虑波及无功补偿技术方案

合集下载

无功补偿及谐波治理方案

无功补偿及谐波治理方案

时值,并基于此精确获取各分相及总的实时基波有功功率、无功
功率及基波功率因数。并在此基础上计量电能。

LLJ-SVC系统在补偿及滤波中实现的各种控制、保护及状态识别等
功能均基于它准确、全面的检测结果。很明显,LLJ-SVC采用的检测
手段完全克服了电网谐波、三相不平衡等因素的影响。概括起来,具
有以下鲜明的特点:
短时运行24小时,当电网电压过高时,将引起电容器内部有功功率损
耗显著增加,使电容器介质遭受热力击穿,影响其使用寿命,而传统
自动补偿设备不能实时检测电容器电压,极容易造成电容器的烧毁。

2)采用传统熔断器保护方式的设备当发生过流或短路现象造成熔
断器熔断时,由于熔断器熔丝不能恢复,只能更换熔断器,造成极大
在此基础上极大地丰富了产品的功能,在提升该类产品自动化运行水
平的基础上,更加提升了设备维护与管理的智能化水平。
1)LLJ-SVC 检测技术

与传统方法不同,LLJ-SVC采用32位高速数字信号处理器
(DSP)TMS320F2811做为核心控制单元对三相交流电压(UA、UB、
UC)、三相系统总电流(ias、ibs、ics)、三相无功补偿电流(iac
• 无功功率并不是无用的功率,交流工频电网中如电动 机、变压器等电力负荷都是电磁转换工作原理,我们在使 用这些设备完成电能向需要的机械能、热能、光能等能量 方式转换的同时必须有相应的无功功率交换才能实现。在 理想状态下无功功率只用于负载励磁在负载与电网之间反 复交换而不进行其它能量方式的转换,但由于载流体电阻 及导磁体磁阻的原因导致无功电流在流动过程中产生电能 向热能转换从而出现不期望的能量损失。
的浪费。
2.4 传统无功自动补偿设备投切方式及局限性

无功补偿谐波治理方案

无功补偿谐波治理方案

…..公司低压动态无功补偿及谐波治理方案北京XXXXXXX有限公司2014年8月15日目录一、绪论 (3)二、概述 (3)三、采用标准 (4)四、动态无功补偿滤波技术方案设计 (5)4.1、设备总体概述 (5)4.2、无功补偿消谐装置整体描述 (6)4.3、系统设计 (7)补偿系统补偿效果仿真图: (11)4.4功能描述 (13)4.5 控制策略 (14)4.6后台数据管理系统及控制特性 (14)4.7系统组成 (15)五、供货清单 (15)一、绪论随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。

诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。

上述电力电子设备是谐波产生的源头。

谐波电流的危害是严重的,主要有以下几个方面:•谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。

•谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。

•谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。

•谐波电流对临近的通讯设备产生干扰。

•谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。

•谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。

二、概述根据贵公司提供的相关资料分析、计算和仿真(附件5配合仿真图),结合我公司多年来对轧机进行动态无功功率补偿及谐波抑制技术的经验和对轧机电气系统、生产工艺的透彻掌握,综合提出本方案,确保补偿装置投运后接入点的功率因数在0.92(含0.92)以上,各次谐波含量达到国标要求。

三、采用标准1、GB12326-2000 “电能持量电压波动和闪变;2、GBH14549 “电能质量公用电网谐波”;3、DLH599-1996 城市低压配电网改造技术导则;4、GBH17886.1-1999 “标称电压10KV及以下交流电力系统用非自愈并联电容器”;5、GB/T14549-93 《电能质量,公用电网谐波》;6、GB12325-90 《电能质量,供电电压允许偏离》;7、GB12326-90 电能质量,供电允许波动和闪变》;8、GB/T15576-1995 低压无功功率静态无功补偿装置总技术条件;9、JB/DQ6141-86 《低压无功功率补偿装置》;10、GB3983.1-89 《低电压并联电容器》;11、JB7113-93 《低压并联电容装置》;12、DL/T597-1996 《低压无功补偿控制器定货技术条件》;13、GB4208-93 外壳防护等级(IP代码);14、GB2681-81 电工成套装置中的导线的颜色等;15、GB2682-81 电工成套装置中的指示灯和按钮的颜色;16、GB3797-89 电控设备第二部分装有电子器件的电控设备;17、GB4720-84 电控设备第二部分低压电器电控设备;18、GB4205 控制电器设备的操作件标准运动方向;19、GB11463-89 电子测量仪器可靠性试验;20、GB7251 低压成套开关设备;21、GB12325-90 电能质量供电电压允许偏差;22、GB4588.2 有金属化孔的单、双面控制板技术条件;23、GB4942.2-85 低压电器外壳防护等级;24、GB12747-91 自俞式低压并联电容器。

