有理数的乘方(1)

合集下载

1.6.1 有理数的乘方(1)

1.6.1  有理数的乘方(1)

按键顺序
显示
4 +/- yx 3 =
-64
4 +/- yx 4 =
16
知1-讲
(来自教材)
例2 下列对于-34的叙述正确的是( C ) A.读作-3的4次幂 B.底数是-3,指数是4 C.表示4个3相乘的积的相反数 D.表示4个-3的积
知1-讲
导引:注意-34与(-3)4的区别,前者表示34的 相反数,后者表示4个-3的积.
(来自《点拨》)
例3 把下列各式写成乘方的形式,并指出底数、 指数表示的含义.
知1-讲
(1)(-2)×(-2)×(-2);
(2) 2 2 2 2 ;
3333
(3) 3 3 3 3 3 . 导引:先5确5定底5 数5 ,5 再写成乘方的形式.
解:(1)(-2)×(-2)×(-2)=(-2)3;底数-2表示相同的因数;
1 课堂讲解 2 课时流程
有理数的乘方的意义 有理数的乘方运算
逐点 导讲练
课堂 小结
作业 提升
1.看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,
天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余
面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,
我就永远不用去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十
天他将吃到面包的______.
2.拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,
再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.
想想看,捏合
次后,就可以拉出32根面条.
知识点 1 有理数的乘方的意义
知1-讲
乘方的意义:求n个相同因数的积的运算,叫做乘方, 乘方的结果叫做幂,如: a•a••a ,

有理数的乘方(一)

有理数的乘方(一)
1 3 ) 2
解:1、53=5×5×5=125
1 2
当底数是负数 或分数时,书 写时一定要用 括号把底数括 起来.
2、(-3)4=(-3)×(-3)×(-3)×(-3)=81
3、(
)3=(
1 1 )×( 2 2
)×(
1 2
1 )= 8
如(-3)4 不能写成-34,
( 1 3不能写成 1 3 ) 2 2
第二章 有理数及其运算 9.有理数的乘方分 钟便由1个分裂成2 个。现有1个细胞, 经过5小时能分裂成 几个?
细胞分裂示意图
思考:
分裂5小时 会有多少 个细胞?
一次
2个
二次
2× 2个
三次
2×2×2个
5小时要分裂10次,所以共有细胞: 2×2×2…×2×2=1024个 10个2
计算: ① (-3)3;
③ (-1/2)2
3 (2/3)
② (-6)3;
4 (-2)
⑥ 7
4
例2:计算
(2) (1)
3 ( 2 ) 解: (1)
3
;(2)
2
4
3 ;(3) 4
2
=-[(-2)×(-2)×(-2)]=8;
=-(2×2×2×2)=-16;
3 3 =4
4 2 (2 )
试一试:
设n为正整数,计算:
(1)、
(-1)2n ;(2)、 (-1)2n+1 2n为偶数, 2n+1为奇 数
解:(1)、(-1)2n =1 (2)、(-1)2n+1=-1
说一说:
1、你能说一说本节课学到了哪些知识?

2、在有理数乘方运算中,你感觉需要注意哪些问题?

七年级数学《有理数的乘方(一)》教案

七年级数学《有理数的乘方(一)》教案

七年级数学《有理数的乘方(一)》教学设计分)到不同的发展,同时,及时反馈教学效果,随时调节教学进程。

教学程序问题与情境师生互动设计意图及媒体应用分析活动一创设情境,导入新课问题1:把一张纸对折2次可裁成几张?你能用算式表示吗?对3次呢?若对折10次可裁成几张?怎样用一个算式表示(不用算出结果)?若对折100次,算式中有几个2相乘?问题2:对折100次裁成的张数,可用算式表示,在这个积中有100个2相乘。

这么长的算式有简单的记法吗?【教师活动】(1)用一张纸边演示操作,边用课件出示问题1;(2)鼓励学生操作并猜测,在小组内讨论交流。

(3)关注并适时评价学生的表现。

结合学生回答板书:对折2次可以裁成2×2张;对折3次可以裁成2×2×2张;对折10次可以裁成2×2×2×2×2×2×2×2×2×2;对折100次的裁成的张数就是100个2相乘,黑板上能写下吗?有没有简单的记法呢?这就是本节课要研究的内容(揭示并板书课题)。

