则该正面体外接球的体积为。

正方体的内切球和外接球公式

正方体的内切球和外接球公式

正方体的内切球和外接球公式
正方体是一个六个面都是正方形的立体图形。

内切球是指能够与正方体内部接触的最大球体,外接球则是能够与正方体外部接触的最小球体。

计算正方体的内切球和外接球的半径和体积需要使用一些几何公式。

首先考虑正方体的外接球。

连接正方体相邻顶点,可以得到一个直径为正方体对角线的球体。

根据勾股定理,正方体对角线的长度为 $a\sqrt{3}$,其中 $a$ 是正方体的边长。

因此,正方体的外接球半径为 $R=\frac{a\sqrt{3}}{2}$。

正方体的外接球体积则为 $V_{out}=\frac{4}{3}\pi
R^3=\frac{4}{3}\pi(\frac{a\sqrt{3}}{2})^3=\frac{4}{3}\pi(\frac{3a}{2})^3=\frac{27}{ 2}\pi a^3$。

接下来考虑正方体的内切球。

连接正方体的中心和任一面的中心,可以得到内切球的半径 $r$。

根据勾股定理,正方体的对角线和边长构成的三角形为等腰直角三角形,因此内切球的半径为 $r=\frac{a}{2}$。

正方体的内切球体积为
$V_{in}=\frac{4}{3}\pi r^3=\frac{4}{3}\pi(\frac{a}{2})^3=\frac{1}{6}\pi a^3$。

综上所述,正方体的外接球半径为 $R=\frac{a\sqrt{3}}{2}$,体积为
$V_{out}=\frac{27}{2}\pi a^3$;内切球半径为 $r=\frac{a}{2}$,体积为
$V_{in}=\frac{1}{6}\pi a^3$。

空间几何外接球和内切球含详解

空间几何外接球和内切球含详解

A.
B.
C.
D. ⺁
2.已知如图所示的三棱锥 D ABC 的四个顶点均在球 O 的球面上, ABC 和 DBC 所在平面相互垂直, AB 3 , AC 3 , BC CD BD 2 3 ,则球 O 的表面积为 ( )
A . 4
B .12
C .16
D . 36
3.三棱锥 P ABC 的底面是等腰三角形,C 120 ,侧面是等边三角形且与底面 ABC 垂直,AC 2 ,
ᒺ ,若三棱柱的所有顶点都在同一
考向三 棱锥的外接球
类型一:正棱锥型
【例 3-1】已知正四棱锥 P ABCD 的各顶点都在同一球面上,底面正方形的边长为 2 ,若该正四棱锥的
体积为 2,则此球的体积为 ( )
A. 124 3
B. 625 81
C. 500 81
D. 256 9
【套路总结】
【举一反三】
【举一反三】 1. 设直三棱柱 ABC-A1B1C1 的所有顶点都在一个球面上,且球的表面积是 40π,AB=AC=AA1,∠BAC=120°, 则此直三棱柱的高是________.
2.直三棱柱 홨᫏ 홨 ᫏ 中,已知 홨 홨᫏, 홨 ᒺ ,홨᫏ ᒺ ⺁, 球面上,则该球的表面积为__________.
B. 20
C. 12
D. 20 3
【套路总结】 侧棱垂直与底面---垂面型
【举一反三】 1.已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )
A. ⺁π
B. ᒺπ
C. π
D. ⺁π
2.已知三棱锥 S-ABC 中, SA 平面 ABC ,且 ACB 30 , AC 2AB 2 3.SA 1 .则该三棱锥
【举一反三】

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

正方体的外接球与内切球问题

正方体的外接球与内切球问题

正方体的外接球与内切球问题简介
本文讨论正方体的外接球与内切球问题。

外接球问题
正方体的外接球是指一个球,它能够刚好与正方体的每个顶点接触,并且球心在正方体外部。

解决正方体的外接球问题可以采用以下步骤:
1. 首先找到正方体的对角线长度,记为d。

2. 外接球的直径等于正方体的对角线长度,即2d。

3. 外接球的半径等于直径的一半,即d。

因此,正方体的外接球的半径等于对角线长度的一半。

内切球问题
正方体的内切球是指一个球,它能够刚好与正方体的每个面接触,并且球心在正方体内部。

解决正方体的内切球问题可以采用以下步骤:
1. 首先找到正方体的边长,记为a。

2. 内切球的直径等于正方体的边长,即a。

3. 内切球的半径等于直径的一半,即a/2。

因此,正方体的内切球的半径等于边长的一半。

总结
通过上述讨论,我们得出了正方体的外接球和内切球的半径计算方法。

这些结果可以在几何学和物理学中得到应用。

希望本文能够帮助您理解正方体的外接球与内切球问题。

---
以上为回答内容, 仅供参考。

正方体的内切球与外接球

正方体的内切球与外接球

D A B
C
8
8.沿边长为 1 的正方形 ABCD 的对角线 AC 折叠,使折叠后 两部分所在的平面互相垂直,则折叠后形成的空间四边形
ABCD 的内切球的半径为( ).
A . 2- B . - 1 C .1- D .1
2 2 2 6 6 2
【解析】设空间四边形 ABCD 的内切球的半径为 r,则
专题:与球有关的 内切与外接问题
1
切接问题
• 该类问题命题背景宽,常以棱柱、棱锥、 圆柱、圆锥与球的内切、外接形式考查,多 以选择、填空题的形式出现,试题较容易.
涉及球与棱柱、棱锥的切、接问题时,一般过球 心及多面体中的特殊点或线作截面,把空间问题化归为平面问 题,再利用平面几何知识寻找几何体中元素间的关系.
练习:一个四面体的所有的棱都为 同一球面上,则此球的表面积(
2 ,四个顶点在 )
A 3л
B 4л
C 3 3
D1 A1
D 6л
C1 B1
解法2 构造棱长为1的正方 体,如图。则A1、C1、B、D是 棱长为 2 的正四面体的顶点。 正方体的外接球也是正四面体 的外接球,此时球的直径 为 3 , 3 2 S球 =4 ( ) 3 , 选A 2
【突破训练 3】 设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45° 角的平面截球 O 的表面得到圆 C,若圆 C 7π 的面积等于 4 ,则球 O 的表面积等于________.
解析 如图,设 O′为截面圆的圆心,设球的半径为 R,则 OM= R 2 2 ,又∠O′MO=45°,∴OO′= R.在 Rt△O′OB 中,OB = 2 4
2 7 R O′O2+O′B2,∴R2= + ,∴R2=2,∴S 球=4πR2=8π. 8 4