10kV电力滤波及无功补偿( FC)装置技术规范文件

10kV电力滤波及无功补偿( FC)装置技术规范文件

35KV/10KV开关站工程10kV电力滤波及无功补偿(FC)装置技术规范文件2011年11月总则1.本规范书适用于10kV电力滤波及无功补偿(FC)装置,符合国家标准GB/T14549-1993、GB/T12326-2008 、SD-325-1989等功能设计、结构、性能、安装和试验等方面的技术要求。

2.本规范书提出的是最低限度的技术要求,并未对一切技术细节做出说明,未充分引述有关标准和规范的条文,卖方提供符合本技术书和工业标准的优质产品。

3.卖方企业标准与要求执行的标准发生矛盾时,按较高标准执行。

4.本规范书作为10kV电力滤波及无功补偿(FC)装置的技术协议,经卖方和买方共同签署生效,并作为合同附件,与合同具有同样的法律效力。

5.本规范书未尽事宜,由买卖双方协商解决。

1、环境及电气参数1.1 使用环境条件:海拔高度<1000m环境温度: +40℃~–25℃最大日温差:≤15K相对湿度:日相对湿度平均值不大于95%月相对湿度平均值不大于90%地震烈度按8级设防安装地点户内式1.2电网参数:额定电压 10kV额定频率 50Hz短路电流 40kA(暂定)电能质量考核点(PCC点)为: 10kV母线1.3负荷参数:武汉重治集团大冶分公司新建一座110kV变电站,有一台50MVA的110/35/10变压器,10kV母线两段进线,主要负荷为动力用变压器、变频调速风机、电源线路、中频炉、电渣炉等。

其中动力用变压器负荷均为100%备用(正常运行时仅有一台变压器投入),线路负荷仅考虑制氧(8000kW,一路),其余如铁烧焦、电渣炉等均不考虑。

实际负荷运行情况见下表所示,补偿方案中应考虑预留10000kW负荷的补偿容量:2、应达到的技术指标2.1执行标准,但不仅限于下列标准,本设备技术条件所使用的标准与卖方所执行的标准不一致时,按较高标准执行。

国家标准GB/T14549-1993《电能质量公用电网谐波》国家标准GB/T12326-2008《电能质量电压波动和闪变》SD-325-1989《电力系统电压和无功电力技术导则》2.2谐波允许值2.2.1谐波电流值应满足指标:《电能质量公共电网谐波》GB 14549-93。

无功补偿方案

无功补偿方案

无功补偿方案
无功补偿是指在交流电力系统中由于电源的无功功率和负载的无功功率不一致,造成电能的浪费和电网的负荷,需要通过无功补偿来调节电源和负载之间的功率平衡。

为了解决无功补偿问题,我提出以下方案:
第一,谐波滤波器的安装。

由于非线性负载设备的普及,谐波污染越来越严重。

谐波滤波器能够对系统内产生的谐波信号进行滤波,使系统内的谐波信号减小到规定的限值以下,并提高系统的功率因数。

因此,在重要的配电站、变电站、负载集中区等地方配置谐波滤波器,可以解决无功补偿问题。

第二,采用无功补偿装置。

无功补偿装置是在配电系统中使用的一种电器设备,它能够实时监测系统的功率因数,并根据监测结果自动调节电感、电容器等元件的工作状态和容量,从而改变系统的无功功率,实现无功补偿。

无功补偿装置可以根据实际需要的无功功率大小进行配置,提高系统的功率因数,减少系统的无功损耗。

第三,建立无功补偿管理系统。

无功补偿管理系统是指在电力系统中采用先进的集中控制技术和信息化管理手段,对无功补偿设备进行综合管理和运行控制。

通过无功补偿管理系统,可以实时收集和监测系统的无功功率信息,对系统的功率因数进行调整和优化,提高系统的运行效率和电能利用率。

同时,无功补偿管理系统还可以对设备的运行状态进行监控和评估,及时发现和处理故障,提高系统的可靠性和稳定性。

总之,无功补偿是解决交流电力系统中功率平衡的重要措施。

通过谐波滤波器的安装、无功补偿装置的使用和无功补偿管理系统的建立,可以有效地解决无功补偿问题,提高电能的利用效率,减少对电网的负荷。

这些措施的推行和实施将对电力系统的稳定运行和节约能源起到积极的促进作用。

滤波器设计技术方案(DOC)