【学生活动】(1)动手操作感知问题,大胆提出猜想。

(2)将自己的猜想在小组内交流探讨,(1)问题旨在帮助学生认识数学与生活的密切关系,激发求知欲。

(2)学生自己动手折纸是为了获得亲身体验和感知问题,激发探索欲。

(3)通过独立思考大胆猜测、同伴讨论交流、代表发言让学生感受多种情感体验,并进一步理解问题。

【媒体应用分析】PPT课件出示问题1、2,引导学生理解建构乘方意义的必要性,为进一步探究乘方意义及运算打下伏笔。

教学反思:。

有理数的乘方(1)

有理数的乘方(1)

练习与作业:P43;P45T1,T2.
再 见
列式
2 2 ×2 2 ×2 ×2 2 ×2 × 2×2
数量(根)
2 4 8
简记
16
32 64
2 ×2 × 2×2×2
2 ×2 × 2×2×2×2
21 22 23 24 25 26
先填表,再观察所列式子,有什么发现?
如图,一正方体的棱长为4cm, 4×4×4 立方厘米. 则它的体积为_______
4
我能行 某种细胞每过 30 分 钟便由 1 个分裂成 2 个。 经过 24 小时,这种细 胞由 1 个能分裂成多少 个? 解: 每30分钟分裂一次,24小时能分裂48次。
248 = 281474976710656(个) ≈2.8×1014(个)
答:略
总结
正数的任何正整数次幂;负数的奇次幂 是负数,负数的偶次幂是正数;0的任何正 整数次幂都是0.
某种细胞每30分钟便由一个分裂成两 个.经过3小时这种细胞由1个能分裂成多少 个?
你能算出来吗?
分裂方式如下所示:
这个细胞分裂一次可得多少个细胞? 2× 2个 分裂两次呢? 分裂三次呢? 2× 2× 2个
6次
2个
那么,3小时共分裂了多少次?
可得多少个细胞? 2× 2× 2× 2× 2× 2 个
科学计算器
• 阿基米德故事告诉我们,当一粒米在64 格棋盘上,每个格都以倍数增加的时候, 最后一格就需要1800亿兆粒米,相当于 全世界米粒总数的10倍.这就是网络倍 增学的原理,也是被爱因斯坦称之为 世界第八大奇迹的市场倍增学的来历. 市场倍增学又叫网络学.自古以来广泛 运用于社会各个阶层的管理.现在好多 公司都借助于市场倍增学原理而设计 出各种营销方式.使赚钱变得轻松!

有理数的乘方 (1)

有理数的乘方 (1)

拓展提高
2.小明认为-42与(-4)2是一样的,你同意吗?
()
3 3 2 与 2 呢? 3 3
3.把下列相同的因数写成幂的形式,并说明底数和指数
(1)(6) (6) (6) =(-6)3 2 2 2 2 2 (2) =( )4 3 3 3 3 3
注意:底数如果是分数与负数时,要添上括号
学以致用
例1 计算:
(1)53
(2)(-3)4
1 3 (3) ( ) 2
学以致用
练习:
2 (2) -3) (3) -1.5) ( (
(1) 7
2
3
2 3 (4) ( ) 3
1 2 (5) - ) ( 7
学以致用
例2 计算:

( (1)- -2) (2) -2
3
4
3 (3) 4
2
学以致用
3 2 2 1.(1)- -3)(2)- - ) (3) -3 ( ( 4
创设 情境
一种细胞每过30分钟由1 个分裂成2个,经过1小时, 这种细胞由1个能分裂成多少 个? 经过1.5小时呢? 2小时呢? 5小时呢?
2
2×2
2×2×2
自主学习一
自学内容:自学课本P58页,例1以上的内容 自学时间:2分钟 自学要求: (1)理解乘方,指数,底数,幂的概念 n (2) 的含义是什么?底数是 ,指数是 a
2
2 (4) 5
3
学以致用
有一张厚度是0.1毫米的纸,将它对折1 次后,厚度为2×0.1毫米。
1次
2次
15次
(1)对折2次后,厚度为多少毫米? (2)对折15次后,厚度会超过你的身高,你相信吗?
1.学习本节课你有哪些感受? 2.乘方的意义,你懂了吗?

