平面向量参考答案
专题11 平面向量专项高考真题总汇(带答案及解析)

专题11平面向量1.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.2.【2021·全国高考真题】已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A .12OP OP = B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP uuur ,2AP uuu r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α=====,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC3.【2020年高考全国III 卷理数】6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b A .3135-B .1935-C .1735D .1935【答案】D【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.4.【2020年新高考全国Ⅰ卷】已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-【答案】A 【解析】如图,AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB⋅的取值范围是()2,6-,故选:A .【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.5.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.6.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .−3B .−2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=- ,1BC == ,得3t =,则(1,0)BC = ,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.7.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅ ,即22||||AB AC AC AB +>- ,因为AC AB BC -= ,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C .【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.8.【2021·浙江高考真题】已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅= .记向量d 在,a b方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值为___________.【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n === ,,则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b方向上的投影分别为x ,y ,所以(),d x y = ,所以d a - 在c 方向上的投影()||d a c z c -+-⋅===,即22x y +=,所以(()()222222222211221210105x y z x y z x y ⎡⎤++=++++≥+=⎢⎥⎣⎦ ,当且仅当2122x y x y ⎧==⎪⎨⎪+=⎩ 即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值.9.【2021·全国高考真题(理)】已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =________.【答案】103-.【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.10.【2021·全国高考真题】已知向量0a b c ++= ,1a =,2b c == ,a b b c c a ⋅+⋅+⋅=_______.【答案】92-【分析】由已知可得()20a b c++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=- .故答案为:92-.11.【2021·全国高考真题(理)】已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.12.【2021·北京高考真题】(2,1)a = ,(2,1)b =-,(0,1)c = ,则()a b c +⋅=_______;a b ⋅=_______.【答案】03【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+= ,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.13.【2020年高考全国Ⅰ卷理数】设,a b 为单位向量,且||1+=a b ,则||-=a b ______________.【解析】因为,a b 为单位向量,所以||||1==a b所以||1+====a b ,解得:21⋅=-a b ,所以||-===a b ,故答案为:.【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.14.【2020年高考全国II 卷理数】已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.15.【2020年高考天津】如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅的最小值为_________.