第08讲 拓展一:空间几何体内接球与外接球问题 (讲)(解析版)-2024年高考数学一轮复习讲练测

第08讲 拓展一:空间几何体内接球与外接球问题 (讲)(解析版)-2024年高考数学一轮复习讲练测

第08讲拓展一:空间几何体内接球与外接球问题(精讲)目录第一部分:典型例题剖析高频考点一:空间几何体的内切球问题高频考点二:空间几何体的外接球问题模型1:长(正)方体模型——公式法模型2:墙角型,对棱相等型——补形法(补长方体或正方体)模型3:单面定球心法(定+算)模型4:双面定球心法(两次单面定球心)第一部分:典型例题剖析高频考点一:空间几何体的内切球问题建立模型球的内切问题(等体积法)例如:在四棱锥P ABCD -中,内切球为球O ,求球半径r .方法如下:P ABCD O ABCD O PBC O PCD O PAD O PAB V V V V V V ------=++++即:1111133333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r -=⋅+⋅+⋅+⋅+⋅,可求出r .典型例题例题1.(2022·江苏·苏州外国语学校高一期末)在三棱锥S ABC -中,SA ⊥平面,90ABC ABC ∠= ,且3,4,5SA AB AC ===,若球O 在三棱锥S ABC -的内部且与四个面都相切(称球O 为三棱锥S ABC -的内切球),则球O 的表面积为()A .169πB .49πC .3227πD .1681π【答案】A解:因为SA ⊥平面,90ABC ABC ∠= ,AB Ì平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以SA AB ⊥,SA AC ⊥,SA BC ⊥,又,BC AB SA AB A ⊥= ,所以BC ⊥平面SAB ,所以BC SB ⊥,所以,,SAB ABC SAC SBC ,均为直角三角形,设球O 的半径为r ,则()1+++3S ABC SAB CAB SAC SBC V S S S S r -=⋅ ,而11334632S ABC V -=⨯⨯⨯⨯=,11156,35222SAB CAB SAC SBC S S SA AB S S ==⋅===⨯⨯= ,所以115156+6++6322r ⎛⎫⋅= ⎪⎝⎭,解得23r =,所以球O 的表面积为221644239r S πππ⎛==⨯=⎫ ⎪⎝⎭,故选:A.例题2.(2022·全国·高一)某学校开展手工艺品展示活动,小明同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为___________,三棱柱的顶点到球的表面的最短距离为___________.【答案】12π解:依题意如图过侧棱的中点作正三棱柱的截面,则球心为MNG 的中心,因为6MN =,所以MNG 内切圆的半径13r OH MH ====即内切球的半径R =,所以内切球的表面积2412S R ππ==,又正三棱柱的高12AA R ==,所以23OM OH ==AO =所以A 到球面上的点的距离最小值为AO R -=;故答案为:12π例题3.(2022·全国·高一专题练习)如图,直三棱柱111ABC A B C -有外接圆柱1OO ,点O ,1O 分别在棱AB 和11A B 上,4AB =.(1)若AC BC =,且三棱柱111ABC A B C -有一个内切球,求三棱柱111ABC A B C -的体积;【答案】(1))161(1)O ,1O 是圆柱的上下底面圆心,而且点O ,1O 分别在棱AB 和11A B 上,由此可知ABC 是AB 为斜边的直角三角形.4,AB AC BC =∴== 11422ABC S AC BC =⋅=⨯= 设ABC 的内切圆的半径为r ,则由等面积法,可知:()1122AB BC AC r AC BC ++⋅=⋅,)21r ∴==,故三棱柱111ABC A B C -的内切球的半径也是)21,故三棱柱的高)241h r ==,进而三棱柱111ABC A B C -的体积))441161ABC V S h =⋅=⨯= .题型归类练1.(2022·全国·高一)已知点O 到直三棱柱111ABC A B C -各面的距离都相等,球O 是直三棱柱111ABC A B C -的内切球,若球O 的表面积为16π,ABC 的周长为4,则三棱锥1A ABC-的体积为()A .43B .163C D .3【答案】B解:设直三棱柱111ABC A B C -的高为h ,AB =c ,BC =a ,AC =b ,内切球O 的半径为r ,则h =2r ,由题意可知球O 的表面积为2164r ππ=,解得r =2,∴h =4,又△ABC 的周长为4,即a +b +c =4,∴连接OA ,OB ,OC ,111,,OA OB OC 可将直三棱柱111ABC A B C -分成5个棱锥,即三个以原来三棱柱侧面为底面,内切球球心为顶点的四棱锥,两个以原来三棱柱底面为底面,内切球球心为顶点的的三棱锥,∴由体积相等可得直三棱柱111ABC A B C -的体积为ABC S h =13ahr +13bhr +13chr +2×13ABC S r ,即4ABC S =13(a +b +c )hr +43ABC S ,∴ABC S =4,∴三棱锥1A ABC -的体积为13ABC S h =13×4×4=163.故选:B .2.(2022·湖南·高一期末)已知圆锥的底面半径为3,其侧面展开图为一个半圆,则该圆锥的内切球(球与圆锥的底面和侧面均相切)的表面积为______.【答案】4π有题意可知,23PA ππ⋅=,所以23PA =所以,圆锥的轴截面是边长为23的正三角形,圆锥的内切球的半径等于该正三角形的内切圆的半径,所以tan 3tan 301R OD AD OAD ==⋅∠=⨯︒=,所以该圆锥的内切球的表面积为4π.故答案为:4π3.(2022·全国·高三专题练习(文))若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,则球O 的半径与正四棱锥P ABCD -内切球的半径之比为__________.31+##13+设外接球半径为R ,由题意可知,OA =OB =OC =OD =OP =R ,设四棱锥P -ABCD 的内切球半径为r ,设正方形ABCD 的边长为a ,因为底面ABCD 过球心O 2222a a R a +=⇒,2222116()2242R a R R R +=+⋅=,设该正四棱锥的表面积为S ,由等体积法可知:221111(24)(2),1)3323V Sr R R R r R R R r==+⨯=+,14.