有理数的乘方(一)AnUlUP

有理数的乘方(一)AnUlUP

●课题有理数的乘方(一)●教学目标(一)教学知识点1.有理数乘方的意义.2.能进行有理数的乘方运算.(二)能力训练要求1.在现实背景中,理解有理数乘方的意义.2.能进行有理数的乘方运算.(三)情感与价值观要求通过师生共同交流,渗透利用数学知识解决实际问题的思想,以激发学生学习的兴趣,树立解决问题的信心.●教学重点有理数乘方的意义.●教学难点1.理解有理数乘方的意义上有困难.2.合理进行乘方运算.●教学方法讲练结合法●教具准备细胞分裂示意图投影片四张第一张:练习(记作§2.10.1 A)第二张:例1(记作§2.10.1 B)第三张:例2(记作§2.10.1 C)第四张:法则(记作§2.10.1 D)●教学过程Ⅰ.创设情景问题,引入课题[师]我们知道,每个生物体都是由细胞组成.动物由动物细胞组成,植物由植物细胞组成.活的细胞和生物体一样,也经过生长、衰老、死亡几个阶段.细胞本身的繁殖是以细胞分裂方式进行的.大家来观察一幅某种细胞分裂示意图:(出示“细胞分裂示意图”)这种细胞每过30分钟便由1个分裂成2个.想一想:经过5小时,这种细胞由1个能分裂成多少个?[生]1个细胞30分钟后分裂成2个,1个时分裂成4个,1.5小时后分裂成8个,2小时后分裂成16个,……,5小时后,这种细胞由1个能分裂成1024个.[师]对,1个细胞30分钟后分裂成2个,这是第一次分裂;1小时后分裂成4个,可以写成2×2,这是第二次分裂,1.5小时后分裂成8个,可写成2×2×2,这是第三次分裂,2小时后分裂成16个,也可写成2×2×2×2,这是第四次分裂,依次类推,想一想:5小时要分裂多少次?[生甲]5小时要分裂10次.[生乙]老师,我知道了,经过一次细胞分裂,1个可分裂成2个,经过二次分裂,1个可分裂成2×2个,经过三次分裂,1个可分裂成2×2×2个,这样依次类推,经过十次这样的分裂,1个便可分裂成[师]乙同学分析得很好,经过十次分裂后,1个细胞可以分裂成:个,但10个2相乘写起来挺麻烦的,为了简便,可将记为210,210表示有10个2相乘,我们把这种运算叫乘方.今天我们就来探讨有理数的乘方.Ⅱ.讲授新课[师]在小学中,我们把a×a记作a2,读作a的平方,或a的二次方.想一想:a×a 表示什么?[生]表示边长为a的正方形面积.[师]对,还把a×a×a记作a3,读作a的立方,或a的三次方.那a×a×a表示什么?[生]表示棱长为a的正方体的体积.[师]很好,刚才我们又把记作210.一般地,我们有:n个相同的因数a相乘,记作a n,即:这种求n个相同因数a的积的运算叫做乘方(Power).乘方的结果叫做幂(Power).在a n中,a叫做底数(base number).n叫做指数(exponent).a n读作a的n次方.a n看作是a的n 次方的结果时,也可读作a 的n 次幂.在这儿需要注意:乘方是一种运算,幂是乘方运算的结果.如:在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂. 下面我们做一练习来熟悉这些概念(出示投影片§2.10 A ),口答: 1.填空: (1)(-1)12的底数是_____,指数是_____. (2)(-3)11表示_____个_____相乘. (3)(-21)5的指数是_____,底数是_____. (4)7.54的指数是_____,底数是_____. [生](-1)12的底数是-1,指数是12. (-3)11表示11个-3相乘. (-21)5的指数是5,底数是-21, 7.54的指数是4,底数是7.5.[师]很好.那5的底数是什么?指数是什么? [生]5的底数是5,没有指数. [师]对吗? ……[师]在这里需要注意:一个数可以看成这个数本身的一次方.如:5就是51,指数1通常省略不写.大家也可以这样理解:指数就是指相乘的因数的个数,指数是1,就是指只有一个因数.a n 就是n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算. 下面通过例题来熟悉有理数的乘方运算.(出示投影片§2.10 B )[例1]计算:(1)53; (2)(-3)4; (3)(-21)3解:(1)53=5×5×5=125. (2)(-3)4=(-3)·(-3)·(-3)·(-3)=81. (3)(-21)3=(-21)·(-21)·(-21)=-81注意:(1)当底数是负数或分数时,书写时一定要先用小括号将底数括上,再在其右上角写指数.如:(-3)4不能写成-34,(-21)3不能写成-213. (2)在不会引起误解的情况下,乘号也可以用“·”表示.例如:(-3)×(-3)×(-3)×(-3)×(-3) 可写成:(-3)·(-3)·(-3)·(-3)·(-3)接下来,我们做一练习来熟悉有理数的乘方运算(出示投影片§2.10 C )1.