【答案】(1).16;(2).132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠= ,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=,以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴ ,,∵3,60AB ABC =∠=︒,∴A 的坐标为333,22A ⎛⎫⎪⎪⎝⎭,∵又∵16AD BC = ,则5,22D ⎛⎫⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤),5,22DM x ⎛⎫=-- ⎪⎝⎭,3,22DN x ⎛⎫=-- ⎪⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭ ,所以,当2x =时,DM DN ⋅ 取得最小值132.故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.16.【2020年高考北京】已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = _________;PB PD ⋅=_________.;1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题.17.【2020年高考浙江】已知平面单位向量1e ,2e满足122||-≤e e .设12=+a e e ,123=+b e e ,向量a ,b 的夹角为θ,则2cos θ的最小值是_______.【答案】2829【解析】12|2|e e -≤u r u r Q 124412e e ∴-⋅+≤u r u r,1234e e ∴⋅≥u r u r ,222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅u r u r u r u r r r u r u r u r u r u r u rr r 12424228(1(1)3332953534e e =-≥-=+⋅+⨯u r u r .故答案为:2829.【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.18.【2020年高考江苏】在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是▲.【答案】185【解析】∵,,A D P 三点共线,∴可设()0PA PD λλ=>,∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭ ,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=,∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC = ,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=> .19.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________.【答案】23【解析】因为2=-c a ,0⋅=a b ,所以22⋅=-⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.20.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= ___________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5(,)22D .因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒,因为AE BE =,所以30BAE ∠=︒,所以直线BE 的斜率为33,其方程为3(3y x =-,直线AE 的斜率为33-,其方程为33y x =-.由(333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得x 1y =-,所以1)E -.所以35(,)1)122BD AE =-=- .【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.21.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则AB AC的值是___________.3【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE =-=+- ,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC = 即,AB = 故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.22.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++ 的最小值是___________;最大值是___________.【答案】0; 0所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.。
平面向量模的求法-含答案

【知识要点】一、向量的定义:既有大小又有方向的量叫做向量.一般用a 或AB 表示. 二、模的定义:向量AB 的长度叫向量的模,记作AB . 三、求向量的模一般有两种方法方法一:利用2||a a =求解;方法二:利用22a x y =+求解.【方法讲评】方法一 利用2||a a =求解使用背景 一般没有坐标背景.解题步骤直接代入公式2||a a =化简即可.【例1】设向量a ,b 满足||1,||3,a a b =-=()0a a b ⋅-=,求|2|a b +【点评】公式22222||()22||||cos a b a b a a b b a a b b α+=+=++=++是求向量的模常用的公式,在利用该公式求解时,要先求出其它基本量,再代入公式. 【反馈检测1】已知向量,a b 满足||2,||1,|| 2.a b a b ==-= (1)求a b ⋅的值;(2)求||a b +的值.方法二 利用22a x y =+求解使用背景 一般有坐标背景.解题步骤先求a 的坐标,再代入公式22a x y =+即可.【例2】已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<<.(Ⅰ)若a b ⊥,求θ;(Ⅱ)求a b +的最大值.【点评】求a b +的最大值,一般先建立三角函数模型,再利用三角函数的图像和性质分析解答. 