滤波器设计技术方案(DOC)

技术方案总体说明宁夏佳盛远达铝镁新材料有限公司整流机组滤波补偿装置是依据招标文件提供的技术参数,并且参考了同等规模、同类负荷项目的基础上经进一步优化得出,主要参考工程如下:一、本技术方案的特点(1)无功补偿量的确定参考了上述项目的经验,确保不欠补也不过补。

本方案设计单机组总安装容量26000kvar,基波补偿容量19700kvar。

(2)滤波装置设5次、7次以及11次高通滤波支路,其中5、7次单调谐支路以补偿为主,同时防止11次以下非特征谐波放大,11次(高通)作为主滤波通道,以滤除12脉特征谐波.(3)滤波装置采用双星型中性点不平衡电流保护,该保护方式可以很灵敏地检测出电容器内部故障。

同时在滤波支路中加装避雷器和中性点避雷器,以消除由于电容器投切过程中产生的过电压,保护第三绕组系统及电容器装置使其免受到过电压的冲击。

(4)装设滤波补偿成套装置后,公共考核点电能质量能够达到如下指标:滤波补偿装置在电解系列电流500 KA运行时,以及在8台机组和7台机组运行,以及全系列和半系列运行时,整流机组注入电网的谐波电流及谐波电压畸变率应满足GB/T14549—93国家标准的要求。

电压总谐波畸变率THDu≤1%。

允许注入公共联接点的谐波电流允许值按国家标准要求考核.在8套机组运行时,整流装置的总功率因数为≥0。

95,任何运行情况下总功率因数≯1;在7套机组运行时,整流装置的总功率因数为≥0。

90,在任何情况下运行均不会产生谐振。

不损坏电容器等设备。

滤波通道设置5次、7次、11次共3个滤波通道,满足在任何运行方式(8套机组运行或7套机组运行)时,供电系统均不发生谐振,且谐波含量均满足本技术要求中“允许注入公共联接点的谐波电流允许值"要求。

二、本次方案针对铝厂的特殊考虑1、针对国内电解铝行业整流变第三绕组发生事故较多的现象,本方案采取以下措施来保证第三绕组的安全性.装设谐波保护单元,当检测谐波电流超过设计整定值时跳开电容器。