计算: (1)(-1)10; (2)(-1)7; (3)83; (4)(-5)3; (5)(-0.1)3;(6)[生]解:(-1)10=1; (-1)7=-1;83=512;(-5)3=-125; (-0.1)3=-0.001;(-21)4=161; 102=100;103=1000;104=10000;(-10)2=100;(-10)3=-1000; (-10)4=10000[师]很好,大家都注意了底数是负数的乘方的表示.下面我们来观察刚才练习题的结果,你能发现什么规律?可互相交流.[生]正数的任何次幂都是正数;负数的偶次幂是正数,负数的奇次幂是负数. [师]对.大家从计算结果中,归纳出乘方运算的符号法则:(出示投影片§2.10 D )很好.大家再想一想:0的任何次幂等于多少?1的任何次幂等于多少?以10为底数的幂有何特点?[生]由有理数的乘法可以得到:0的任何非零次幂等于0,1的任何次幂等于1. 10的几次幂,在1的后面有几个0.[师]这位同学总结得非常正确.下面,我们通过课堂练习进一步熟悉有理数乘方的概念及其运算.Ⅲ.课堂练习 课本P 73 随堂练习 1.(1)在74中,底数是_____,指数是_____.(2)在(-31)5中,底数是_____,指数是_____. 答案:(1)7,4;(2)-31,52.计算:(1)(-3)3;(2)(-1.5)2;(3)(-71)2解:(1)(-3)3=(-3)·(-3)·(-3)=-27 (2)(-1.5)2=(-1.5)·(-1.5)=2.25 (3)(-71)2=(-71)·(-71)=4913.一个数的平方为16,这个数可能是几?一个数的平方可能是零吗?答案:一个数的平方为16,这个数是4或-4.一个数的平方可能是零.0的平方是0. 4.看课本P 72~73 5.试一试设n 为正整数,计算: (1)(-1)2n . (2)(-1)2n +1.分析:n 为正整数时,2n 表示偶数,2n +1表示是奇数.所以由乘方的符号法则,即可得出.解:(-1)2n =1 (-1)2n +1=-1 Ⅳ.课时小结本节课主要学习了有理数的乘方的意义.有关概念及其有理数乘方运算.通过本节的学习,要明确乘方和加、减、乘、除一样,是一种运算,是求n 个相同因数的乘积的运算.乘方实质是一种特殊的乘法运算.幂与和、差、积、商一样,是乘方运算的结果.乘方运算与加减乘除的运算步骤一样,先确定符号,再计算绝对值.Ⅴ.课后作业(一)课本P 74习题2.13 1、2、3.3.1米长的小棒,第一次截去一半,第二次截去剩下的一半,如此截下去,第七次后剩下的小棒有多长?解:第七次后剩下的小棒有:(21)7=21×21×21×21×21×21×21=1281(米) (二)预习内容:课本P 75.准备一张白纸.Ⅵ.活动与探究1.如果|a +1|+(b -2)2=0,求(a +b )39+a 34的值.过程:让学生通过讨论、探索知道:任何一个数的绝对值是一个非负数;任何一个数的平方也是一个非负数;两个非负数的和等于0,则这两个数都为0.这样:a 、b 即可解出.结果:因为|a +1|+(b -2)2=0 所以a +1=0,b -2=0 即a =-1,b =2因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2. 2.用计算器补充完整下表:31 32 33 34 35 36 37 38 392781从表中你发现3的方幂的个位数有何规律?3225的个位数是什么数字?为什么?过程:让学生用计算器填完表后,认真观察,找出规律,根据规律,确定3225的个位数字.结果:31 32 33 34 35 36 37 38 39278124372921876561从表中发现3的方幂的个位数呈周期性变化,变化周期是4. 因为225=56×4+1,所以3225的个位数是3.●板书设计§2.10.1 有理数的乘方(一)一、乘方:二、例1例2●备课资料 参考练习题 1.选择题:(1)109表示( )A .10个9连乘B .10乘以9C .9个10连乘D .9个10连加(2)一个数的平方是正数,那么这个有理数的立方是( ) A .正数 B .负数 C .正数或负数 D .奇数 (3)一个数的平方等于它的倒数,这个数一定是( )A .0B .1C .-1D .2(4)计算(-1)2000+(-1)2001÷|-1|的值等于( )A .0B .1C .-1D .1或-1(5)关于(-3)4的正确说法是( ) A .-3是底数,4是幂B .-3是底数,4是指数,-81是幂C .3是底数,4是指数,81是幂D .-3是底数,4是指数,81是幂 答案:(1)C (2)C (3)B (4)A (5)D2.把下列各式写成乘方运算的形式,并指出底数、指数各是什么? (1)(-1.3)·(-1.3)·(-1.3)·(-1.3) (2)51×51×51×51×51×51 答案:(1)(-1.3)(-1.3)(-1.3)(-1.3)=(-1.3)4,其中,底数是-1.3.指数是4.(2)51×51×51×51×51×51=6)51(,其中:底数是51,指数是6. 3.计算:(1)(-5)2; (2)(-43)3;(3)(-101)4; (4)5×(-51))3.答案:(1)25 (2)-6427) (3)100001) (4)-251。