(2022·广西玉林·模拟预测(理))若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,球的半径为4,则该四棱锥内切球的体积为_________.【答案】645)3π因为正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,球的半径为4,所以4OA OB OC OD OP =====,所以AB BC CD DA PA PB PC PD ========,所以正四棱锥P ABCD -的表面积为((224324S =⨯⨯+=+,正四棱锥P ABCD -的体积为(21128433V =⨯⨯=设正四棱锥P ABCD -内切球的半径为r ,则1112832)333V Sr r ==+=,解得1)r =,所以该四棱锥内切球的体积为33441)33r ππ⎡⎤=⨯-⎣⎦高频考点二:空间几何体的外接球问题模型1:长(正)方体模型——公式法建立模型正方体或长方体的外接球的球心为其体对角线的中点(1)设长方体一个顶点出发的三条边长分别为a ,b ,c ,则外接球半径2r =;(2)设正方体边长为a ,则外接球半径2r a =;典型例题例题1.(2022·贵州黔西·高二期末(理))若一个长方体的长、宽,高分别为4,2,3,则这个长方体外接球的表面积为______________.【答案】29π由题知,长方体的体对角线即为外接球的直径,所以2222(2)42329R =++=,所以2294R =所以外接球的表面积2429S R ππ==.故答案为:29π例题2.(2022·新疆·乌苏市第一中学高一期中)正方体1111ABCD A B C D -的棱长为2,则此正方体外接球的表面积是______.【答案】12π因为正方体的体对角线长度等于长方体外接球的直径,又正方体1111ABCD A B C D -的棱长为2,所以正方体外接球的直径为则该正方体外接球的表面积是2412ππ==S r .故答案为:12π.题型归类练1.(2022·全国·高一期末)正方体的外接球与内切球的表面积之比是()A .13B .3C.D【答案】B设正方体的棱长为a,则其外接球的半径为2a ,内切球的半径为12a ,所以正方体的外接球与内切球的表面积之比是2242142a a ππ⎛⎫⋅ ⎪⎝⎭⎛⎫⋅ ⎪⎝⎭3=.故选:B2.(2021·河北·深州长江中学高三期中)已知某正方体外接球的表面积为3π,则该正方体的棱长为______.【答案】1设正方体的棱长为a ,外接球的半径为R ,2R =,由243R ππ=,可得R22=,解得1a =.故答案为:1.3.(2021·福建·莆田锦江中学高一期中)已知正方体的棱长为2,则其外接球的表面积为______.【答案】12π解:设正方体外接球的半径为R ,则由题意可得()2222222212R =++=,即2412R =,所以外接球的表面积为2412R ππ=,故答案为:12π模型2:墙角型,对棱相等型——补形法(补长方体或正方体)建立模型①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CDAB =BC AD =,BD AC =)典型例题例题1.(2022·全国·高一)若三棱锥P ABC -的三条侧棱PA ,PB ,PC 两两互相垂直,且PA PB PC ===)A .6πB .12πC .18πD .24π【答案】A侧棱PA ,PB ,PC 两两互相垂直,且PA PB PC ===PA ,PB ,PC 作为正方体的棱长,如图:设外接球的半径为R ,则正方体的对角线的长2R ==所以R =,所以外接球的表面积为246S R ππ==.故选:A例题2.(2022·江苏·南京师大附中高一期末)在三棱锥P ABC -中,5PA BC ==,PB AC ==PC AB ==则该三棱锥外接球的表面积为_________;外接球体积为_________.【答案】26π3由题意,该三棱锥的对棱相等,可知该三棱锥可置于一个长方体中,如图所示:记该长方体的棱长为,,a b c ,则222222101725a b a c b c ⎧+=⎪+=⎨⎪+=⎩,即22226a b c ++=,所以r =2344263S r V r πππ====,故答案为:26π题型归类练1.(2022·辽宁·本溪高中高一阶段练习)已知正三棱锥S -ABC 的三条侧棱两两垂直,且侧)A .πB .3πC .6πD .9π【答案】C所以外接球的直径2R==,所以246R =,外接球的表面积246R ππ=,故选:C2.(2022·安徽·高一阶段练习)鳖臑是我国古代对四个面均为直角三角形的三棱锥的称呼.如图,三棱锥A BCD -是一鳖臑,其中AB BC ⊥,AB BD ⊥,BC CD ⊥,AC CD ⊥,且3BC DC ==,4AB =.则三棱锥A BCD -外接球的表面积是()A .25πB .34πC .100πD .3【答案】B易得三棱锥A BCD -外接球的直径为AD ,则AD =A BCD -外接球的半径2R =,所以2434S ππ=⨯=⎭⎝,故选:B.3.(2022·河北·沧县中学高一期中)三棱锥P ABC -中,已知,,PA PB PC 两两垂直,且1,2PA PB PC ===,则三棱锥P ABC -的外接球的表面积为___________.【答案】9π以线段,,PA PB PC 为相邻的三条棱为长方体,连接AB ,BC ,AC ,即为三棱锥P ABC -,∵如图所示,长方体的外接球与三棱锥的外接球相同,∴则其外接球直径为长方体对角线的长,设外接球的半径为R ,则2222222(2)1229R PA PB PC =++=++=,解得32R =,则294π4π9π4S R ==⨯=.故答案为:9π.4.(2022·贵州·清华中学高三阶段练习(理))四棱锥ABCD 中,2,3,10======AB CD AD BC AC BD A ,B ,C ,D 的外接球的表面积是__________.