黑龙江省普通高等学校2018届全国统一招生考试仿真模拟(十)数学(理)试题Word版含答案

合集下载

2018年普通高等学校招生全国统一考试仿真卷 理科数学(9)word解析版

2018年普通高等学校招生全国统一考试仿真卷 理科数学(9)word解析版

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(九)本试题卷共16页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·哈市附中]已知集合{}A x y ==,{}B x x a =≥,若A B A =,则实数a 的取值范围是( ) A .(],3-∞- B .(),3-∞-C .(],0-∞D .[)3,+∞【答案】A【解析】由已知得[]3,3A =-,由A B A =,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A .2.[2018·南阳期末]已知1i +是关于x 的方程220ax bx ++=(a ,b ∈R )的一个根,则a b +=( )A .1-B .1C .3-D .3【答案】A【解析】由是关于的方程(a ,b ∈R )的一个根,()()21i 1i 20a b ++++=,即()()()2i 1i 22i 20a b a b b +++=+++=,得2020a b b +=+=⎧⎨⎩,解得12a b ==-⎧⎨⎩,则1a b +=-.故选A .3.[2018·曲靖一中]已知焦点在轴上的双曲线的焦距为)A .2212x y -=B .2212y x -= C .2212x y -=D .2212y x -=【答案】B【解析】c =b =1a =,∴双曲线的方程为2212y x -=,故选:B . 4.[2018·茂名联考]函数sin 21cos xy x=+的部分图象大致为( )A .B .C .D .【答案】A【解析】因为函数为奇函数,所以其图象关于原点成中心对称,所以选项C ,D 错误;又当0,2x π⎛⎫∈ ⎪⎝⎭时,sin 201cos x y x =>+,所以选项B 错.本题选择A 选项. 5.[2018·凌源一模]已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )1i +x 220ax bx ++=x 班级 姓名 准考证号 考场号 座位号此卷只装订不密封A .33cmB .35cmC .34cmD .36cm【答案】B【解析】几何体如图,体积为211221121522⎛⎫⨯-⨯⨯-⨯⨯= ⎪⎝⎭,选B .6.[2018·朝阳一模]按照程序框图(如图所示)执行,第3个输出的数是( )A .6B .5C .4D .3【答案】B【解析】第一次输出1A =,第二次输出123A =+=,第三次输出325A =+=,选B .7.[2018·江西联考]设向量,满足2=a ,1=b ,且()⊥+b a b ,则向量在向量2+a b方向上的投影为( ) A .1 B .1- C .12-D .12【答案】D【解析】∵()⊥+b a b ,∴()20+=+=b a b a b b ,∴21⋅=-=-a b b .∴()2221⋅+=⋅+=b a b a b b,22+==a b .设向量b 和向量的夹角为θ,则向量b 在向量方向上的投影为()()221cos 222θ⋅+⋅+=⋅==+⋅+b a b b a b b b a bb a b.故选D . 8.[2018·定州中学]将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位,再向下平移1个单位,得到()g x 的图象,若()()129g x g x =,且[]1222x x ∈-ππ,,,则122x x -的最大值为( ) A .5512πB .5312πC .256πD .174π【答案】A【解析】函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位,可得2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再向下平移1个单位,得到()2sin 213g x x π⎛⎫=+- ⎪⎝⎭的图象,若()()129g x g x =,且[]122,2x x ∈-ππ,,则()()123g x g x ==-, 则2232x k ππ+=-+π,k ∈Ζ, 即512x k π=-+π,k ∈Z ,,得1217571912121212x x ππππ⎧⎫∈--⎨⎬⎩⎭,,,,, 当11912x π=,21712x π=-时,122x x -取最大值5512π,故选A . 9.[2018·西安期末]我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n. ① 第二步:将数列①的各项乘以n ,得数列(记为)1a ,2a ,3a ,…,n a . 则12231n n a a a a a a -+++等于( ) A .()1n n -B .()21n -C .2nD .()1n n +【答案】A【解析】∵k n a k =.当2n ≥a b b 2+a b 2+a b []1222x x ∈-ππ,,∴12231n n a a a a a a n ++⋯+=﹣211n n ⎛⎫- ⎪⎝⎭()1n n =﹣. 故选:A .10.[2018·邢台二中]在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若3sin 242B π⎛⎫+=⎪⎝⎭,且2a c +=,则ABC △周长的取值范围是() A .(]2,3 B .[)3,4 C .(]4,5 D .[)5,6【答案】B【解析】由0B π<<2a c +=, ∴由余弦定理可得,()22222cos 243b a c ac B a c ac ac ac =+-=+--=-,∵2a c +=,a c =时取等号,∴01ac ≤<,则330ac -≤-<,则214b ≤<, 即12b ≤<.∴ABC △周长[)234L a bc b =++=+∈,.故选B .11.[2018·抚州联考]已知双曲线()222210,0x y a b a b-=>>与抛物线()220ypx p =>有相同的焦点F ,且双曲线的一条渐近线与抛物线的准线交于点()3M t -,,MF =,则双曲线的离心率为( )A B .C D 【答案】C【解析】由题意可知,抛物线220y px p =>()的焦点坐标为02p F (,),准线方程为2px =-,由M 在抛物线的准线上,则32p-=-,则6p =,则焦点坐标为30F (,),所以MF =,则294t =,解得32t =±,双曲线的渐近线方程是b y x a =±,将M 代入渐近线的方程332b a =⨯,即12b a =, 则双曲线的离心率为c e a ===,故选C .12.[2018·长郡中学]若对于函数()()2ln 1f x x x =++图象上任意一点处的切线1l ,在函数()sin cosg x a x x x =-的图象上总存在一条切线2l ,使得12l l ⊥,则实数a 的取值范围为()A .1⎤⎥⎣⎦B .1⎡-⎢⎣⎦C .12122⎛⎡⎤---∞+∞ ⎢⎥ ⎝⎦⎣⎦,, D .(][)11-∞-+∞,,【答案】D【解析】设切线1l 的斜率为1k ,则()()1112212211k f x x x x x '==+=++-≥++, 当且仅当12x =-时等号成立.设切线2l 的斜率为2k ,则()2cos21k g x a x '==-, 由于总存在2l ,使得12l l ⊥,即总存在2k ,使得121k k =-,故211102k k ⎡⎫=-∈-⎪⎢⎪⎣⎭,,显然0a ≠,且211k a a ⎡⎤∈---⎣⎦,. 则:011a a ⎡⎫⎡⎤⊆---⎪⎢⎣⎦⎪⎣⎭,,即:10112a a -≥--≤-⎧⎪⎨⎪⎩,解得:112a a ⎧≥≥⎪⎨⎪⎩, 据此有:1a ≥.即实数a 的取值范围为(][)11-∞-+∞,,.本题选择D 选项. 第Ⅱ卷本卷包括必考题和选考题两部分。

黑龙江省2018年 普通高等学校招生全国统一考试 仿真模拟(四)数学(理科)试题(精编含解析)

黑龙江省2018年 普通高等学校招生全国统一考试 仿真模拟(四)数学(理科)试题(精编含解析)