有理数的乘方(一)教案

第二章有理数及其运算10.有理数的乘法〔一〕一、学生起点分析:学生的知识技能根底:学生在小学已经学习过非负有理数的乘方运算,并且知道a×a 记作a²,读作a的平方或a的二次方,前几节课,学生已掌握了有理数的乘法法那么,具备了进一步学习有理数的乘法运算的知识技能根底.学生的活动经验根底:在以往的学习过程中,学生经历了不同类型的数学活动,积累了较为丰富的经验,合作学习的能力和探究学习的意识都有明显的进步,尤其是语言表达能力的提高,为本节课的学习奠定了重要的根底.二、学习任务分析:教科书在学生熟练掌握了有理数的乘法运算的根底上,尤其是在学生具备了一定的学习能力和探索意义,探究方法的根底上,提出了本节课的具体学习任务,理解有理数乘方的意义,掌握有理数乘方的概念,学会有理数乘方的运算,本节课的教学目标是:1、2、掌握有理数乘法的概念,能进行有理数的乘方运算.3、经历有理数乘方的符号法那么的探究过程,通过实际计算,发现和记忆底数为10的幂的特点以及底数为0或1的幂的特点.三、本节课设计了六个环节:第一环节:现实情境,引入新课;第二环节:定义乘方,熟悉概念;第三环节:例题练习,乘方运算;第四环节:特例归纳,符号法那么;第五环节:课堂小结;第六环节:布置作业,第一环节:现实情境,引入新课活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数.活动目的:感受现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,面对实际问题,主动尝试从数学的角度运用所学知识解决实际问题,并在解决问题的过程中体验到乘法运算的必要性和优越性,同时体会细胞分裂的述度非常快,从而引出本节课的学习课题:有理数的乘方.活动的本卷须知:在活动中需要运用乘法运算计算五小时一个细胞能分裂成多少个细胞,这个过程不要一次完成,而应让学生仔细分析,逐步完成,并依次类推,如果一次分裂成2个,第2次分裂成2×2个,第三次分裂成2×2×2个.因为五小时要分裂十次,所以第十次分裂成2×2×2………×2×2个.得到这个结果时要指出两点:一是让学生感受细胞分裂的速度非常快的事实.二是要指出这种表示方法很复杂,为了简便,可将它写成210,表示10个2相乘,培养学生的符号感,同时指出这就是乘法运算,从而引出本节课的学习内容:有理数的乘方. 第二环节:定义乘方,熟悉概念活动内容:1.归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。

有理数的乘方(1)