无功补偿与谐波治理方案

无功补偿与谐波治理方案

无功补偿与谐波治理方案一、前言本学期,苏州XXX电力公司为我们开设了《电能需求侧管理》与《电能质量分析与控制》两门课程。

通过对相关课程的学习以及对网络与图书馆相关资料的学习了解,我对电能质量及相关方面有了更深认识。

在供电系统中,为了节能降损、提高电压质量和电网经济运行水平,经常采用各种无功补偿装置。

近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电气化铁路大量应用。

这些负荷大都具有非线性、冲击性和不平衡性的特点,在运行中会产生大量谐波。

这些谐波对无功补偿装置造成了严重影响。

在供电系统中,对于某次谐波,作为无功补偿用的并联电容器若与呈感性的系统电抗发生谐振,则会出现过电压而造成危害。

当无功补偿装置运行地点的谐波比较严重时,电压、电流波形会有很大畸变,电容器投切控制信号的传输就会受到影响,从而有可能引起装置的误动或拒动。

另一方面,并联电容器对电网谐波的影响也很大。

若电容器容抗和系统感抗配合不恰当,将会造成电网谐波电压和电流的严重放大,给电容器本身带来极大损伤。

可见,无功补偿与谐波治理两者关系密切。

产生谐波的装置大都是消耗基波无功功率的装置;治理谐波的装置通常也是补偿无功的装置。

因此,为了寻求能同时实现无功补偿和谐波治理的装置,就必须将二者结合起来进行研究。

二、何为谐波电力系统中除基本波(50/60Hz)外,任一周期性讯号,都称为谐波。

“谐波”一词起源于声学。

有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。

傅里叶等人提出的谐波分析的方法至今仍被广泛应用。

电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。

到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。

70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。

谐波研究的意义,是因为谐波的危害十分严重。

无功补偿谐波治理方案及元器件的选取

无功补偿谐波治理方案及元器件的选取无功补偿和谐波治理是电力系统中重要的技术手段,可以提高系统的稳定性和质量。

在设计无功补偿和谐波治理方案时,合理选择元器件也是非常重要的。

本文将从无功补偿和谐波治理的概念和原理、方案设计方法以及元器件选取等方面进行详细介绍。

一、无功补偿和谐波治理的概念和原理无功补偿是指通过对系统的无功功率进行调整,使系统的功率因数达到设定值或最优化,以提高电网供电质量。

无功补偿可以通过并联电容等被动补偿器件或静态无功发生器等主动补偿器件来实现。

谐波治理是指通过对系统中谐波电流进行限制和补偿,使系统中的谐波电流得到有效控制,在规定范围内满足电网质量指标。

谐波治理可以通过电容滤波器、谐波阻抗器、有源滤波器等措施来实现。

二、无功补偿和谐波治理方案的设计方法1.首先,需要进行系统的无功功率和谐波现象的测量和分析,明确系统的无功补偿和谐波治理的需求。

2.根据系统的需求,选择合适的无功补偿和谐波治理方案。

对于无功补偿,可以选择并联电容或静态无功发生器;对于谐波治理,可以选择电容滤波器、谐波阻抗器或有源滤波器等。

3.进行方案的设计和优化。

根据系统的电气参数和负荷特性,计算出无功补偿和谐波治理所需的容量和参数。

4.进行方案的实施和调试。

按照设计方案选择合适的元器件进行安装和连接,然后通过实时监测和调试来优化方案的性能。

对于无功补偿,常用的元器件有并联电容和静态无功发生器。

并联电容是一种被动无功补偿元器件,通过对系统并联一个合适容量的电容器,可以提高系统的功率因数。

选择并联电容时,需考虑系统的功率因数调整范围、负载变化情况以及电容器的耐压等参数。

静态无功发生器是一种主动无功补偿元器件,其通过控制器控制逆变器的开关状态,输出可控无功功率。

选择静态无功发生器时,需考虑系统的无功补偿需求、控制精度以及逆变器的功率容量等参数。

对于谐波治理,常用的元器件有电容滤波器、谐波阻抗器和有源滤波器等。

电容滤波器是一种被动谐波治理元器件,通过串联电容器来滤除谐波电流。

无功补偿方案

(2)静止无功发生器(SVG):适用于动态无功补偿,具有响应速度快、补偿效果好的特点。
(3)无功补偿控制器:用于自动控制无功补偿装置的投切,实现无功功率的实时补偿。
3.无功补偿参数设置
根据电力系统的负荷特性和无功需求,合理设置以下参数:
(1)补偿容量:根据系统无功需求,确定无功补偿装置的容量。
(2)补偿方式:根据负荷特性,选择合适的补偿方式。
第2篇
无功补偿方案
一、概述
电力系统的稳定性与经济性是电网运行的核心目标。无功补偿作为提升系统稳定性、优化电能质量、降低网络损耗的关键技术手段,其方案制定需综合考虑技术、经济、法规等多方面因素。本方案旨在为某电力系统提供一套详细的无功补偿方案,确保其合法合规、高效可行。
二、目标
1.显著提高系统的功率因数,降低无功负荷对系统的影响。
4.法规遵循
-严格遵循国家电力行业法律法规、技术标准和安全规范。
-确保方案设计、设备选型、施工安装及运行维护的合法合规性。
四、实施计划
1.前期准备
-完成现场勘查,明确补偿需求。
-编制详细的设计方案,包括设备选型、参数配置、施工图纸等。
-提交相关部门审查,获取必要的批准和许可。
2.施工阶段
-按照设计方案,组织设备采购和施工队伍。
(3)有功和无功损耗降低,电网运行效率提高。
(4)合规性审查合格,方案实施过程中无违法违规行为。
五、结论
本方案针对某电力系统,制定了一套合法合规的无功补偿方案。通过采用合理的无功补偿方式、装置选型和参数设置,有望提高电力系统的稳定性、电能质量,降低系统损耗。在实施过程中,严格遵循国家政策和法规要求,确保方案的顺利实施。本方案的实施将对提高我国电力系统的运行水平具有积极意义。