普通高等学校招生全国统一考试仿真模拟(四)理科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合,,则()A. B. C. D.【答案】A【解析】【分析】化简集合A、B,再求A∩B即可.【详解】∵集合={x|x<0或x>3}=(﹣∞,0)∪(3,+∞),={x|﹣2<x<2}=(﹣2,2),∴A∩B=(﹣2,0).故选:A.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 已知复数,(为虚数单位,),若,则()A. B. C. D.【答案】C【解析】【分析】利用复数代数形式的乘法运算化简,再由虚部等于0求得a值.【详解】∵z1=2﹣i,z2=a+2i,∴z1z2=(2﹣i)(a+2i)=2a+2+(4﹣a)i,又z1z2∈R,∴4﹣a=0,即a=4.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.3. 若向量,满足:,,,则()A. B. C. D.【答案】B【解析】【分析】利用向量垂直的性质直接求解.【详解】∵向量,满足:,,,∴,解得=.故选:B.【点睛】本题考查向量的模的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.4. 在中,,,为的中点,的面积为,则等于()A. B. C. D.【答案】B【解析】【分析】在△BCD中,由面积公式可得BC,再由余弦定理可得结果.【详解】由题意可知在△BCD中,B=,AD=1,∴△BCD的面积S=×BC×BD×sinB=×BC×=,解得BC=3,在△ABC中由余弦定理可得:AC2=AB2+BC2﹣2AB•BCcosB=22+32﹣2•2•3•=7,∴AC=,故选:B.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.5. 已知,且,则的概率为()A. B. C. D.【答案】B【解析】【分析】先列举出所有的基本事件,再找到满足条件的基本事件,根据古典概型概率公式计算即可.【详解】由题基本事件空间中的元素有:(1,6),(2,5),(3,4),(4,3),(5,2)(6,1),满足题意的有(1,6),(2,5),(3,4),(4,3),故则的概率为=故选:B.【点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.6. 如图,网格纸上正方形小格的边长为(单位:),图中粗线画出的是某种零件的三视图,则该零件的体积(单位:)为()A. B. C. D.【答案】B【解析】【分析】由三视图知该该零件是一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,由三视图求出几何元素的长度,由柱体的体积公式求出几何体的体积.【详解】根据三视图可知该零件是:一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,且长方体的长、宽、高分别为:8、6、5,圆柱底面圆的半径为1,母线长是8,∴该零件的体积V=8×6×5﹣=240﹣12π(cm3),故选:B.【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7. 阅读如图所示的程序框图,运行相应的程序,若输出的为,则判断框中填写的内容可以是()A. B. C. D.【答案】C【解析】试题分析:,判断是,,判断是,,判断是,,判断否,输出,故填.考点:算法与程序框图.视频8. 函数在点处的切线斜率为()A. B. C. D.【答案】C【解析】分析:先求函数的导数,因为函数图象在点处的切线的斜率为函数在处的导数,就可求出切线的斜率.详解:∴函数图象在点处的切线的斜率为1.故选:C.点睛:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属基础题.9. 若,满足,且的最小值为,则的值为()A. B. C. D.【答案】D【解析】【分析】作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.【详解】由z=y﹣x得y=x+z,要使z=y﹣x的最小值为﹣12,即y=x﹣12,则不等式对应的区域在y=x﹣12的上方,先作出对应的图象,由得,即C(12,0),同时C(12,0)也在直线kx﹣y+3=0上,则12k+3=0,得k=﹣,故选:D.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.10. 设抛物线的焦点为,过且斜率为的直线交抛物线于,两点.若线段的垂直平分线与轴交于点,则()A. B. C. D.【答案】D【解析】【分析】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),则直线AB的方程为y=(x﹣),代入抛物线方程,由韦达定理可知:x1+x2=,根据中点坐标公式求得中点P坐标,代入AB的垂直平分线方程,即可求得p的值.【详解】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),设直线AB的方程为:y=(x﹣),A(x1,y1),B(x2,y2),AB的中点为P(x0,y0),,整理得:3x2﹣5px+=0,由韦达定理可知:x1+x2=,由中点坐标公式可知:x0=,则y0=,由P在垂直平分线上,则y0=﹣(x0﹣11),即p=﹣(﹣11),解得:p=6,故选:C.【点睛】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,弦长公式及垂直平分线的性质,考查计算能力,属于中档题.11. 四面体的一条棱长为,其余棱长为,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为()A. B. C. D.【答案】D【解析】【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积.【详解】底面积不变,高最大时体积最大,所以,面ACD与面ABD垂直时体积最大,由于四面体的一条棱长为c,其余棱长均为3,所以球心在两个正三角形的重心的垂线的交点,半径R==;经过这个四面体所有顶点的球的表面积为:S==15π;故选:D.【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12. 设是函数的导函数,且,(为自然对数的底数),则不等式的解集为()A. B. C. D.【答案】B【解析】【分析】构造函数F(x)=,求出导数,判断F(x)在R上递增.原不等式等价为F(lnx)<F(),运用单调性,可得lnx<,运用对数不等式的解法,即可得到所求解集.【详解】可构造函数F(x)=,F′(x)==,由f′(x)>2f(x),可得F′(x)>0,即有F(x)在R上递增.不等式f(lnx)<x2即为<1,(x>0),即<1,x>0.即有F()==1,即为F(lnx)<F(),由F(x)在R上递增,可得lnx<,解得0<x<.故不等式的解集为(0,),【点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13. 函数的单调递增区间是__________.【答案】【解析】化简可得y=sinxcos+cosxsin=sin(x+),由2kπ﹣≤x+≤2kπ+可得2kπ﹣≤x≤2kπ+,k∈Z,当k=0时,可得函数的一个单调递增区间为[﹣,],又由x∈[0,]可取交集得x∈[0,],故答案为:[0,].14. 展开式中的常数项是,则__________.【答案】4【解析】试题分析:由题意得,,所以展开式的常数项为,令,解得.考点:二项式定理的应用.【方法点晴】本题主要考查了二项式定理的应用,其中解答中涉及到多项式的化简与二项式定理的通项等知识,解答中把化为是解答问题的关键,再根据二项展开式,得到展开式的常数项,即可求解的值,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.15. 在一幢高的房屋顶测得对面一塔顶的仰角为,塔基的俯角为,假定房屋与塔建在同一水平地面上,则塔的高度为__________.【答案】40【分析】作出图示,利用30°角的性质和勾股定理依次求出BC,CE,AC,AE,则AB=AE+BE.【详解】如图所示,过房屋顶C作塔AB的垂线CE,垂足为E,则CD=10,∠ACE=60°,∠BCE=30°,∴BE=CD=10,BC=2CD=20,EC=BD=.∵∠ACE=60°,∠AEC=90°,∴AC=2CE=20,∴AE==30.∴AB=AE+BE=30+10=40.故答案为:40.【点睛】解决测量角度问题的注意事项(1)明确仰角、俯角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.16. 设函数在上为增函数,,且为偶函数,则不等式的解集为__________.【答案】【解析】【分析】根据函数的平移关系得到函数g(x)的单调递增区间,根据函数的单调性解不等式即可得到结论.【详解】∵f(x)在[1,+∞)上为增函数,∴f(x)向左平移1个单位得到f(x+1),则f(x+1)在[0,+∞)上为增函数,即g(x)在[0,+∞)上为增函数,且g(2)=f(2+1)=0,∵g(x)=f(x+1)为偶函数∴不等式g(2﹣2x)<0等价为g(2﹣2x)<g(2),即g(|2﹣2x|)<g(2),则|2﹣2x|<2,则﹣2<2x﹣2<2,即0<2x<4,则0<x<2,即不等式的解集为(0,2),故答案为:(0,2).【点睛】对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)由知:,利用等比数列的通项公式即可得出;(2)b n=|11﹣2n|,设数列{11﹣2n}的前n项和为T n,则.当n≤5时,S n=T n;当n≥6时,S n=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18. 如图,在四棱柱中,,,,,,,侧棱底面,是的中点.(1)求证:平面;(2)设点在线段上,且,求直线与平面所成角的正弦值.【答案】(1)见解析;(2)【解析】【分析】(1)以A为坐标原点,AB,AD,AA1所在的直线分别为x,y,z轴建立空间直角坐标系,利用向量法能证明BD⊥平面A1ACC1.(2)设Q(x,y,z),直线QC与平面A1ACC1所成角为θ,求出平面A1ACC1的一个法向量,利用向量法能求出直线CQ与平面A1ACC1所成角的正弦值.【详解】(1)证明:∵平面,,∴以为坐标原点,,,所在的直线分别为,,轴建立空间直角坐标系,则,,,,所以,,,所以,.所以,,因为,平面,平面,所以平面.(2)设,直线与平面所成角为,由(1)知平面的一个法向量为.∵,∴,,平面法向量,.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19. 为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.(1)求表中,,,,的值;(2)按规定,预赛成绩不低于分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.【答案】(1)见解析;(2)1【解析】【分析】(1)由题意知,参赛选手共有50人,由此能求出表中的x,y,x,s,p的值.(2)由题意随机变量X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和随机变量X的数学期望.【详解】(1)由题意知,参赛选手共有(人),所以,,,.(2)由(1)知,参加决赛的选手共人,随机变量的可能取值为,,,,,,随机变量的分布列为:因为,所以随机变量的数学期望为.【点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20. 已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,证明:直线的斜率为定值.【答案】(1);(2)【解析】【分析】(1)由抛物线的定义可知E的轨迹为以D为焦点,以x=﹣1为准线的抛物线,(2)设l1,l2的方程,联立方程组消元解出A,B的坐标,代入斜率公式计算k AB.【详解】(1)由已知,动点到定点的距离等于到直线的距离,由抛物线的定义知点的轨迹是以为焦点,以为准线的抛物线,故曲线的方程为.(2)由题意可知直线,的斜率存在,倾斜角互补,则斜率互为相反数,且不等于零.设,,直线的方程为,.直线的方程为,由得,已知此方程一个根为,∴,即,同理,∴,,∴,∴,所以,直线的斜率为定值.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21. 设,函数,函数.(1)当时,求函数的零点个数;(2)若函数与函数的图象分别位于直线的两侧,求的取值集合;(3)对于,,求的最小值.【答案】(1)见解析;(2);(3)【解析】【分析】(1)当n=1时,f(x)=,f′(x)=(x>0),确定函数的单调性,即可求函数y=f(x)的零点个数;(2)若函数y=f(x)与函数y=g(x)的图象分别位于直线y=1的两侧,∀n∈N*,函数f(x)有最大值f()=<1,即f(x)在直线l:y=1的上方,可得g(n)=>1求n的取值集合A;(3)∀x1,x2∈(0,+∞),|f(x1)﹣g(x2)|的最小值等价于,发布网球场相应的函数值,比较大小,即可求|f(x1)﹣g(x2)|的最小值.【详解】(1)当时,,.由得;由得.所以函数在上单调递增,在上单调递减,因为,,所以函数在上存在一个零点;当时,恒成立,所以函数在上不存在零点.综上得函数在上存在唯一一个零点.(2)由函数求导,得,由,得;由,得,所以函数在上单调递增,在上单调递减,则当时,函数有最大值;由函数求导,得,由得;由得.所以函数在上单调递减,在上单调递增,则当时,函数有最小值;因为,函数的最大值,即函数在直线的下方,故函数在直线:的上方,所以,解得.所以的取值集合为.(3)对,的最小值等价于,当时,;当时,;因为,所以的最小值为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22. 已知直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)若直线的斜率为,判断直线与曲线的位置关系;(2)求与交点的极坐标(,).【答案】(1)见解析;(2)【解析】【分析】(1)利用加减消元法和平方消元法消去参数t,可把直线l与曲线C1的参数方程化为普通方程,结合直线与圆的位置关系,可得结论;(2)将曲线C2的极坐标方程化为直角坐标方程,求出交点的坐标,进而可化为极坐标.【详解】(1)斜率为时,直线的普通方程为,即.①将消去参数,化为普通方程得,②则曲线是以为圆心,为半径的圆,圆心到直线的距离,故直线与曲线(圆)相交.(2)的直角坐标方程为,由,解得,所以与的交点的极坐标为.【点睛】本题考查的知识点是参数方程与极坐标,直线与圆的位置关系,圆的交点,难度中档.23. 已知函数在上的最小值为,函数.(1)求实数的值;(2)求函数的最小值.【答案】(1)5;(2)4【解析】【分析】(1)由f(x)=+ax=a[(x﹣1)++1],运用基本不等式可得最小值,解方程可得a的值;(2)运用|x+5|+|x+1|≥|(x+5)﹣(x+1)|=4,即可得到所求的最小值.【详解】(1)∵,,,∴,即有,解得.(2)由于,当且仅当时等号成立,∴的最小值为.【点睛】本题考查函数的最值的求法,注意运用基本不等式和绝对值不等式的性质,考查运算能力,属于中档题.。

黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(九)数学(理)答案

黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(九)数学(理)答案
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
2 2 所以 VH = 4 -2 =2 3,
该 几 何 体 是 底 面 为 直 角 三 角 形, 4. B㊀ 由三 视 图 知 , ( , 如图 ) 高为 5 的 三 棱 柱 截 去 一 个 三 棱 锥 后 剩 余 的 部 分
( ) 输出的是2 由4 1 0. B㊀ 输入x, 2 x-1 -1=4 x-3, x
故选 D. ʑ q 为真 ������ q 为假 .
1 2. D㊀f( x) = k x 关于直线y=e对称的函数为 h( x) , 由题 意 知 h2 e 与 g( x) =2 l nx+2 e 在 xɪ , 即方程 e ] 上 有 交 点, [1 e

黑龙江省2018届高三普通高等学校招生全国统一考试 仿真模拟(五)数学试题(理科)(解析版)

黑龙江省2018届高三普通高等学校招生全国统一考试 仿真模拟(五)数学试题(理科)(解析版)

普通高等学校招生全国统一考试仿真模拟(五)理科数学第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. (2017·成都市二诊)已知集合,,则()A. B. C. D.【答案】B【解析】【分析】解不等式可得,从而可求.【详解】,故,故选B.【点睛】本题考察集合的运算-并,为基础题.2. (2017·太原市一模)已知是虚数单位,则复数的共轭复数是()A. B. C. D.【答案】A【解析】【分析】利用复数的除法计算后取所得结果的共轭即可.【详解】,故所求共轭复数为,故选A.【点睛】本题考察复数的概念及其运算,是基础题.3. (2017·合肥市质检)某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在区间的人数为()A. 10B. 11C. 12D. 13【答案】C【解析】【分析】因用系统抽样的方法抽取,所以900人分成45组,每组20人,每组取1人,因此可用等差数列的通项公式计算落在区间的人数.【详解】900人分成45组,每组20人,每组取1人,其编号构成等差数列,故编号落在区间的人数为,故选C.【点睛】抽样方法共有简单随机抽样、系统抽样和分层抽样三种,(1)简单随机抽样是每个个体等可能被抽取;(2)系统抽样是均匀分组,按规则抽取(通常每组抽取的序号成等差数列);(3)分层抽样就是按比例抽取.4. 已知双曲线:的离心率为,则的渐近线方程为()A. B. C. D.【答案】C【解析】根据题意,双曲线:的离心率为,则有,即,即有,又由双曲线的焦点在轴上,则其渐近线方程为,故选C.5. 如图所示,当输入,的值分别为2,3时,最后输出的的值是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】题设中的算法是求中的较大者.【详解】算法是求中的较大者,故最后输出的是3,故选C.【点睛】本题考查算法中的选择结构,属于容易题.6. 某几何体的三视图如图所示,其中俯视图下半部分是半径为1的半圆,则该几何体的表面积是()A. B. C. D.【答案】B【解析】【分析】几何体为正方体中挖掉半个圆柱,故可求其表面积.【详解】几何体为正方体中挖去半个圆柱,正方体的棱长为2,正方体的3个侧面的面积为,上下底面的面积为,半个圆柱的侧面积为,因此所求几何体的表面积为,故选B.【点睛】本题考察三视图,要求根据三视图复原几何体,注意复原后表面积的合理计算.7. (2017·陕西省质检)已知等比数列的前项和为.若,,则()A. B. C. D.【答案】A【解析】试题分析:由已知可得,解之得,应选A。

黑龙江省2018年 普通高等学校招生全国统一考试 仿真模拟(四)数学(理科)试题(解析版)