2.6有理数的乘方(1)主备人:王树山学习目标:1、理解有理数乘方的意义;2、能进行有理数的乘方运算。

课前预习:1、 填空(1) _______⨯=++222 (2)()()()()________⨯=-+-+-+-2222(3) 2222222222⨯⨯⨯⨯⨯⨯⨯⨯⨯你有什么简单的表示方法吗?(4) 2121212121212121212121⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯你有什么简单的表示方法吗?(5)n aa a a a ⨯⨯⨯⨯ 个记作___________2、 叫做乘方,乘方的结果叫做 . 在n a 中,a 叫做 , n 叫做 ,n a 读做 . 教学过程:一、展示交流:二、合作探究:例1.把下列各式写成幂的形式:(1)3333____________;⨯⨯⨯= (2)111________;222⨯⨯=(3)(3)(3)(3)(3)(3)________;-⨯-⨯-⨯-⨯-= (4)2222______.3⨯⨯⨯= 例2. 计算:(1)62 (2)3(5)- (3)4(3)-例3.计算:(1)51()2 (2)33()5 (3)42()3-讨论:(1) 3322-)(与-有什么区别?(2)223232与⎪⎭⎫ ⎝⎛有什么区别? (3)()_________,)(______,_____,_____,=-=-===2222231931 ___________,==⎪⎭⎫ ⎝⎛-22032 (4)()_________,)(______,_____,_____,=-=-===3333331931 ___________,==⎪⎭⎫ ⎝⎛-33032 例4、手工拉面是我国的传统面食。

制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折,每次对折称为一扣,如此反复操作,连续拉扣六七次后便成了许多细细的面条。

你能计算出拉扣8次后共有多少根面条吗?那18次呢?三、质疑反馈:1. (1)在49中,底数是 ,指数是 ,49读作 ;(2)75,底数是 ,指数是 。

2.10有理数的乘方(1)

课题:2.10有理数的乘方【学习目标】1、能让学生在一定的现实背景中理解有理数乘方的意义;2、会熟练地进行有理数的乘方运算。

【候课朗读】有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;特别地,互为相反数的两个数相加得 0 。

(3)一个数同0相加,仍得这个数有理数减法法则:减去一个数,等于加上这个数的相反数。

有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数和0相乘,积都为 0 。

有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个非0的数都得 0。

(注意:0不能作除数)除以一个数等于乘以这个数的倒数。

【学习过程】◆学习准备1.计算2+2+2+2+2时有简便运算2.观察课本83页细胞分裂示意图,你有没有办法表示出5小时后的细胞总数:1个细胞,30分钟后变成____个,1小时后变成____个(即___×___),1.5小时后分裂成____个(即___×___×___),2小时后一共分裂了_____次,表示结果的式子______ ____=____,2.5小时后一共分裂了_____次,表示结果的式子_______ ___=____,……5小时后一共分裂了_____次,表示结果的式子________ __=____,10小时后一共分裂了_____次,表示结果的式子_____ _____=____,这是一种_____运算。

3.回想一下两个相同因数的积叫什么?如3×3=___其中__ _叫___ ,___叫___◆探究发现新知识点:知识点1 乘方:一般地,n个相同因数a相乘,记作a n,即a×a×a×…×a=a n 这种运算就是乘方,它的运算结果叫_____,a叫_____,n叫_____ a n读作_____(或______)31 ,特别地规定:一个数的1次方,就是它本身。

2.7有理数的乘方(1)

5 3
例题
例1 :计算 (1) 26 (5 ) 6 2
(6)(- 4) 3 (7)-4 3
(2 ) 7 3
(3) (-3)4
(4)-34
分别将上面的7个式子读一读! 比一比: (1)与(5)一样吗? (3)与(4)一样吗? (6)与(7)一样吗?
例题
例2 :计算
1 5 (1)( ) (2) 2
3 ( 3) 5
7
你得出了什么结论? 负数的奇次幂是负数 负数的偶次幂是正数. 你还能得出什么结论吗? -1 -1的偶次幂是___;-1 1 的奇次幂是____.
D
C
D A
(3) 4
14
3的4次方(幂)
2
196
100000 1000000 10000000
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
如:
10 读作 10的平方 ,也读作 10的二次方 8 读作 8的立方 ,也读作 8的三次方
——————————— 3 ——————————— 2 —————————————— ———————————————