【反馈检测2】已知直角梯形ABCD ,AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点, 则3PA PB +的最小值为____________.【反馈检测3】已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足|1|AP =,PM MC =,则2||BM 的最大值是( )A.443 B.449 C.43637+ D.433237+高中数学常见题型解法归纳及反馈检测第43讲:平面向量模的求法参考答案【反馈检测1答案】(1)4;(2)6.学科#网 【反馈检测1详细解析】(1)由|-a b |=2得222||24124-=-⋅+=+-⋅=a b a a b b a b ,所以12⋅=a b . (2)2221||242162+=++=+⨯+=a b a ab b ,所以||6+=a b . 【反馈检测2答案】5 【反馈检测2详细解析】【反馈检测3答案】B【反馈检测3详细解析】如图可得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒.以D 为原点,直线DA 为x 轴建立平面直角坐标系,则()((2,0,1,3,1,3.A B C ---设(),,P x y 由已知1AP =,得()2221x y -+=,又13133,,,,,222x y x y PM MC M BM ⎛⎫⎛-+++=∴∴= ⎪ ⎝⎭⎝⎭。
必修四平面向量的坐标运算(附答案)

平面向量的坐标运算[学习目标] 1。
了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一 平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标,a =(x ,y )叫做向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则错误!=(x ,y ),若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1).思考 根据下图写出向量a ,b ,c ,d 的坐标,其中每个小正方形的边长是1。
答案 a =(2,3),b =(-2,3),c =(-3,-2),d =(3,-3).知识点二 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2),即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a=(x,y),λ∈R,则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(4)已知向量错误!的起点A(x1,y1),终点B(x2,y2),则错误!=(x2-x1,y2-y1).思考已知a=错误!,b=错误!,c=错误!,如下图所示,写出a,b,c的坐标,并在直角坐标系内作出向量a+b,a-b以及a-3c,然后写出它们的坐标.答案易知:a=(4,1),b=(-5,3),c=(1,1),错误!=a+b=(-1,4),错误!=a-b=(9,-2),错误!=a-3c=(1,-2).题型一平面向量的坐标表示例1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,C在第一象限,D 为AC的中点,分别求向量错误!,错误!,错误!,错误!的坐标.解 如图,正三角形ABC 的边长为2,则顶点A (0,0),B (2,0),C (2cos60°,2sin 60°),∴C (1,错误!),D (错误!,错误!),∴错误!=(2,0),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-2,错误!-0)=(-错误!,错误!).跟踪训练1 在例1的基础上,若E 为AB 的中点,G 为三角形的重心时,如何求向量错误!,错误!,错误!,错误!的坐标?解 由于B (2,0),E (1,0),C (1,错误!),D (错误!,错误!),G (1,错误!),所以CE →=(1-1,0-错误!)=(0,-错误!),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-1,错误!-错误!)=(-错误!,错误!).题型二 平面向量的坐标运算例2 已知平面上三点A (2,-4),B (0,6),C (-8,10),求(1)错误!-错误!;(2)错误!+2错误!;(3)错误!-错误!错误!。
高一平面向量试题及答案

高一平面向量试题及答案一、选择题1. 若向量a和向量b不共线,则向量a+向量b与向量a-向量b也一定不共线。
()A. 正确B. 错误答案:B解析:向量a和向量b不共线,说明它们之间的角度不为0°或180°。
然而,向量a+向量b与向量a-向量b之间的角度可能为0°或180°,因此它们可能共线。
2. 若向量a=(3,-4),向量b=(x,y),且向量a·向量b=-5,则x+y的值为()。
A. 1B. 3C. 5D. 7答案:A解析:根据向量的数量积公式,向量a·向量b=3x-4y=-5。
由于向量a和向量b不共线,我们可以得出x=1,y=-2,因此x+y=1。
3. 若向量a=(1,2),向量b=(-2,4),则向量a+向量b的坐标为()。
A. (-1,6)B. (3,6)C. (-1,2)D. (3,2)答案:A解析:向量a+向量b的坐标可以通过对应分量相加得到,即(1-2,2+4)=(-1,6)。
二、填空题4. 若向量a=(2,3),向量b=(-1,λ),且向量a与向量b 垂直,则λ的值为______。
答案:-3解析:向量a与向量b垂直,说明它们的数量积为0,即2*(-1)+3*λ=0,解得λ=-3。
5. 若向量a=(x,y),向量b=(1,2),且|向量a|=|向量b|,则x和y的值分别为______。
答案:1,2 或 -1,-2解析:由于|向量a|=|向量b|,我们有√(x²+y²)=√(1²+2²),即x²+y²=5。
这个方程有两个解:x=1,y=2 或 x=-1,y=-2。
三、解答题6. 已知向量a=(3,-4),向量b=(6,8),求向量a和向量b的夹角θ。
答案:首先,计算向量a和向量b的数量积:向量a·向量b=3*6+(-4)*8=18-32=-14。
接着,计算向量a和向量b的模:|向量a|=√(3²+(-4)²)=5,|向量b|=√(6²+8²)=10。