无功补偿及谐波治理工程技术方案

无功补偿及谐波治理工程技术方案无功补偿与谐波治理是电力系统中的两个重要问题。

无功补偿主要解决无功功率的调节问题,谐波治理主要解决电力系统中谐波污染的问题。

本文将就无功补偿及谐波治理工程技术方案进行详细的介绍。

1.电容补偿技术方案电容补偿是通过串联电容来提供无功功率,从而提高功率因数。

该技术方案具有成本低、无功补偿效果好等优点。

适用于对电网无功功率负荷波动较小的场所。

2.静止无功发生器(SVC)技术方案SVC是通过调节阻抗来提供无功功率的一种补偿方式。

它具有响应速度快、补偿效果好等优点。

适用于电网无功功率负荷波动较大的场所。

3.静态同步无功发生器(STATCOM)技术方案STATCOM是通过调整电压来提供无功功率的一种补偿方式。

该技术方案具有响应速度快、无功补偿效果好等优点。

适用于对电压稳定性要求较高的场所。

1.谐波滤波器技术方案谐波滤波器是将发生谐波的电流或电压引入滤波器,通过滤波器的谐波抑制特性将其滤除。

该技术方案具有谐波抑制效果好、性能稳定等优点。

适用于单一谐波频率的场所。

2.谐波变压器技术方案谐波变压器是通过在电力系统中串联谐波补偿变压器来抵消谐波电流。

该技术方案具有谐波抑制效果好、谐波适应性强等优点。

适用于多个谐波频率的场所。

3.主动滤波器技术方案主动滤波器是通过检测谐波电流或电压,并通过逆变器产生反向相位的谐波电流来抵消原有谐波电流。

该技术方案具有谐波抑制效果好、适应性强等优点。

适用于谐波频率较多、波动较大的场所。

综上所述,无功补偿技术方案包括电容补偿技术方案、静止无功发生器技术方案和静态同步无功发生器技术方案。

谐波治理技术方案包括谐波滤波器技术方案、谐波变压器技术方案和主动滤波器技术方案。

根据具体情况选择合适的技术方案,能够有效地解决电力系统中的无功补偿和谐波治理问题,提高电力系统的稳定性和供电质量。

低压配电网内无功功率补偿、谐波治理等技术的解决方案

1.2无功功率补偿的作用
1.2.1由于无功功率的存在, 对电网也会带来不利的影响, 主要表现在以下方面:
(1) 无功功率的增加, 导致电流的增大和视在功率的增加, 从而使发电机、变压器、起动及控制设备和导线等电气设备容量的增加。
(2) 供电设备及线路损耗增加。
(3) 变压器及线路的电压降增大, 使供电网电压产生波动。在电网中, 有功功率的波动一般对电网电压的影响较小, 电网电压的波动主要是无功功率的波动引起的。如果是冲击性无功功率负载, 还会使电网产生剧烈的波动, 甚至发生事故。
1.3.2并联电容器及其装置
在各种无功功率补偿方法中, 并联电容器由于其简单的结构, 方便、灵活的安装方法, 较低的运行费用和低廉的产品价格等方面的特点, 已使其成为当今无功功率补偿技术中使用的主导产品。尤其是随着电容器制造技术的日益成熟, 其质量水平、寿命等级、安全运行可靠性等指标得以大大提高;品种、规格也越来越齐全, 为补偿装置的设计和制作带来了极大的便利。故由其为主体制作的各种电容器补偿和滤波成套装置的应用领域也越来越广泛。已逐步取代了传统的同步调相机。
众所周知, 利用无功功率补偿技术来挖掘现有电力资源潜力, 是一种能够迅速见效的、切实可行的措施之一, 同时也能够节约大量的电力能源。
1.无功功率补偿技术应用方案的确定
1.1无功功率补偿的概念
1.1.1无功功率和有功功率一样是输配电网中不可缺少的组成部分, 无功功率对供电系统负载系统的正常运行是十分重要的、也是必需的。
1.1.2由于电网中存在大量的感性负载, 所以就需要供电部门提供足够的无功功率。如果这些无功功率都有发电机(厂)发出并通过长距离的输电线路传送到所需的地方, 这显然是不合理、不经济的, 实际上也是不可能的。而合理的也是最有效的方法就是在需要无功功率的地方或附近产生(发出)无功功率, 即无功功率补偿。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