指出下列每个幂的底数和指数:
2 3 3 2 3 , ( 2) , ( ) , 5 , 0.5 5 2 2 4 5 2 8 13 , ( ) , ( 3) , 7 , 0 7
注意
a
n
①底数是相同的因数; ②指数是相同的因数的个数; ③幂是乘方运算的结果,与加法的和、减法的 差、乘法的积、除法的商地位一样. ④乘方运算不具有交换性.即:32和23的区别. ⑤特殊地,指数为1可省略,指数为2也称为平 方,指数为3也称为立方.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的乘方(1)
课堂练习
1.(-3)2的值是 ( )
A.9 B .-9 C.6 D .-6
2.下列对于-(-3)4,叙述正确的是 ( )
A.表示-3的4次幂
B.表示4个3相乘的积
C.表示4个-3相乘得积的相反数
D.表示4个-3的积
3.下列说法正确的是 ( )
A.一个数的平方一定大于这个数
B.一个数的平方一定是正数
C.一个数的平方不可能是负数
D.一个数的平方一定小于这个数的绝对值
4.若x 4=(-7)4,则x 的值是 ( )
A.7 B .-7 C.2401 D .±7
5.(-72
)3的指数为 ,底数为 ,结果为 .
6.(43
-)3= ,-(43
)3= ,-433
= .
7.平方等于它本身的数是 ,立方等于它本身的数是 .
8.计算: (1)34 (2)(-53
)3 (3)(-1)12+n (n 为自然数) (4)5×32
9.若n 为自然数,求(—1)n 2—(—1)12+n +(-2)3的值
拓展练习
1.下列说法中正确的是 ( )
A.23表示2×3的积
B.任何一个有理数的偶次幂是正数
C.-32与(-3)2互为相反数
D.一个数的平方是94,这个数一定是32
2.如果一个有理数的平方等于(—2)2,那么这个有理数等于 ( )
A.-2
B.2
C.4
D.2或-2
3.互为相反数的两个数,它们的奇数次幂 ( )
A.相等
B.互为相反数
C.互为倒数
D.以上都有可能
4.若n 为正整数,则211n n )
(--的值是 ( )
A.1
B.0
C.-1
D.1或0
5.下列计算中错误的个数是 ( )
①(21
)2=41
;②—52=25;③542=2516;④—(—91
)2=811
;⑤(—1)3=—1;
⑥—(—0.1)3= —0.001. A.1个 B.2个 C.3个 D.4个
6.下列各式一定成立的有 .①a 2=(-a)2;②a 3=(-a)3;③|a 2|=|a|2;④a 3=|a 3|;⑤-a 2=|-a 2|.
7.若x 2=4,则x= .
8.若n 是正整数,则(—1)n 2+(—1)12 n = .
9.计算:(1)3×(—2)4 (2)(—6)×(—3)3
(3)—32
×32 (4)(—4)2×(—1)5
10.如果有理数a,b 满足|a 2-1|+(b+1)2=0,那么a 201+b 200的值是多少?
11.回答下列问题:
(1)看一看,下面两组算式:(3×5)2与32×52,[(-21
)×4]2与(—21
)2×42,每
组两个算式的计算结果是否相等?(2)想一想:(ab )3等于什么?
(3)猜一猜:当n 为正整数时,(ab )n 等于什么?
12.问题:如果今天是星期天,那么你知道再过2100天是星期几吗?大家都知道,一个星期有7天,要解决这个问题,我们只需要知道2100被7除的余数是多少就可以解决了,假设余数是1,因为今天是星期天,那么再过2100天就是星期一;假设余数是2,那么再过2100天就是星期二;假设余数是3,那么再过2100天就是星期三……首先通过列出左侧的算式,可以得出右侧的结论:
(1)21=0×7+2 显然21被7除的余数为2;(2)22=0×7+4 显然22被7除的余数为4;
(3)23=1×7+1 显然23被7除的余数为1;(4)24=2×7+2 显然24被7除的余数为 ;
(5)25= 显然25被7除的余数为 .(6)26= 显然26被7除的余数为 .
(7)27= 显然27被7除的余数为 ;……通过仔细观察上面的结果所反映出的规律,我们可以猜想出2100被7除的余数是 .所以,再过2100天一定是星期 . 同理,我们也可以做出下列判断:如果今天是星期三,那么再过2100天一定是星期 .。

相关文档
最新文档