【答案】13π解:因为四棱锥ABCD 的对棱相等,所以将四棱锥ABCD 补成如图所示的长方体,则经过A ,B ,C ,D 的外接球即为长方体的外接球,所以球的直径为长方体的对角线的长,设长方体的长、宽、高分别为,,a b c ,因为2,23,10======AB CD AD BC AC BD ,所以22222241012a b a c b c ⎧+=⎪+=⎨⎪+=⎩,解得133a b c =⎧⎪=⎨⎪=⎩所以球的半径22211322r a b c =++,所以球的表面积为221344132r πππ⎛⎫=⨯= ⎪ ⎪⎝⎭,故答案为:13π模型3:单面定球心法(定+算)建立模型单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P ABC -中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin ar A=);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .典型例题例题1.(2022·山西省长治市第二中学校高一期末)在四面体ABCD 中,,ABD BCD 都是边长为2的等边三角形,且平面ABD ⊥平面BCD ,则该四面体外接球的表面积为_________.【答案】203π依题意作上图,取BD 的中点P ,连接AP ,CP ,取ABD △的中心E ,BCD △的中心G ,分别作平面ABD 和平面BCD 的垂线,得交点H ,则H 点就是四面体ABCD 外接球的球心,CH 就是球的半径r ,333,33AP CP HG PE CG =====,222253r CH CG GH ==+=,外接球的面积为22043S r ππ==;故答案为:203π.例题2.(2023·山西大同·高三阶段练习)球内接直三棱柱1111,1,120,2ABC A B C AB AC BAC AA -===︒∠=,则球表面积为___________.【答案】8π设三角形ABC 和三角形111A B C 的外心分别为D ,E .可知其外接球的球心O 是线段DE 的中点,连结OC ,CD ,设外接球的半径为R ,三角形ABC 的外接圆的半径r ,1,120,AB AC BAC =∠=︒=可得3BC =,由正弦定理得,21sin123r r ︒=∴=,而在三角形OCD 中,可知222||||||CO OD CD =+,即2212R r =+=,因此三棱柱外接球的表面积为248S R ππ==.故答案为:8π例题3.(2022·广西贺州·高一期末)已知ABC ∆的三个顶点都在球O 上,AC BC ⊥,2AC BC ==,且三棱锥273O ABC V -=,则球O 的体积为()A .82π3B .32π3C .287π3D .36π【答案】D△ABC 中,AC BC ⊥,2AC BC ==,则22AB =取AB 中点H ,连接OH ,则点H 为△ABC 所在小圆圆心,OH ⊥平面ABC则271122332O ABC V OH -=⨯⨯⨯⋅,解之得7OH 则球O 的半径()()22723OA +则球O 的体积为34π3=36π3⋅故选:D例题4.(2022·河南开封·高二期末(理))已知球O 为三棱锥D ABC -的外接球,球O 的体积为256π3,正三角形ABC 的外接圆半径为23D ABC -的体积的最大值为______.【答案】183设ABC 外接圆的圆心为1O ,因为正三角形ABC 的外接圆半径为23123O B =由正弦定理243sin 60ACR ==︒6AC =,所以166sin 60932ABC S =⨯⨯⨯︒= ,要使三棱锥D ABC -的体积最大,则1O D ⊥平面ABC ,且球心O 在线段1O D 上,因为球O 的体积为34π256π33R =,所以球O 的半径为4R =.在1Rt OO B 中,由勾股定理得221116122OO R O B =--,所以三棱锥D ABC -体积的最大值()()111932418333ABC V S OO R =⋅+=⨯+=△故答案为:183题型归类练1.(2022·河北·衡水市第十三中学高一阶段练习)在正四棱锥P ABCD -中,4AB =,6PA =,则平面PAB 截四棱锥P ABCD -外接球的截面面积是()A 655πB .365πC .12πD .36π【答案】B如图,作PO '⊥平面ABCD ,垂足为O ',则O '是正方形ABCD 外接圆的圆心,从而正四棱锥P ABCD -外接球的球心O 在PO '上,取棱AB 的中点E ,连接,,,O D O E OD PE '',作OH PE ⊥,垂足为H .由题中数据可得2,2,25,4O D O E PE O P '''====,设四棱锥P ABCD -外接球的半径为R ,则()22222R O D O O OP O P O O =+='-'='',即()22284R O O O O =+='-',解得3R =.由题意易证OPH EPO ' ∽,则PH OPO P PE=',故655PH =故所求截面圆的面积是236ππ5PH ⋅=.故选:B2.(2022·安徽·巢湖市第一中学模拟预测(文))已知三棱锥S ABC -中,平面SAC ⊥平面ABC ,且AB AC ⊥,30SCA ∠=︒,若4AB SA ==,则三棱锥S ABC -外接球的表面积为()A .64πB .128πC .40πD .80π【答案】D由题意得,BA ⊥平面SAC ,将三棱锥补成三棱柱11SAC S BC -,如图,则三棱柱11SAC S BC -的外接球即为所求.设外接球的球心为O ,则SAC 的外心为1O ,则1122OO AB ==,又1142sin SAO A SCA=⨯=∠,则外接球的半径22115R OO O A =+表面积2480S R ππ==,故选:D3.(2022·重庆市万州第二高级中学高一期中)在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且3a =,π3A =.又点A ,B ,C 都在球O 的球面上,且点O 到平面ABC 5则球O 的体积为()A .642π3B 635π3C .643π3D 636π3【答案】AABC的外接圆半径2sin ar A=则球O 的半径R ==则球O 的体积为(3344πR π33V ===3故选:A4.(2022·河南·汝州市第一高级中学模拟预测(文))已知点,,,A B C D 在同一个球的球面上,1AB =,BC=,2AC =,若四面体ABCD ,则这个球的表面积是()A .14425πB .24825πC .57625πD .67625π【答案】D由1,2AB BC AC ==,可得222AB BCAC +=,所以ABC为直角三角形,其面积为112S =,所以直角ABC 所在截面小圆的半径112r AC ==,设点D到平面ABC 的距离为h ,因为四面体ABCD所以1133D ABC ABC S h V -=⨯==5h =,设四面体ABCD 的外接球半径为R ,球心O 到截面的距离为d ,当D 到底面ABC距离最远时,即h R d =+时,四面体ABCD 的体积取得最大值,因为d ==5R =,解得135R =,所以球的表面积为2136764525S ππ⎛⎫== ⎪⎝⎭.