黑龙江省2018年 普通高等学校招生全国统一考试 仿真模拟(四)数学(理科)试题(解析版)

普通高等学校招生全国统一考试仿真模拟(四)理科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合,,则()A. B. C. D.【答案】A【解析】【分析】化简集合A、B,再求A∩B即可.【详解】∵集合={x|x<0或x>3}=(﹣∞,0)∪(3,+∞),={x|﹣2<x<2}=(﹣2,2),∴A∩B=(﹣2,0).故选:A.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 已知复数,(为虚数单位,),若,则()A. B. C. D.【答案】C【解析】【分析】利用复数代数形式的乘法运算化简,再由虚部等于0求得a值.【详解】∵z1=2﹣i,z2=a+2i,∴z1z2=(2﹣i)(a+2i)=2a+2+(4﹣a)i,又z1z2∈R,∴4﹣a=0,即a=4.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.3. 若向量,满足:,,,则()A. B. C. D.【答案】B【解析】【分析】利用向量垂直的性质直接求解.【详解】∵向量,满足:,,,∴,解得=.故选:B.【点睛】本题考查向量的模的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.4. 在中,,,为的中点,的面积为,则等于()A. B. C. D.【答案】B【解析】【分析】在△BCD中,由面积公式可得BC,再由余弦定理可得结果.【详解】由题意可知在△BCD中,B=,AD=1,∴△BCD的面积S=×BC×BD×sinB=×BC×=,解得BC=3,在△ABC中由余弦定理可得:AC2=AB2+BC2﹣2AB•BCcosB=22+32﹣2•2•3•=7,∴AC=,故选:B.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.5. 已知,且,则的概率为()A. B. C. D.【答案】B【解析】【分析】先列举出所有的基本事件,再找到满足条件的基本事件,根据古典概型概率公式计算即可.【详解】由题基本事件空间中的元素有:(1,6),(2,5),(3,4),(4,3),(5,2)(6,1),满足题意的有(1,6),(2,5),(3,4),(4,3),故则的概率为=故选:B.【点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.6. 如图,网格纸上正方形小格的边长为(单位:),图中粗线画出的是某种零件的三视图,则该零件的体积(单位:)为()A. B. C. D.【答案】B【解析】【分析】由三视图知该该零件是一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,由三视图求出几何元素的长度,由柱体的体积公式求出几何体的体积.【详解】根据三视图可知该零件是:一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,且长方体的长、宽、高分别为:8、6、5,圆柱底面圆的半径为1,母线长是8,∴该零件的体积V=8×6×5﹣=240﹣12π(cm3),故选:B.【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7. 阅读如图所示的程序框图,运行相应的程序,若输出的为,则判断框中填写的内容可以是()A. B. C. D.【答案】C【解析】试题分析:,判断是,,判断是,,判断是,,判断否,输出,故填.考点:算法与程序框图.视频8. 函数在点处的切线斜率为()A. B. C. D.【答案】C【解析】分析:先求函数的导数,因为函数图象在点处的切线的斜率为函数在处的导数,就可求出切线的斜率.详解:∴函数图象在点处的切线的斜率为1.故选:C.点睛:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属基础题.9. 若,满足,且的最小值为,则的值为()A. B. C. D.【答案】D【解析】【分析】作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.【详解】由z=y﹣x得y=x+z,要使z=y﹣x的最小值为﹣12,即y=x﹣12,则不等式对应的区域在y=x﹣12的上方,先作出对应的图象,由得,即C(12,0),同时C(12,0)也在直线kx﹣y+3=0上,则12k+3=0,得k=﹣,故选:D.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 10. 设抛物线的焦点为,过且斜率为的直线交抛物线于,两点.若线段的垂直平分线与轴交于点,则()A. B. C. D.【答案】D【解析】【分析】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),则直线AB的方程为y=(x﹣),代入抛物线方程,由韦达定理可知:x1+x2=,根据中点坐标公式求得中点P坐标,代入AB的垂直平分线方程,即可求得p的值.【详解】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),设直线AB的方程为:y=(x﹣),A(x1,y1),B(x2,y2),AB的中点为P(x0,y0),,整理得:3x2﹣5px+=0,由韦达定理可知:x1+x2=,由中点坐标公式可知:x0=,则y0=,由P在垂直平分线上,则y0=﹣(x0﹣11),即p=﹣(﹣11),解得:p=6,故选:C.【点睛】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,弦长公式及垂直平分线的性质,考查计算能力,属于中档题.11. 四面体的一条棱长为,其余棱长为,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为()A. B. C. D.【答案】D【解析】【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积.【详解】底面积不变,高最大时体积最大,所以,面ACD与面ABD垂直时体积最大,由于四面体的一条棱长为c,其余棱长均为3,所以球心在两个正三角形的重心的垂线的交点,半径R==;经过这个四面体所有顶点的球的表面积为:S==15π;故选:D.【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12. 设是函数的导函数,且,(为自然对数的底数),则不等式的解集为()A. B. C. D.【答案】B【解析】【分析】构造函数F(x)=,求出导数,判断F(x)在R上递增.原不等式等价为F(lnx)<F(),运用单调性,可得lnx<,运用对数不等式的解法,即可得到所求解集.【详解】可构造函数F(x)=,F′(x)==,由f′(x)>2f(x),可得F′(x)>0,即有F(x)在R上递增.不等式f(lnx)<x2即为<1,(x>0),即<1,x>0.即有F()==1,即为F(lnx)<F(),由F(x)在R上递增,可得lnx<,解得0<x<.故不等式的解集为(0,),故选:B.【点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13. 函数的单调递增区间是__________.【答案】【解析】化简可得y=sinxcos+cosxsin=sin(x+),由2kπ﹣≤x+≤2kπ+可得2kπ﹣≤x≤2kπ+,k∈Z,当k=0时,可得函数的一个单调递增区间为[﹣,],又由x∈[0,]可取交集得x∈[0,],故答案为:[0,].14. 展开式中的常数项是,则__________.【答案】4【解析】试题分析:由题意得,,所以展开式的常数项为,令,解得.考点:二项式定理的应用.【方法点晴】本题主要考查了二项式定理的应用,其中解答中涉及到多项式的化简与二项式定理的通项等知识,解答中把化为是解答问题的关键,再根据二项展开式,得到展开式的常数项,即可求解的值,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.15. 在一幢高的房屋顶测得对面一塔顶的仰角为,塔基的俯角为,假定房屋与塔建在同一水平地面上,则塔的高度为__________.【答案】40【解析】【分析】作出图示,利用30°角的性质和勾股定理依次求出BC,CE,AC,AE,则AB=AE+BE.【详解】如图所示,过房屋顶C作塔AB的垂线CE,垂足为E,则CD=10,∠ACE=60°,∠BCE=30°,∴BE=CD=10,BC=2CD=20,EC=BD=.∵∠ACE=60°,∠AEC=90°,∴AC=2CE=20,∴AE==30.∴AB=AE+BE=30+10=40.故答案为:40.【点睛】解决测量角度问题的注意事项(1)明确仰角、俯角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.16. 设函数在上为增函数,,且为偶函数,则不等式的解集为__________.【答案】【解析】【分析】根据函数的平移关系得到函数g(x)的单调递增区间,根据函数的单调性解不等式即可得到结论.【详解】∵f(x)在[1,+∞)上为增函数,∴f(x)向左平移1个单位得到f(x+1),则f(x+1)在[0,+∞)上为增函数,即g(x)在[0,+∞)上为增函数,且g(2)=f(2+1)=0,∵g(x)=f(x+1)为偶函数∴不等式g(2﹣2x)<0等价为g(2﹣2x)<g(2),即g(|2﹣2x|)<g(2),则|2﹣2x|<2,则﹣2<2x﹣2<2,即0<2x<4,则0<x<2,即不等式的解集为(0,2),故答案为:(0,2).【点睛】对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)由知:,利用等比数列的通项公式即可得出;(2)b n=|11﹣2n|,设数列{11﹣2n}的前n项和为T n,则.当n≤5时,S n=T n;当n≥6时,S n=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18. 如图,在四棱柱中,,,,,,,侧棱底面,是的中点.(1)求证:平面;(2)设点在线段上,且,求直线与平面所成角的正弦值.【答案】(1)见解析;(2)【解析】【分析】(1)以A为坐标原点,AB,AD,AA1所在的直线分别为x,y,z轴建立空间直角坐标系,利用向量法能证明BD⊥平面A1ACC1.(2)设Q(x,y,z),直线QC与平面A1ACC1所成角为θ,求出平面A1ACC1的一个法向量,利用向量法能求出直线CQ与平面A1ACC1所成角的正弦值.【详解】(1)证明:∵平面,,∴以为坐标原点,,,所在的直线分别为,,轴建立空间直角坐标系,则,,,,所以,,,所以,.所以,,因为,平面,平面,所以平面.(2)设,直线与平面所成角为,由(1)知平面的一个法向量为. ∵,∴,,平面法向量,.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19. 为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.(1)求表中,,,,的值;(2)按规定,预赛成绩不低于分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.【答案】(1)见解析;(2)1【解析】【分析】(1)由题意知,参赛选手共有50人,由此能求出表中的x,y,x,s,p的值.(2)由题意随机变量X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和随机变量X的数学期望.【详解】(1)由题意知,参赛选手共有(人),所以,,,.(2)由(1)知,参加决赛的选手共人,随机变量的可能取值为,,,,,,随机变量的分布列为:因为,所以随机变量的数学期望为.【点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20. 已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,证明:直线的斜率为定值.【答案】(1);(2)【解析】【分析】(1)由抛物线的定义可知E的轨迹为以D为焦点,以x=﹣1为准线的抛物线,(2)设l1,l2的方程,联立方程组消元解出A,B的坐标,代入斜率公式计算k AB.【详解】(1)由已知,动点到定点的距离等于到直线的距离,由抛物线的定义知点的轨迹是以为焦点,以为准线的抛物线,故曲线的方程为.(2)由题意可知直线,的斜率存在,倾斜角互补,则斜率互为相反数,且不等于零.设,,直线的方程为,.直线的方程为,由得,已知此方程一个根为,∴,即,同理,∴,,∴,∴,所以,直线的斜率为定值.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21. 设,函数,函数.(1)当时,求函数的零点个数;(2)若函数与函数的图象分别位于直线的两侧,求的取值集合;(3)对于,,求的最小值.【答案】(1)见解析;(2);(3)【解析】【分析】(1)当n=1时,f(x)=,f′(x)=(x>0),确定函数的单调性,即可求函数y=f(x)的零点个数;(2)若函数y=f(x)与函数y=g(x)的图象分别位于直线y=1的两侧,∀n∈N*,函数f(x)有最大值f()=<1,即f(x)在直线l:y=1的上方,可得g(n)=>1求n的取值集合A;(3)∀x1,x2∈(0,+∞),|f(x1)﹣g(x2)|的最小值等价于,发布网球场相应的函数值,比较大小,即可求|f(x1)﹣g(x2)|的最小值.【详解】(1)当时,,. 由得;由得.所以函数在上单调递增,在上单调递减,因为,,所以函数在上存在一个零点;当时,恒成立,所以函数在上不存在零点.综上得函数在上存在唯一一个零点.(2)由函数求导,得,由,得;由,得,所以函数在上单调递增,在上单调递减,则当时,函数有最大值;由函数求导,得,由得;由得.所以函数在上单调递减,在上单调递增,则当时,函数有最小值;因为,函数的最大值,即函数在直线的下方,故函数在直线:的上方,所以,解得.所以的取值集合为.(3)对,的最小值等价于,当时,;当时,;因为,所以的最小值为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22. 已知直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)若直线的斜率为,判断直线与曲线的位置关系;(2)求与交点的极坐标(,).【答案】(1)见解析;(2)【解析】【分析】(1)利用加减消元法和平方消元法消去参数t,可把直线l与曲线C1的参数方程化为普通方程,结合直线与圆的位置关系,可得结论;(2)将曲线C2的极坐标方程化为直角坐标方程,求出交点的坐标,进而可化为极坐标.【详解】(1)斜率为时,直线的普通方程为,即.①将消去参数,化为普通方程得,②则曲线是以为圆心,为半径的圆,圆心到直线的距离,故直线与曲线(圆)相交.(2)的直角坐标方程为,由,解得,所以与的交点的极坐标为.【点睛】本题考查的知识点是参数方程与极坐标,直线与圆的位置关系,圆的交点,难度中档.23. 已知函数在上的最小值为,函数.(1)求实数的值;(2)求函数的最小值.【答案】(1)5;(2)4【解析】【分析】(1)由f(x)=+ax=a[(x﹣1)++1],运用基本不等式可得最小值,解方程可得a的值;(2)运用|x+5|+|x+1|≥|(x+5)﹣(x+1)|=4,即可得到所求的最小值.【详解】(1)∵,,,∴,即有,解得.(2)由于,当且仅当时等号成立,∴的最小值为.【点睛】本题考查函数的最值的求法,注意运用基本不等式和绝对值不等式的性质,考查运算能力,属于中档题.。