平面向量练习题及答案

平面向量练习题及答案平面向量练习题及答案在数学学科中,平面向量是一个非常重要的概念。
它不仅在几何学中有广泛的应用,还在物理学、工程学等领域中发挥着重要的作用。
掌握平面向量的基本概念和运算法则对于解决各种实际问题具有重要意义。
本文将为大家提供一些平面向量练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。
1. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a + b的结果。
解答:向量a + b的结果可以通过将向量a和向量b的对应分量相加得到。
所以,向量a + b = (3 + (-1), -2 + 4) = (2, 2)。
2. 题目:已知向量a = (2, -5)和向量b = (4, 3),求向量a - b的结果。
解答:向量a - b的结果可以通过将向量a和向量b的对应分量相减得到。
所以,向量a - b = (2 - 4, -5 - 3) = (-2, -8)。
3. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的数量积。
解答:向量a与向量b的数量积可以通过将向量a和向量b的对应分量相乘,并将结果相加得到。
所以,向量a与向量b的数量积为3*(-1) + (-2)*4 = -3 - 8 = -11。
4. 题目:已知向量a = (2, -5),求向量a的模长。
解答:向量a的模长可以通过计算向量a的坐标分量的平方和的平方根得到。
所以,向量a的模长为√(2^2 + (-5)^2) = √(4 + 25) = √29。
5. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的夹角的余弦值。
解答:向量a与向量b的夹角的余弦值可以通过计算向量a与向量b的数量积与向量a和向量b的模长的乘积的商得到。
所以,向量a与向量b的夹角的余弦值为(-11) / (√(3^2 + (-2)^2) * √((-1)^2 + 4^2)) = -11 / (√13 * √17)。
平面向量(含答案)

平面向量学校:___________姓名:___________班级:___________考号:___________1..若向量(1,2),(4,5)BA CA == ,则BC =A. (5,7)B. (3,3)--C. ()3,3D. ()5,7--2.已知向量2(1,1),(,2),x x ==+a b 若,a b 共线,则实数x 的值为( )A.1-B.2C.1或2-D.1-或23.已知向量(1,2),(2,)a b m ==- ,若//a b ,则|23|a b + 等于( )A B . C ..4.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB = ,13CD CA CB λ=+ ,则λ=( ) A.23 B.13 C.13- D.23- 5.在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( )A. 2-B. 12-C. 12D. 2 6.已知||6a = ,||3b = ,12a b ⋅=- ,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .27.已知向量(3,4)OA =- ,(6,3)OB =- ,(2,1)OC m m =+ ,若//AB OC ,则实数m 的值为( )A .15B .-3C .35-D .17- 8.平面向量a 与b 的夹角为60°,1||),0,2(==b a ,则|2|b a +等于( )A B .C .4D .129.已知(3,4)a = ,(1,2)b = ,则a b -= . 10.已知平面向量)1,3(=a ,)3,(-=x b ,且b a ⊥,则x 的值为 .11.已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,向量c =2a +b .则向量c 的模为 .12.已知向量()()cos45,sin30,2sin 45,4cos60,b c =︒︒=︒︒ 则b c ⋅= .13.向量a ,b 满足则a 与b 的夹角为 .14.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||c = //c a ,求:c 的坐标(2)若||b = 2a b + 与2a b - 垂直,求a 与b 的夹角 15.已知平面向量(cos ,sin )a ϕϕ= ,(cos ,sin )b x x = ,(sin ,cos )c ϕϕ=- ,其中0ϕπ<<,且函数()()cos ()sin f x a b x b c x =⋅+⋅ 的图象过点)1,6(π. (1)求ϕ的值;(2)将函数)(x f y =图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g y =在[0,]2π上的最大值和最小值.16.已知向量2(cos ,1),,cos )222x x x m n =-= ,设函数()f x m n = (1)求()f x 在区间[]0,π上的零点;(2)在ABC ∆中,角A B C 、、的对边分别是,,a b c ,且满足2b ac =,求()f B 的取值范围.17.向量)sin ,1(x m a +=→,))6cos(4,1(π+=→x b ,设函数→→⋅=b a x g )(,(R m ∈,且m 为常数)(1)若x 为任意实数,求)(x g 的最小正周期;(2)若)(x g 在⎪⎭⎫⎢⎣⎡3,0π上的最大值与最小值之和为7,求m 的值.18(1,)b y = ,已知//a b ,且有函数)(x f y =. (1)求函数)(x f y =的周期;(2)已知锐角ABC ∆的三个内角分别为C B A ,,,若有3)3(=-πA f ,边7=BC ,721sin =B ,求AC 的长及ABC ∆的面积. 19.已知向量x ),1,(sin -=)23,(cos x =,)()(x f ⋅+=(1)当[0,]2x π∈时,求函数)(x f 的值域:(2)锐角A B C ∆中,c b a ,,分别为角C B A ,,的对边,若1023)2(,27,245===B f b c a ,求边c a ,.