故选:D.5.(2022·全国·高三专题练习)已知球O 是正三棱锥A BCD -的外接球,3BC =,23AB =点E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是___________.【答案】5,44ππ⎡⎤⎢⎥⎣⎦解:如图,设BDC 的中心为1O ,球O 的半径为R ,连接1O D ,OD ,1O E ,OE ,则123sin 6033O D =︒⨯=22111233AO AD DO --=,在Rt 1OO D 中,223(3)R R =+-,解得2R =,6BD BE = , 2.5DE ∴=,在1DEO 中,12557323cos30422O E =+-⨯⨯⨯︒=,2211711142OE O E OO ∴+=+,过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,221152()22-=54π,当截面过球心时,截面面积最大,最大面积为4π.∴所得截面圆面积的取值范围是5,44ππ⎡⎤⎢⎥⎣⎦,故答案为:5,44ππ⎡⎤⎢⎥⎣⎦.模型4:双面定球心法(两次单面定球心)建立模型如图:在三棱锥P ABC -中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ②选定面PAB ∆,定PAB ∆外接圆圆心2O ③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .典型例题例题1.(2022·全国·高三专题练习)已知点A 、B 、C 、D 都在球O 的球面上,AB AC =,BCD ∆是边长为1的等边三角形,AD 与平面BCD 所成角的正弦值为63,若2AD =,且点D 在平面BCD 上的投影与D 在BC 异侧,则球O 的表面积为()A .πB .4πC .8πD .16π【答案】B由题设,若E 是BC 的中点,则O '是△BCD 的中心,连接DE ,如下图示:由题设知:DE BC ⊥,AE BC ⊥,又AE DE E = ,则BC ⊥面AED ,而BC ⊂面BCD ,即面BCD ⊥面AED ,过A 作AF ⊥面BCD ,则F 必在直线DE 上,易知:ADF ∠为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的正弦值为,2AD =,可得DF =.过O '作OO DE '⊥交AD 于O ,易知:OD OB OC ==,而O D '=12O D DF '=,又//AF OO ',故O 为AD 的中点,OD OA =,∴OD OB OC OA ===,即O 是球心,故球O 的半径为1,∴球O 的表面积为4π.故选:B例题2.(2022·全国·高三专题练习(理))已知平面四边形ABCD 中,4AB AD BD =====,现沿BD 进行翻折,使得A 到达A '的位置,连接A C ',此时二面角A BD C '--为150°,则四面体A BCD '外接球的半径为()A B C D 【答案】C解:取BD 的中点E ,连接A E ',CE ,因为4AB AD BD =====即BC CD ==,所以CE BD ⊥,A E BD '⊥,A EC '∠即为二面角A BD C '--的平面角,且90BCD ∠=︒,所以BCD △外接圆的圆心为E ,设A BD 'V 外接圆的圆心为1O ,则1O E 1O ,E 分别作平面A BD ',平面BDC 的垂线,交于点O ,则O 即为四面体A BCD '外接球的球心.因为二面角A BD C '--的平面角为150︒,即150A EC '∠=︒,则160∠=︒OEO .在1Rt OO E △中,3cos603OE ==︒,连接OB ,则OB 即为外接球的半径R ,则2222283R OB OE BE ==+=,即3R =,故选:C .题型归类练1.(2022·湖南·邵阳市第二中学高一期末)一边长为4的正方形ABCD ,M 为AB 的中点,将AMD ,BMC △分别沿MD ,MC 折起,使MA ,MB 重合,得到一个四面体,则该四面体外接球的表面积为().A .763πB .48πC .81πD .9【答案】A 如图所示,由图可知在四面体A -CDM 中,由正方形,ABCD M 为AB 的中点,可得MA ⊥AD ,MA ⊥AC ,AC ∩AD =A ,故MA ⊥平面ACD .将图形旋转得到如图所示的三棱锥M -ACD ,其中△ACD 为等边三角形,过△ACD 的中心O1作平面ACD 的垂线l1,过线段MC 的中点O2作平面MAC 的垂线l2,由球内截面的性质可得直线l1与l2相交,记12l l O =∩,则O 即为三棱锥M 一ACD 外接球的球心.设外接球的半径为R ,连接OC ,O1C ,可得111O C =.在Rt △OO1C 中,222211193OC OO O C R =+==,故该外接球的表面积219764433S R πππ==⨯=.故选:A.2.(2022·广东梅州·高一阶段练习)如图,在三棱锥P ABC -,PAC △是以AC 为斜边的等腰直角三角形,且CB =AB AC ==,二面角P AC B --的大小为120︒,则三棱锥P ABC -的外接球表面积为()A .3B .10πC .9πD .(4π+【答案】B根据题意,作出图形,如图所示,因为PAC △是以AC 为斜边的等腰直角三角形,所以PAC △的外心在AC 中点,设为2O ,设ABC 的外心为1O ,BC 中点为E ,11AO r =,因为AB AC ==,所以1O 必在AE 连线上,则123sin AB AB r AE C AC===,即132r =,因为两平面交线为AC ,1O 为平面ABC 所在圆面中心,所以12O O AC ⊥,()221212O O r AO =-=又因为二面角P AC B --的大小为120︒,2PO AC ⊥,所以2121120,30PO O OO O ∠=︒∠=︒,所以2121OO O O ==,锥体P ABC -外接球半径()()2222222512R AO AO OO ==+=+=⎝⎭,则三棱锥P ABC -的外接球表面积为2410S R ππ==,故选:B。