黑龙江省普通高等学校招生全国统一考试2018年高中数学仿真模拟试题(二)理_4525

黑龙江省普通高等学校招生全国统一考试2018年高中数学仿真模拟试题(二)理_4525

销售利润 y (万元) 5 7 9 11
由表中数据,得线性回归方程 l :
y
b x
a

b
n i 1
xi x yi y
n
2
xi x
i 1
,
a
y
b x
,则下列结论错误的是(

A. b 0
B. a 0
C.直线 l 过点 4,8
D.直线 l 过点 2,5
4.已知数列an 为等差数列, a2 a3 1, a10 a11 9 ,则 a5 a6 ( )
普通高等学校招生全国统一考试 仿真模拟(二)
理科数学
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
1.已知集合 S 1, 2 ,T x x2 4x 3 ,则 S T ( )
A. 1
B. 2
C21 C22 C92
18 , C92

1 C92
50 1 10
2
0
118
=
50 38 36
=
22 9
元,
22
即此时顾客领取的奖金的平均值为 元.
9
19.解析:(1)证明:作 FM / /CD 交 PC 于 M .
∵点 F 为 PD 中点, ∴ FM 1 CD .
2 ∵点 E 为 AB 中点,
同),根据摸出的球的颜色情况进行兑奖.顾客获得一等奖、二等奖、三等奖、四等奖时分别
可领取奖金 a 元,10 元、 5 元、1元.若经营者将顾客摸出的 3 个球的颜色情况分成以下类别: A :1个黑球, 2 个红球; B : 3 个红球; C :恰有1个白球; D :恰有 2 个白球; E : 3 个