消谐及无功补偿装置技术方案
陕西电力科学研究院西安盛亚机电设备有限责任公司二0一一年三月四日
目录
第一章项目方案 (4)
1项目基本要求 (4)
2产品执行标准 (4)
3方案设计依据 (4)
3.1负荷情况介绍 (4)
3.2设计目标说明 (5)
3.3类似产品测试数据展示 (6)
4产品技术方案 (7)
4.1技术方案综述 (7)
4.2方案阻抗图谱 (8)
4.3对电压的影响 (9)
4.4过载能力校验 (10)
5经济效益分析 (10)
5.1直接效益 (10)
5.2间接效益 (10)
6本方案系统简图 (11)
7本方案配置明细 (12)
8.本产品外形尺寸 (13)
9现场验收标准 (13)
10售后服务承诺 (13)
第二章报价书 (15)
第三章简介 (16)
1简介 (16)
2无功补偿兼谐波治理的意义 (16)
3TQF型低压消谐自动无功补偿装置简介 (18)
3.1基本原理 (18)
3.2系统组成 (18)
3.3控制原理 (19)
3.4工作步骤 (20)
3.5技术特点 (20)
3.6关键部件 (21)
3.7结构特点 (22)
3.8型号含义 (22)
3.9使用条件 (23)
4 近期主要工程业绩 (23)
第四章各电能质量参数定义及计算方法 (25)
1.谐波 (25)
2. 功率因数 (25)
3.电压偏差 (26)
4. 三相电压不平衡度 (26)
5. 电压波动和闪变 (26)
第一章项目方案
本方案涉及2套共8台(每台容量为2500kVA变压器配置4台)低压滤波自动无功补偿装置的技术要求和技术服务等有关事宜,等同技术协议,合同一旦签订,本方案即为附件,双方在合作中共同遵守执行。

特殊说明:文中以“*”代替的内容是为了保护供方设计成果,在合同签订后由供方按照成套装置实际情况进行填补。

1项目基本要求
1. 供方必须保证向需方提供优质的服务。

2. 供方供货的产品出厂前应进行检验并确认合格。

3. 根据工程设计的需要,在必要时应召开设计联络会。

4. 其他未提及事项,按国家有关标准执行或双方友好协商确定。

2产品执行标准
GB/T12326-2000 《电能质量电压波动和闪变》
GB12747-1991 《自愈式低电压并联电容器》
GB/T14549-1993 《电能质量公用电网谐波》
GB/T15576-1995 《低压无功功率静态补偿装置总技术条件》
GB50227-2008 《并联电容器装置设计规范》
JB/T9663-1999 《低压无功功率自动补偿控制器》
3方案设计依据
3.1负荷情况介绍
贵公司(需方)现有变压器2台,型号为S9-2500/35/0.4,每台容量2500kVA变压器带有多台中频炉和变频电机,其中1#容量为2500KVA的变压器所带负荷为:1台中频炉功率为500KW、20台变频电机功率都为90KW以及其它负荷功率为100KW左右;2#容量为2500KVA的变压器所带负荷为:2台中频炉功率为300KW 、3台变频电机功率都为75KW以及其它电动机负荷功率为1300KW左右。

中频炉和变频电机为非线性用电设备,
电压、电流畸变严重,电压总畸变率一般可以达到17%左右,高次谐波流入全厂电网后会引起谐波损耗,使全厂的其它电力设备异常升温,加速绝缘老化,缩短使用寿命,同时谐波会造成一定比例的畸变无功,降低功率因数,还会给全厂的电动机等负荷稳定运行带来比较大的安全隐患。

综合看来,需方存在补偿功率因数,减少力率调整电费的必要性,在做功率因数补偿的同时对负荷产生的高次谐波进行治理,滤除谐波达到国标范围内。

3.2设计目标说明
为减少需方感性无功功率,提高需方功率因数,减免需方力率调整电费,滤除高次谐波,结合工程经验和对系统结构进行分析,供方设计在每台容量2500kVA变压器400V侧安装4台SYQF型低压消谐自动无功补偿装置,预期达到如下目标:
1.提高系统的功率因数,月平均功率因数不低于0.93。

2.滤除负荷产生的大部分谐波电流,达到国标标准,改善电能质量。

3.减少变压器和配电线路的有功损耗。

3.3类似产品测试数据展示
图表 1:6000kW中频炉负荷电流波形。

相关文档
最新文档