微专题17 球的切、接、截问题

微专题17 球的切、接、截问题

微专题17球的切、接、截问题1.球的切接问题(1)长方体的外接球①球心:体对角线的交点;②半径:r=a2+b2+c22(a,b,c为长方体的长、宽、高).(2)正方体的外接球、内切球及与各条棱相切的球(a为正方体的棱长)①外接球:球心是正方体中心,半径r=32a,直径等于体对角线长;②内切球:球心是正方体中心,半径r=a2,直径等于正方体棱长;③与各条棱都相切的球:球心是正方体中心,半径r=22a,直径等于面对角线长.(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分,a为正四面体的棱长)①外接球:球心是正四面体的中心,半径r=64a;②内切球:球心是正四面体的中心,半径r=6 12a.2.平面截球平面截球面得圆.截面圆的圆心与球心的连线与截面圆圆面垂直且R2=d2+r2(R为球半径,r为截面圆半径,d为球心到截面圆的距离).类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:例1 已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.86πB.46πC.26πD.6π答案D解析因为点E,F分别为P A,AB的中点,所以EF∥PB.因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=62,所以球O的体积V=43πR 3=43π⎝⎛⎭⎪⎫623=6π,故选D.考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R)2=a2+b2+c2(长方体的长、宽高分别为a,b,c),即R2=18(x2+y2+z2),如图.例2 在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为________.答案29π2解析构造长方体,三个长度为三对面的对角线长,设长方体的长宽高分别为a,b,c,则a2+b2=9,b2+c2=4,c2+a2=16,所以2(a2+b2+c2)=9+4+16=29,即a2+b2+c2=4R2=292,则外接球的表面积为S=4πR2=29π2.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O的位置是△ABC的外心O1与△A1B1C1的外心O2的连线的中点,算出小圆O1的半径AO1=r,OO1=h2,所以R2=r2+h24.例3 在三棱柱ABC-A1B1C1中,AB=BC=AC,侧棱AA1⊥底面ABC,若该三棱柱的所有顶点都在同一个球O的表面上,且球O的表面积的最小值为4π,则该三棱柱的侧面积为()A.6 3B.3 3C.3 2D.3答案B解析如图,设三棱柱上、下底面中心分别为O1,O2,则O1O2的中点为O,设球O的半径为R,则OA=R,设AB=BC=AC=a,AA1=h,则OO 2=12h ,O 2A =23×32AB =33a .在Rt △OO 2A 中,R 2=OA 2=OO 22+O 2A 2=14h 2+13a 2≥2×12h ×33a =33ah , 当且仅当h =233a 时,等号成立, 所以S 球=4πR 2≥4π×33ah , 所以43π3ah =4π, 所以ah =3,所以该三棱柱的侧面积为3ah =3 3. 考向4 垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O 1的半径CO 1=r ,OO 1=h2,则R =r 2+h 24.例4 (2022·广州模拟)已知四棱锥S -ABCD 的所有顶点都在球O 的球面上,SD ⊥平面ABCD ,底面ABCD 是等腰梯形,AB ∥CD 且满足AB =2AD =2DC =2,且∠DAB =π3,SC =2,则球O 的表面积是( ) A.5π B.4π C.3π D.2π答案 A解析 依题意,得AB =2AD =2,∠DAB =π3,由余弦定理可得BD =3,则AD 2+DB 2=AB 2,则∠ADB =π2. 又四边形ABCD 是等腰梯形,故四边形ABCD 的外接圆直径为AB ,半径r =AB2=1,设AB 的中点为O 1,球的半径为R ,因为SD ⊥平面ABCD , 所以SD =SC 2-CD 2=1,R 2=12+⎝ ⎛⎭⎪⎫SD 22=54,则S =4πR 2=5π. 考向5 切瓜模型切瓜模型是有一侧面垂直底面的棱锥模型,常见的是两个互相垂直的面都是特殊三角形,在三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,设三棱锥的高为h ,外接球的半径为R ,球心为O ,△BCD 的外心为O 1,O 1到BC 的距离为d ,O 与O 1的距离为m ,△BCD 和△ABC 外接圆的半径分别为r 1,r 2,则⎩⎪⎨⎪⎧R 2=r 21+m 2,R 2=d 2+(h -m )2,解得R ,可得R =r 21+r 22-l 24(l 为两个面的交线段长).例5 (2022·济宁模拟)在边长为6的菱形ABCD 中,∠A =π3,现将△ABD 沿BD 折起,当三棱锥A-BCD的体积最大时,三棱锥A-BCD的外接球的表面积为________.答案60π解析边长为6的菱形ABCD,在折叠的过程中,当平面ABD⊥平面BCD时,三棱锥的体积最大;由于AB=AD=CD=BC=6,∠C=∠A=π3.所以△ABD和△CBD均为正三角形,设△ABD和△CBD的外接圆半径为r,则2r=BDsin C,所以r=2 3.△ABD和△CBD的交线段为BD,且BD=6.所以三棱锥A-BCD的外接球的半径R=(23)2+(23)2-624=15.故S球=4·π(15)2=60π.训练1 (1)(2022·青岛一模)设三棱柱的侧棱垂直于底面,所有棱的长都为1,顶点都在一个球面上,则该球的表面积为()A.5πB.πC.113π D.73π(2)在三棱锥P-ABC中,平面P AB⊥平面ABC,平面P AC⊥平面ABC,且P A=4,底面△ABC的外接圆的半径为3,则三棱锥P-ABC的外接球的表面积为________.答案(1)D(2)52π解析(1)由三棱柱所有棱的长a=1,可知底面为正三角形,底面三角形的外接圆直径2r=1sin 60°=233,所以r=33,设外接球的半径为R ,则有R 2=r 2+⎝ ⎛⎭⎪⎫a 22=13+14=712,所以该球的表面积S =4πR 2=73π,故选D.(2)因为平面P AB ⊥平面ABC ,平面P AC ⊥平面ABC , 所以P A ⊥平面ABC .设三棱锥P -ABC 的外接球的半径为R ,结合底面△ABC 的外接圆的半径r =3, 可得R 2=⎝ ⎛⎭⎪⎫P A 22+r 2=22+33=13,所以三棱锥P -ABC 的外接球的表面积为S 表=4πR 2=52π. 类型二 内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r ,建立等式V P -ABC =V O -ABC +V O -P AB +V O -P AC + V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △P AB ·r +13S △P AC ·r +13S PBC ·r =13(S △ABC +S △P AB +S △P AC +S △PBC )r ; 第三步:解出r =3V P -ABCS △ABC +S △P AB +S △P AC +S △PBC.例6 (1)(2022·成都石室中学三诊)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,P A ⊥平面ABC ,P A =BC =4,AB =3,AB ⊥BC ,若三棱锥P -ABC 有一个内切球O ,则球O 的体积为( ) A.9π2 B.9π4 C.9π16D.9π(2)在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =6,BC =8,AC =10,则该三棱柱内能放置的最大球的表面积是( )A.16πB.24πC.36πD.64π答案 (1)C (2)A解析 (1)设球O 的半径为r , 则三棱锥P -ABC 的体积V =13×12×3×4×4=13×(12×3×4+12×4×3+12×5×4+12×4×5)×r , 解得r =34,所以球O 的体积V =43πr 3=9π16,故选C.