2018年 黑龙江省普通高等学校招生全国统一考试仿真模拟理科数学试卷(八)答案

ç ÷
) , , 令 u=x( 则 uɪ [ x-2 -1, +ɕ )
9, 当 u= 3 ɪ [ 时, -1, +ɕ ) u) g( 最 小 =- 2 4 即 f( 的最小值为 - 9 . x) 4
, 包括边界 ) 7. A㊀ 平面区域 D 为如图阴影部分所示 (
1 0. A㊀ 根据题意作出图形 .
普通高等学校招生全国统一考试 仿真模拟 ( 八) ㊀ 理科数学
, ] , ] 1. D㊀A= [ 0, +ɕ ) B= [ -1, 2 AɘB= [ 0, 2 . ( ) 5 5 2+ i , 2. A㊀1+ =1+ ( ) =3+ i ) 2- i 2- i( 2+ i 一㊁ 选择题 ʑ u最 大 =2ˑ ʑ aȡ5. 4 7 + =5, 3 3
æp, ö, , 0 设 Q( x y 0, 0) è2 ø
÷
故 x=2, 的零点 . x=3 也是 f( x) 则 2+3=- a, 2ˑ3= b.
2 即 x=2, x=3 是方程 x + a x+ b=0 的两个根 ,
) ( ) ( ) , ʑ a=-5, b=6, x) =x( x+1 x-2 x-3 f( 3 ö2 9 , æ ) u) = u( u-3 = u- - g( 2ø 4 è
4 2 种方 共有 C 3. C㊀ 从 1, 3, 4, 6, 7, 9 取 4 个 数, 6 =C 6
5 2 2 ʑ 1+ =| 3+ i |= 3 +1 = 1 0. 2- i
8. C㊀ 令 x=1 得 x-
æ è
ç
{ { 任取两组的方 2 0 的方法 等 于 从 { 1, 9} 3, 7} 4, 6}
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

普通高等学校2018届高三招生全国统一考试模拟(二)数学(理)试题 Word版含答案

2018年普通高等学校招生全国统一考试模拟试题理数(二)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,复数()12ai a R i +∈-为纯虚数,则a 的值为 A .2- B .12- C .2 D .122.已知集合{}{}()22log 3,450,R A x x B x x x A C B =<=-->⋂=则 A .[-1,8)B.(]05, C .[-1,5) D .(0,8)3.已知n S 是各项均为正数的等比数列{}n a 前n 项和,7153564,20a a a a S =+==,则A .31B .63C .16D .1274.设向量)()(,,3,1,//a b x c b c a b b ==-=-,若,则与的夹角为 A .30° B .60° C .120° D .150°5.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为()222210x y a b a b +=>>,测得Γ的离心率为2,则椭圆Γ的方程为 A .221164x y += B .2214x y +=C .2216416x y += D .22154x y += 6.已知某服装厂生产某种品牌的衣服,销售量()q x (单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为()1260,020,190180,x x q x x ⎧<≤⎪+=⎨⎪-<≤⎩则当该服装厂所获效益最大时A .20B .60C .80D .407.已知,x y 满足不等式组240,20,130,x y x y z x y y +-≥⎧⎪--≤=+-⎨⎪-≤⎩则的最小值为A.2B.C. D.1 8.已知函数()2110sin 10sin ,,22f x x x x m π⎡⎤=---∈-⎢⎥⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦,则实数m 的取A .,03π⎡⎤-⎢⎥⎣⎦B .,06π⎡⎤-⎢⎥⎣⎦C .,36ππ⎡⎤-⎢⎥⎣⎦D .,63ππ⎡⎤-⎢⎥⎣⎦ 9.已知()2112n x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为42-,则n = A.10 B.8 C.12 D.1110.某几何体的三视图如图所示,则该几何体的表面积为A .30π+B .803π+ C. 923π+ D .763π+ 11.已知双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点分别为12,F F ,点P 是双曲线Γ右支上一点,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于点A ,且22PM MF = ,若PA的中点E 在1F M 的延长线上,则双曲线Γ的离心率是A .3B .2+C .1D .4+12.已知函数()()()222f x x x x mx n =+++,且对任意实数x ,均有()()33f x f x -+=--,若方程()f x a =有且只有4个实根,则实数a 的取值范围为A .()16,9-B .(]16,9-C .(]16,0-D .(]16,5--第Ⅱ卷本卷包括必考题和选考题两部分。

2018年黑龙江省普通高等学校招生全国统一考试仿真模拟(三)数学(理科)试卷答案

普通高等学校招生全国统一考试 仿真模拟 ( 三) ㊀ 理科数学
, , 1. A㊀ ȵU = { 1, 2, 3, 4} AɘB= { 4} ʑ ∁U ( AɘB) 1 , , 2. A㊀ ȵ z= - i ʑ z- z=-2 i 2 2 ʑ( z-z i
20 1 6( 4) 5 0 4 20 1 6 )
=- 1-
=2
=( -2 i
20 1 6

20 1 6 )
=( -2
20 1 6 20 1 6 )
i

7. A㊀ n=1, S=2<S;
22 æ 1 ö2 =- . 3 è3 ø
ç ÷
n=2, S=2+ n=3, S=
3. D㊀f( x) = -x | x |+2 x= 象如图 , 故选 D.
{
2 -x +2 x, xȡ0, 其图 2 x +2 x, x<0.
Байду номын сангаас
x+yȡ1, 的解集 ( 即可 行 域 ) 如图 x-2 yɤ4
㊀ 所 求 概 率 为 P= 5. A㊀ s i nx d x= -c o sx =2, ㊀ 0 0
π
T 7 π π π 6. D㊀ 由图象可知 A=3, = - = , 4 1 2 3 4
ç ÷
π -2 2 =1- . π π
ʏ
π
π æ2 ö , 得 -3=3 s i n + , φ) è 3 φø
故选 B. ʑ z最 小 值 =2-2=0ȡ-2,
, ) , 得z 取最小值时的最优解为( 2 - 1 x-2 y=4,
ң
ң
5 πö , æ 3 s i n2 α+ 6ø è
ç ÷ ç ÷
5 πö , æ 故 f( 由 f( x) =3 s i n2 x+ α) = 1 得 1= 6ø è