(2)由题意,球的半径为底面三角形内切圆的半径r ,因为底面三角形的边长分别为6,8,10,所以底面三角形为直角三角形, r =AB +BC -AC 2=6+8-102=2.又因为AA 1=6,2r =4<6,所以该三棱柱内能放置的最大球半径为2,此时S 表面积=4πr 2=4π×22=16π. 训练2 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案 23π解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点, 则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.类型三 球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).例7 (2022·杭州质检)在正三棱锥P -ABC 中,Q 为BC 中点,P A =2,AB =2,过点Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤π,3π2解析 因为正三棱锥P -ABC 中,PB =PC =P A =2,AC =BC =AB =2,所以PB 2+P A 2=AB 2,即PB ⊥P A , 同理PB ⊥PC ,PC ⊥P A ,因此正三棱锥P -ABC 可看作正方体的一角,如图.记正方体的体对角线的中点为O ,由正方体结构特征可得,点O 即是正方体的外接球球心,所以点O 也是正三棱锥P -ABC 外接球的球心,记外接球半径为R , 则R =122+2+2=62,因为球的最大截面圆为过球心的圆,所以过点Q 的平面截三棱锥P -ABC 的外接球所得截面的面积最大为S max =πR 2=3π2.又Q 为BC 中点,由正方体结构特征可得OQ =12P A =22;由球的结构特征可知,当OQ 垂直于过点Q 的截面时,截面圆半径最小为 r =R 2-OQ 2=1,所以S min =πr 2=π.因此,过Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为⎣⎢⎡⎦⎥⎤π,3π2.训练3 (1)设球O 是棱长为4的正方体的外接球,过该正方体棱的中点作球O 的截面,则最小截面的面积为( ) A.3π B.4π C.5πD.6π(2)(2022·武汉质检)已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为________. 答案 (1)B (2)2π3解析 (1)当球O 到截面圆心连线与截面圆垂直时,截面圆的面积最小, 由题意,正方体棱的中点与O 的距离为22,球的半径为23, ∴最小截面圆的半径为12-8=2,∴最小截面面积为π·22=4π.(2)∵正方体ABCD -A 1B 1C 1D 1的棱长为2,球O 与该正方体的各个面相切,则球O 的半径为1,设E ,F ,G 分别为球O 与平面ABCD 、平面BB 1C 1C 、平面AA 1B 1B 的切点,则等边三角形EFG 为平面ACB 1截此球所得的截面圆的内接三角形, 由已知可得EF =EG =GF =2, ∴平面ACB 1截此球所得的截面圆的半径 r =22sin 60°=63,∴截面的面积为π×⎝ ⎛⎭⎪⎫632=2π3.一、基本技能练1.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4 C.π2 D.π4答案 B解析 如图画出圆柱的轴截面ABCD ,O 为球心.球的半径R =OA =1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4. 2.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π答案 C解析由题意知球的直径2R=(23)2+(23)2+(23)2=6,∴R=3,∴S球=4πR2=36π.故选C.3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.33πD.6π答案A解析构造棱长为1的正方体,该四面体的外接球也是棱长为1的正方体的外接球,所以外接球半径R=32,所以外接球表面积为S=4πR2=3π.4.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172 B.210C.132 D.310答案C解析将直三棱柱补为长方体ABEC-A1B1E1C1,则球O是长方体ABEC-A1B1E1C1的外接球.∴体对角线BC1的长为球O的直径.因此2R=32+42+122=13,则R=132.5.(2022·南阳二模)已知边长为2的等边三角形ABC,D为BC的中点,以AD为折痕进行折叠,使折后的∠BDC=π2,则过A,B,C,D四点的球的表面积为()A.3πB.4πC.5πD.6π答案 C解析 折后的几何体构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造长方体,其对角线即为球的直径,三条棱长分别为1,1,3,所以2R =1+1+3=5,球的表面积S =4π⎝ ⎛⎭⎪⎫522=5π.6.(2022·青岛模拟)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O 的表面积为( )A.2πB.4πC.6πD.8π答案 B解析 根据图形可知,该十四面体是由一个正方体切去八个角得到的, 如图所示,十四面体的外接球球心与正方体的外接球球心相同,建立空间直角坐标系,∵该十四面体的棱长为1,故正方体的棱长为2, ∴该正方体的外接球球心的坐标为O ⎝ ⎛⎭⎪⎫22,22,22,设十四面体上一顶点为D ,则D ⎝ ⎛⎭⎪⎫2,22,0,所以十四面体的外接球半径 R =OD =⎝⎛⎭⎪⎫2-222+⎝ ⎛⎭⎪⎫22-222+⎝ ⎛⎭⎪⎫0-222=1,故外接球的表面积为S =4πR 2=4π.故选B.7.四面体ABCD 的四个顶点都在球O 上且AB =AC =BC =BD =CD =4,AD =26,则球O 的表面积为( ) A.70π3 B.80π3 C.30π D.40π答案 B解析 如图,取BC 的中点M ,连接AM ,DM ,由题意可知,△ABC 和△BCD 都是边长为4的等边三角形. ∵M 为BC 的中点,∴AM ⊥BC ,且AM =DM =23, 又∵AD =26,∴AM 2+DM 2=AD 2, ∴AM ⊥DM ,∵BC ∩DM =M ,BC ,DM ⊂平面BCD , ∴AM ⊥平面BCD ,∵AM ⊂平面ABC ,∴平面ABC ⊥平面BCD , △ABC 与△BCD 外接圆半径r =23DM =433, 又△ABC 与△BCD 的交线段BC =4. 所以四面体外接球半径R =⎝ ⎛⎭⎪⎫4332+⎝ ⎛⎭⎪⎫4332-424=2153, 四面体ABCD 的外接球的表面积为4π×R 2=803π.8.已知三棱锥P -ABC 的棱AP ,AB ,AC 两两垂直,且长度都为3,以顶点P 为球心,2为半径作一个球,则球面与三棱锥的表面相交所得到的四段弧长之和等于( ) A.2π3 B.5π6 C.π D.3π2答案 D解析 如图,∠APC =π4,AP =3,AN =1,∠APN =π6,∠NPM =π12,MN ︵=π12×2=π6,同理GH ︵=π6,HN ︵=π2,GM ︵=2π3, 故四段弧长之和为π6+π6+π2+2π3=3π2.9.(多选)(2022·石家庄调研)已知一个正方体的外接球和内切球上各有一个动点M 和N ,若线段MN 长的最小值为3-1,则( ) A.该正方体的外接球的表面积为12π B.该正方体的内切球的体积为π3 C.该正方体的棱长为1D.线段MN 长的最大值为3+1 答案 AD解析设该正方体的棱长为a,则其外接球的半径R=32a,内切球的半径R′=a2,该正方体的外接球与内切球上各有一个动点M,N,由于两球球心相同,可得MN的最小值为3a2-a2=3-1,解得a=2,故C错误;所以外接球的半径R=3,表面积为4π×3=12π,故A正确;内切球的半径R′=1,体积为43π,故B错误;MN的最大值为R+R′=3+1,故D正确.故选AD.10.(多选)设圆锥的顶点为A,BC为圆锥底面圆O的直径,点P为圆O上的一点(异于B,C),若BC=43,三棱锥A-PBC的外接球表面积为64π,则圆锥的体积为()A.4πB.8πC.16πD.24π答案BD解析如图,设圆锥AO的外接球球心为M,半径为r,则M在直线AO上,4πr2=64π,解得r=4.由勾股定理得BM2=OM2+OB2,即42=(23)2+OM2,可得OM=2,即OM=|AO-r|=|AO-4|=2,解得AO=6或AO=2.当AO=6时,圆锥AO的体积为V=13π×(23)2×6=24π;当AO=2时,圆锥AO的体积为V=13π×(23)2×2=8π.故选BD.11.在三棱锥A-BCD中,△BCD和△ABD均是边长为1的等边三角形,AC=2,则该三棱锥外接球的表面积为________.答案2π解析取AC的中点O,连接OB,OD,在△ABC中,AB=BC=1,AC=2,所以∠ABC=90°,所以OA=OB=OC=22,同理得OD=22,故点O为该三棱锥外接球的球心,所以球O的半径r=22,S球=4πr2=2π.12.如图,已知球O是棱长为3的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.答案3π2解析根据题意知,平面ACD1是边长为9+9=32的正三角形,且所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD1内切圆的半径r=13(32)2-⎝⎛⎭⎪⎫3222=62,所以平面ACD 1截球O 的截面面积为S =π×⎝ ⎛⎭⎪⎫622=3π2.二、创新拓展练13.(多选)(2022·华大新高考联考)已知三棱锥S -ABC 中,SA ⊥平面ABC ,SA =AB =BC =2,AC =2,点E ,F 分别是线段AB ,BC 的中点,直线AF ,CE 相交于G ,则过点G 的平面α截三棱锥S -ABC 的外接球O 所得截面面积可以是( ) A.23π B.89π C.π D.32π答案 BCD解析 因为AB 2+BC 2=AC 2,故AB ⊥BC , 故三棱锥S -ABC 的外接球O 的半径R =2+2+22=62,取AC 的中点D ,连接BD 必过G , 因为AB =BC =2,故DG =13BD =13,因为OD =22,故OG 2=⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫132=1118,则过点G 的平面截球O 所得截面圆的最小半径r 2=⎝ ⎛⎭⎪⎫622-1118=89,故截面面积的最小值为89π,最大值为πR 2=32π,故选BCD.14.(多选)(2022·济南模拟)已知三棱锥P -ABC 的四个顶点都在球O 上,AB =BC =AC =1,∠APC =π6,平面P AC ⊥平面ABC ,则( ) A.直线OA 与直线BC 垂直B.点P 到平面ABC 的距离的最大值为1+32C.球O 的表面积为13π3D.三棱锥O -ABC 的体积为18 答案 ACD解析 设△ABC 外接圆的圆心为O 1,连接OO 1,O 1A . 因为O 为三棱锥P -ABC 外接球的球心, 所以OO 1⊥平面ABC ,所以OO 1⊥BC ,因为AB =BC =AC =1, 所以O 1A ⊥BC ,所以BC ⊥平面OO 1A , 所以OA ⊥BC ,故A 选项正确; 设△P AC 外接圆的圆心为O 2, AC 的中点为D ,连接O 2D , 由于AC =1,∠APC =π6, 所以圆O 2的半径r 2=12×1sin π6=1,则易知O 2D =32,所以点P 到平面ABC 的距离的最大值为1+32(此时P ,O 2,D 三点共线),故B 选项错误;由于AB =BC =AC =1,平面P AC ⊥平面ABC ,平面P AC ∩平面ABC =AC , 所以圆O 1的半径r 1=12×1sin π3=33,圆O 2的半径r 2=1,△ABC 与△P AC 的交线段AC =1, 所以三棱锥P -ABC 外接球半径R 2=⎝ ⎛⎭⎪⎫332+12-14=1312.故球O 的表面积S =4π×1312=13π3,故C 选项正确;由于OO 1⊥平面ABC ,且OO 1=O 2D =32,S △ABC =34,所以三棱锥O -ABC 的体积为13×OO 1×S △ABC =13×32×34=18,故D 选项正确,故选ACD.15.在菱形ABCD 中,AB =23,∠ABC =60°,若将菱形ABCD 沿对角线AC 折成大小为60°的二面角B -AC -D ,则四面体DABC 的外接球球O 的体积为________. 答案 5239π27解析 如图,设M ,N 分别为△ABC ,△ACD 的外心,E 为AC 的中点,则EN =EM =13BE =1,在平面BDE 内过点M 作BE 的垂线与过点N 作DE 的垂线交于点O .∵BE ⊥AC ,DE ⊥AC ,BE ∩DE =E ,∴AC ⊥平面BDE .∵OM ⊂平面BDE ,∴OM ⊥AC ,∵OM ⊥BE ,BE ∩AC =E ,∴OM ⊥平面ABC ,同理可得ON ⊥平面ACD ,则O 为四面体DABC 的外接球的球心,连接OE ,∵EM =EN ,OE =OE ,∠OME =∠ONE =90°,∴△OME ≌△ONE ,∴∠OEM =30°,∴OE =EM cos 30°=233.∵AC ⊥平面BDE ,OE ⊂平面BDE ,∴OE ⊥AC ,∴OA =OE 2+AE 2=393,即球O 的半径R =393.故球O 的体积V =43πR 3=5239π27.16.(2022·湖南三湘名校联考)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,M 为棱AB 的中点,N 是棱BC 的中点,O 是三棱柱外接球的球心,则平面MNB 1截球O 所得截面的面积为________.答案 8π解析 如图1,将直三棱柱补形成正方体ABCD -A 1B 1C 1D 1, 连接BD 1,则直三棱柱的外接球也是正方体的外接球,球心O 是BD 1的中点,半径R =2 3.连接BD 交MN 于点E ,连接B 1E 交BD 1于点F , 过点O 作OO 1⊥B 1E 于点O 1,连接B 1D 1,因为MN ∥AC ,AC ⊥平面BB 1D 1D ,所以MN ⊥平面BB 1D 1D ,所以OO 1⊥MN ,所以OO 1⊥平面MNB 1.如图2,在矩形BB 1D 1D 中,BF FD 1=BE B 1D 1=14,所以BF OF =23,过点B 作BG ⊥B 1E 于点G , 则BG =BE ·BB 1B 1E =43, BG OO 1=BF OF =23,所以OO 1=2, 设截面圆的半径为r , 则r 2=R 2-OO 21=(23)2-22=8, 所以截面的面积为8π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间正方体的外接球和内切球问题外接球
外接球是一个与正方体相切于所有顶点的球体。

换句话说,外接球的球心与正方体的顶点相重合,并且球体的半径刚好与正方体的边长相等。

由于正方体的六个顶点之间的距离是相等的,所以外接球也是一个等边球体。

外接球的性质有以下几点:
1. 外接球的球心与正方体的中心重合。

2. 外接球的半径等于正方体的边长。

内切球
内切球是一个与正方体的六个面相切的球体。

换句话说,内切球的球心位于正方体的中心,并且球体的半径刚好与正方体的边长的一半相等。

内切球的性质有以下几点:
1. 内切球的球心与正方体的中心重合。

2. 内切球的半径等于正方体的边长的一半。

外接球和内切球的关系如下:
1. 外接球的半径等于内切球半径的两倍。

2. 外接球的球心和内切球的球心重合。

外接球和内切球的问题在几何学和工程学中具有一定的应用价值。

通过研究它们的性质和特点,可以帮助我们更好地理解立体几何和球体的关系。

本文只是简单介绍了空间正方体的外接球和内切球问题,希望能对您有所帮助。

如需深入了解此问题,还需进一步研究和探索。

相关文档
最新文档