2018年黑龙江省普通高等学校招生全国统一考试仿真模拟(二)数学(理科)试题

2018年黑龙江省普通高等学校招生全国统一考试仿真模拟(二)数学(理科)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2S =,{}243T x x x =<-,则ST =( )A .{}1B .{}2C .1D .22.(2017·桂林市模拟)复数()()1z a i i =+-,a R ∈,i 是虚数单位.若2z =,则a =( ) A .1 B .1- C .0 D .1±3.(2017·福建质检)某公司为了增加其商品的销售利润,调查了该商品投入的广告费用x 与销售利润y 的统计数据如下表: 广告费用x (万元) 2 3 5 6 销售利润y (万元)57911由表中数据,得线性回归方程l :y bx a =+,()()()121,ni i i n i i x x y y b a y bx x x ==⎛⎫-- ⎪ ⎪==- ⎪- ⎪⎝⎭∑∑,则下列结论错误的是( ) A .0b > B .0a > C .直线l 过点()4,8 D .直线l 过点()2,5 4.已知数列{}n a 为等差数列,231a a +=,10119a a +=,则56a a +=( ) A .4 B .5 C.6 D .7 5.(2017·沈阳市质检)已知函数()5log ,0,2,0,xx x f x x >⎧=⎨≤⎩则125f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭( )A .4B .14 C.4- D .14- 6.一个几何体的三视图如图所示,则该几何体的表面积为( )A .93+B .1823+ C.933+ D .1832+7.(2017·兰州市实战考试)已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B ,且ABC △为等腰直角三角形,则实数a 的值为( )A .17或1- B .1- C.1或1- D .1 8.按如下的程序框图,若输出结果为273,则判断框应补充的条件为( )A .7i >B .7i ≥ C.9i > D .9i ≥9.已知三棱锥P ABC -,在底面ABC △中,60A ∠=,90B ∠=,3BC =,PA ⊥平面ABC ,2PA =,则此三棱锥的外接球的体积为( )A .823π B .43π C.423πD .8π 10.(2017·昆明市统测)过点()1,2A 的直线l 与x 轴的正半轴交于点B ,与直线22l y x '=:交于点C ,且点C 在第一象限,O 为坐标原点,设OB x =,若()f x OB OC =+,则函数()y f x =的图象大致为( )A .B . C. D .11.(2017·广州市模拟)已知双曲线()222210,0x y a b a b-=>>的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为( )A .20x y ±=B .20x y ±= C.430x y ±= D .340x y ±=12.(2017·沈阳市一监)已知偶函数()()0f x x ≠的导函数为()f x ',且满足()10f =,当0x >时,()()2xf x f x '<,则使得()0f x >成立的x 的取值范围是( )A .()(),10,1-∞-B .()(),11,-∞-+∞C.()()1,01,-+∞ D .()()1,00,1-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(2017·贵阳市监测)已知向量()1,1m λ=+,()2,2n λ=+,若()()//m n m n +-,则λ= . 14.如果实数x ,y 满足条件20,20,10,x y x y --≥⎧⎪-≤⎨⎪+≥⎩则3z x y =+的最小值为 .15.(2017·德州市模拟)()()4211x x x ++-展开式中2x 的系数为 .16.已知数列{}n a 的前n 项和为n S ,且满足11a =,()12n n a S n N *+=∈,则n a = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2cos cos 2B A Ca b c-=-.(1)求ab的值; (2))若角A 是钝角,且3c =,求b 的取值范围.18. 某人经营一个抽奖游戏,顾客花费2元钱可购买一次游戏机会,每次游戏中,顾客从装有1个黑球,3个红球,6个白球的不透明袋子中依次不放回地摸出3个球(除颜色外其他都相同),根据摸出的球的颜色情况进行兑奖.顾客获得一等奖、二等奖、三等奖、四等奖时分别可领取奖金a 元,10元、5元、1元.若经营者将顾客摸出的3个球的颜色情况分成以下类别:A :1个黑球,2个红球;B :3个红球;C :恰有1个白球;D :恰有2个白球;E :3个白球,且经营者计划将五种类别按照发生机会从小到大的顺序分别对应中一等奖、中二等奖、中三等奖、中四等奖、不中奖五个层次. (1)请写出一至四等奖分别对应的类别(写出字母即可); (2)若经营者不打算在这个游戏的经营中亏本,求a 的最大值;(3)若50a =,当顾客摸出的第一个球是红球时,求他领取的奖金的平均值.19. (2017·长春市二模)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠=,PD ⊥平面ABCD ,1PD AD ==,点E ,F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ; (2)求PC 与平面PAB 所成角的正弦值.20. (2017·海口市调研)设直线()():10l y k x k =+≠与椭圆()22240x y m m +=>相交于A ,B 两个不同的点,与x 轴相交于点C ,O 为坐标原点.(1)证明:222414k m k>+; (2)若3AC CB =,求OAB △的面积取得最大值时椭圆的方程. 21. (2017·广西质检)设函数()()21ln ,,02f x c x x bx b c R c =++∈≠,且1x =为()f x 的极值点. (1)若1x =为()f x 的极大值点,求()f x 的单调区间(用c 表示); (2)若()0f x =恰有两解,求实数c 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭. (1)求曲线C 和直线l 在该直角坐标系下的普通方程;(2)动点A 在曲线C 上,动点B 在直线l 上,定点P 的坐标为()2,2-,求PB AB +的最小值. 23.选修4-5:不等式选讲 设,,a b c R +∈且1a b c ++=.(1)求证:21222c ab bc ca +++≤;(2)求证:2222222a c b a c b b c a+++++≥. 试卷答案一、选择题1-5:BDDAB 6-10:BCBAB 11、12:CD二、填空题13.0 14.2- 15.3 16.21,1,23, 2.n n n a n -=⎧=⎨⨯≥⎩三、解答题17.解析:(1)∵cos 2cos cos 2B A Ca b c-=-,∴()()cos 2cos cos 2c B A C a b -=-, 在ABC △中,由正弦定理有,sin cos 2sin cos 2sin cos sin cos C B C A A C B C -=-,即()()sin 2sin B C A C +=+, ∵A B C π++=, ∴sin 2sin A B =,∴2ab=. (2)由余弦定理2222299493cos 02366b a b b b A b b b+-+--===<⋅∴3b >,① ∵b c a +>, ∴32b b +>, ∴3b <,② 由①②得b 的范围是()3,3.18.解析:(1)()12133310103C C P A C C ⋅==, ()333310101C P B C C ==,()()1112613333101036C C C C P C C C +==, ()()21161333101060C C C P D C C +==, ()3633101020C P E C C ==,∵()()()()()P B P A P E P C P D <<<<. ∴中一至四等奖分别对应的类别是B ,A ,E ,C . (2)设顾客进行一次游戏经营者可盈利χ元,则χ()2a ---8 -3 1 2P3101C 3103C 31020C 31036C 31060C ∴()310122460361200a C -+--++≥,∴74a ≤,即a 的最大值为74元.(3)此时中一等奖的概率22122991C P C C ==;中二等奖的概率1121222992C C P C C ⋅==; 中三等奖的概率30P =,中四等奖的概率()1126224229918C C C PC C +==, ∴()2915038225011020118==369C +⨯+⨯++⨯元, 即此时顾客领取的奖金的平均值为229元. 19.解析:(1)证明:作//FM CD 交PC 于M . ∵点F 为PD 中点, ∴12FM CD =. ∵点E 为AB 中点, ∴12AE AB FM ==, 又//AE FM ,∴四边形AEMF 为平行四边形, ∴//AF EM ,∵AF ⊄平面PEC ,EM ⊂平面PEC , ∴直线//AF 平面PEC.(2)已知60DAB ∠=,∴DE DC ⊥, 如图,建立空间直角坐标系, 则()0,0,1P ,()0,1,0C ,3,0,02E ⎛⎫⎪ ⎪⎝⎭,31,,022A ⎛⎫- ⎪ ⎪⎝⎭,31,,022B ⎛⎫⎪ ⎪⎝⎭. 所以,31,,122AP ⎛⎫=-⎪ ⎪⎝⎭,()0,1,0AB =.设平面PAB 的一个法向量为:(),,n x y z =,∵0,0,n AB n AP ⎧⋅=⎪⎨⋅=⎪⎩ 则:310,220,x y z y ⎧-++=⎪⎨⎪=⎩解得:31,0,2n ⎛⎫= ⎪ ⎪⎝⎭, 所以平面PAB 的法向量为:31,0,2n ⎛⎫= ⎪ ⎪⎝⎭. ∵()0,1,1PC =-,∴设向量n 和PC 的夹角为θ, ∴42cos 14n PC n PCθ⋅==-,∴PC 与平面PAB 所成角的正弦值为4214.20.解析:(1)依题意,直线l 显然不平行于坐标轴,故()1y k x =+可化为11x y k=-. 将11x y k=-代入2224x y m +=,消去x , 得()()222214210k y ky k m +-+-=,①由直线l 与椭圆相交于两个不同的点,()()2222441140k k m k ∆=--+>,整理得222414k m k >+.(2)设()11,A x y ,()22,B x y .由①,得122214ky y k+=+,因为3AC CB =,得123y y =-,代入上式,得2214ky k -=+.于是,OAB △的面积12222211221442k k S OC y y y k k =⋅-==≤=+, 其中,上式取等号的条件是241k =,即12k =±. 由2214k y k -=+,可得214y =±. 将12k =,214y =-及12k =-,214y =这两组值分别代入①,均可解出252m =.所以,OAB △的面积取得最大值时椭圆的方程是2228155x y +=. 21.解析:()2c x bx c f x x b x x++'=++=,又()10f '=,则10b c ++=,所以()()()1x x c f x x--'=且1c ≠.(1)因为1x =为()f x )的极大值点,所以1c >, 当01x <<时,()0f x '>;当1x c <<时,()0f x '<; 当x c >时,()0f x '>,所以()f x 的单调递增区间为()0,1,(),c +∞;单调递减区间为()1,c . (2)①若0c <,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,()0f x =恰有两解,则()10f <,则102b +<,所以102c -<<;②若01c <<,则()()21ln 2f x f c c c c bc ==++极大值,()()112f x f b ==+极小值,因为1b c =--,则()()22ln 1ln 022c c f x c c c c c c c =++--=--<极大值,()12f x c =--极小值,从而()0f x =只有一解;③若1c >,则()()22ln 1ln 022c c f x c c c c c c c =++--=--<极小值,()12f x c =--极大值,则()0f x =只有一解.综上,使()0f x =恰有两解的c 的取值范围为102c -<<. 22.解析:(1)由曲线C 的参数方程1cos sin x y αα=+⎧⎨=⎩可得,()22221cos sin 1x y αα-+=+=,所以曲线C 的普通方程为()2211x y -+=.由直线l 的极坐标方程sin 224πρθ⎛⎫+= ⎪⎝⎭, 可得()sin cos 4ρθθ+=,即4x y +=. (2)设点P 关于直线l 的对称点为(),Q a b ,则()()224,22211,2a bb a -++⎧+=⎪⎪⎨-⎪⋅-=---⎪⎩解得2,6,a b =⎧⎨=⎩由(1)知,曲线C 为圆,圆心坐标为()1,0C , 故1371PB AB QB AB QC +=+≥-=-.当Q ,B ,A ,C 四点共线,且A 在B ,C 之间时,等号成立, 所以PB AB +的最小值为371-.23.证明:(1)因为()222221222422a b c a b c ab bc ca ab bc ca c =++=+++++≥+++,所以()22112422222c ab bc ca ab bc ca c +++=+++≤. (2)因为222a c ac b b +≥,222b a ab c c +≥,222c b bc a a+≥, 所以222222a c b a c b ac ab ab bc ac bc b c a bc c a b a +++⎛⎫⎛⎫⎛⎫++≥+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222c b a c a b a b c a b c b c c a b a ⎛⎫⎛⎫⎛⎫=+++++≥++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高等学校招生全国统一考试 仿真模拟(十) 理科数学 第Ⅰ卷(选择题,共60分) 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{|4}Axyx,{|1210}Bxx,则UCAB( )

A.(4,) B.10,2 C.1,42 D.(1,4] 2.复数z满足3(1)zii(i为虚数单位),则复数z在复平面内位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.执行如图的程序框图,则输出的S( )

A.21 B.34 C.55 D.89 4.函数()sin()(0,0)fxAxA的部分图象如图所示,则1124f的值为( )

A.62 B.32 C.22 D.-1 5.某中学有3个社团,每位同学参加各个社团的可能性相同,甲、乙两位同学均参加其中一个社团,则这两位同学参加不同社团的概率为( ) A.13 B.12 C.23 D.34 6.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为0.8155yx,后因某未知原因使第5组数据的y值模糊不清,此位置数据记为m(如下表所示),则利用回归方程可求得实数m的值为( )

x 196 197 200 203 204

y 1 3 6 7 m

A.8.3 B.8.2 C.8.1 D.8

7.已知实数x,y满足121yyxxym,如果目标函数zxy的最小值为-1,则实数m( ) A.6 B.5 C.4 D.3 8.(2017·唐山市二模)在四棱锥PABCD中,PA底面ABCD,底面ABCD为正方形,PAAB,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩

余部分体积的比值为( )

A.12 B.13 C.14 D.15 9.(2017·太原市一模)设函数()2xfxex,2()ln3gxxx,若实数a,b满足()()0fagb,则( )

A.()0()fbga B.()0()gafb C.0()()gafb D.()()0fbga 10.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为12R,2ABAC,120BAC,则球O的表面积为( ) A.169 B.163 C.649 D.643 11.(2017·咸阳市二模)已知双曲线1C:22221(0,0)xyabab的一个焦点F与抛物线2C:22(0)ypxp的焦点相同,它们交于A,B两点,且直线AB过点F,则双曲线1C的离

心率为( ) A.2 B.3 C.21 D.2

12.已知函数12,0()21,0xexfxxxx,若关于x的方程2()3()0()fxfxaaR有8个不等的实数根,则a的取值范围是( ) A.10,4 B.1,33 C.(1,2) D.92,4 第Ⅱ卷(非选择题,共90分) 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上) 13.(2017·福建省质检)已知向量a,b的夹角为23,1a,3b,则ab . 14.设曲线ln(1)yaxx在点(0,0)处的切线方程为2yx,则a .

15.(2017·石家庄市一模)已知椭圆2221xya的左、右焦点为1F、2F,点1F关于直线yx的对称点P仍在椭圆上,则12PFF的周长为 . 16.如图,在RtABC中,90A,D,E分别是AC,BC上一点,满足30ADBCDE,4BECE.若3CD,则BDE的面积为 .

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.正项等差数列{}na中,已知0na,12315aaa,且12a,25a,313a构成等比数列{}nb的前三项. (1)求数列{}na,{}nb的通项公式; (2)求数列{}nnab的前n项为nT. 18.甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3格,每局每人各投一球. (1)求比赛结束后甲的进球数比乙的进球数多1的概率; (2)设表示比赛结束后甲、乙两人进球数的差的绝对值,求的概率分布和数学期望()E. 19.如图,已知多面体ABCDEF中,ABCD为菱形,60ABC,AE平面ABCD,//AECF,1ABAE,AFBE.

(1)求证:平面BAF平面BDE; (2)求二面角BAFD的余弦值.

20.(2017·杭州市二模)设直线l与抛物线22xy交于A,B两点,与椭圆22143xy交于C,D两点,直线OA,OB,OC,OD(O为坐标原点)的斜率分别为1k,2k,3k,4k,若OAOB.

(1)是否存在实数t,满足1234()kktkk,并说明理由; (2)求OCD面积的最大值. 21.设()ln()1xaxfxx,曲线()yfx在点(1,(1))f处的切线与直线210xy垂直. (1)求a的值; (2)若[1,)x,()(1)fxmx恒成立,求m的取值范围;

(3)求证:*421ln21()41niinnNi. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.选修4-4:坐标系与参数方程 在直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知

直线l的参数方程为1cossinxtyt(t为参数,0),曲线C的极坐标方程为2sin4cos.

(1)求曲线C的直角坐标方程; (2)设直线l与曲线C相交于A,B两点,当变化时,求AB的最小值. 23.选修4-5:不等式选讲 已知函数()12fxxx. (1)求不等式()6fx的解集; (2)若存在实数x满足2()logfxa,求实数a的取值范围. 普通高等学校招生全国统一考试 仿真模拟(十) 理科数学 一、选择题 1-5: BBCDC 6-10: DBBBD 11、12:CD 二、填空题

13. 7 14. 3 15. 222 16. 435 三、解答题 17.解析:(1)设等差数列的公差为d,则由已知得:

1232315aaaa,即25a,

又(52)(513)100dd,解得2d或13d(舍去),

123aad,

所以1(1)21naandn, 又1125ba,22510ba,所以2q, 所以152nnb. (2)因为215[35272(21)2]nnTn, 2325[325272(21)2]nnTn,

两式相减得215[3222222nnT(21)2]5[(12)21]nnnn, 则5[(21)21]nnTn. 18.解析:(1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛结束后甲的进球数比乙的进球数多1个概率23212332112133233PCC333132333

12111

23236CCC



.

(2)的取值为0,1,2,3,所以的概率分布列为  0 1 2 3 P 724 1124 524 124

所以数学期望71151()0123124242424E. 19.解析:(1)证明:∵//AECF,∴四点A、C、F、E共面. 如图所示,连接AC,BD,相交于点O, ∵四边形ABCD是菱形,∴对角线BDAC, ∵AE平面ABCD, ∴AEBD,又AEACA, ∴BD平面ACFE, ∴BDAF, 又AFBE,BEBDB, ∴AF平面BDE, AF平面BAF,

∴平面BAF平面BDE.

(2)取BC的中点M, ∵60ABC,ABBC, ∴ABC是等边三角形,∴AMBC, 又//BCAD,∴AMAD,建立空间直角坐标系,

则(0,0,0)A,31,,022B,31,,22Fz,(0,1,0)D,(0,0,1)E. 31,,022AB,31,,22AFz,(0,1,0)AD,31,,122BE





.

∵AFBE.

相关文档
最新文档