参考答案1.B【解析】试题分析:()3,3BC BA AC =+=-- 考点:向量的坐标运算.2.D.【解析】试题分析:∵2(1,1),(,2)x x ==+a b ,,a b 共线,∴根据向量共线的充要条件知1×x 2-1×(x+2)=0,∴x=-1或2,选D.考点:平面向量共线(平行)的坐标表示.3.C【解析】试题分析:由//a b 可得()40221-=⇒=-⨯-⨯m m ,所以()54641628,432=+=+⇒--=+.考点:向量的坐标运算.4.A【解析】试题分析:2AD DB = ,即()2C D C A C B C D -=- ,解得1233CD CA CB =+ ,23λ∴=,故选A.考点:平面向量的线性表示5.C【解析】试题分析:因为,在平面直角坐标系xOy 中,点(0,0),(0,1),(1,2),(,0)O A B C m -,所以,(1,2),(,1)OB AC m =-=- ,又//OB AC ,所以,11,122m m -==-,选C. 考点:平面向量的概念,共线向量.6.A【解析】 试题分析:向量a 在向量b方向上的投影是θcos ⋅(θ是a ,b 的夹角),θcos ⋅=-4.考点:向量的数量积运算.7.B .【解析】试题分析:由题意知(3,1)AB OB OA =-= ,(2,1)OC m m =+ ,又//AB OC ,则3(1)120m m ⨯+-⨯=,即3m =-.考点:两向量平行的充要条件.8.B【解析】试题分析:因为,(2,0),a = 所以,||2a = ,2220|2|444421cos60412,|2|a b a a b b a b +=+⋅+=+⨯⨯⨯+=+= B. 考点:平面向量的数量积、夹角、模9.(2,2)【解析】试题分析:根据向量的减法等于横坐标、纵坐标分别对应相减,得到(31,42)(2,2).a b -=--= .向量的加减及数乘类似实数运算,一般不会出错,只需注意对应即可.考点:向量的减法运算10.1【解析】试题分析:b a ⊥10330=⇒=-⇒=⋅⇒x x b a .考点:平面向量数量积运算.11.【解析】试题分析:|c |2=(2a +b )2=4a 2+4a·b+b 2=4+4×1×2×cos60°+4=12,即|c |=考点:平面向量数量积、向量的模.12.2.【解析】试题分析:由向量数量积的坐标运算公式得112sin 45cos454sin30cos6024222b c ⋅=︒︒+︒︒=⨯⨯= . 考点:1.向量数量积的坐标运算公式;2.三角函数式求值.13.23π. 【解析】试题分析:由题意解得1a b ⋅=- ,则1cos ,2a b =- ,即a 与b 的夹角为23π. 考点:1.平面向量数量积运算;2.向量夹角公式.14.(1)(2,4)或(2,4)--;(2)π.【解析】试题分析:(1)设(,)c x y = ,利用两个已知条件||c = //c a 列出关于,x y 的方程组,解出,x y 即可;(2)由2a b + 与2a b - 垂直得(2)(2)0a b a b +⋅-= ,对此式进行化简,可求出a b ⋅ ,又,a b 的模易知,利用向量数量积的定义则可求出a 与b 的夹角.试题解析:设(,)c x y = 由//||c a c =及 2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 7分(2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=- ∴cos 1||||a b a b θ⋅==- ,∵[0,]θπ∈∴θπ= 14分 考点:向量的数量积、向量的模、向量的平行与垂直.15.(1)3πϕ=;(2)最小值12,最大值1. 【解析】 试题分析:(1)根据向量的数量积的坐标运算,求出,a b b c ⋅⋅ 代入:()()c o s ()s f x a b x b c x=⋅+⋅ 整理便得()cos(2)f x x ϕ=-,再根据()f x 过点)1,6(π可得ϕ的值;(2)将函数)(x f y =图象上各点的横坐标变为原来的的2倍,纵坐标不变,便将函数)(x f y =中的x 换成12x 便得函数)(x g y =的解析式:()cos()3g x x π=-. 由02x π≤≤得033236x πππππ-≤-≤-=.结合cos y x =的图象可得()cos()3g x x π=-在[0,]2π上的最大值和最小值. 试题解析:(1) cos cos sin sin cos()a b x x x ϕϕϕ⋅=+=- 1分cos sin sin cos sin(b c x x x ϕϕϕ⋅=-=- ()x -ϕ 2分()()cos ()sin f x a b x b c x ∴=⋅+⋅cos()cos sin()sin x x x x ϕϕ=-+-cos()x x ϕ=--cos(2)x ϕ=-, 4分即()cos(2)f x x ϕ=- ∴()cos()163f ππϕ=-=,而0ϕπ<<, ∴3πϕ=. 6分(2)由(1)得,()cos(2)3f x x π=-, 于是1()cos(2())23g x x π=-, 即()cos()3g x x π=-. 9分 当[0,]2x π∈时,336x πππ-≤-≤, 所以1cos()123x π≤-≤, 11分 即当0x =时,()g x 取得最小值12, 当3x π=时,()g x 取得最大值1. 13分考点:1、向量的坐标运算;2、三角变换;3、三角函数的图象变换;4、三角函数的最值16.(1)3π、π;(2)(1,0]-. 【解析】试题分析:(1)先由平面向量数量积的坐标表示得到()f x ,然后由三角函数的倍角公式进行降次,再将函数()f x 的解析式化为()()sin f x A x b ωϕ=++的形式.令()0f x =,在区间[]0,π解得3x π=或π,即得到零点3π、π;(2)由条件及余弦定理,通过基本不等式可得1cos 2B ≥,又根据角B 是三角形内角,从而得到其范围,再代入即可得()f B 的取值范围.试题解析:因为向量2(cos ,1),,cos )222x x x m n =-= ,函数()f x m n = .所以21cos ()cos cos 2222x x x x f x x +=-=-111cos sin()22262x x x π=--=--3分 (1)由()0f x =,得1sin()62x π-=. =+266x k πππ-∴, 5=+266x k k Z πππ-∈或, =+23x k ππ∴, =+2x k k Z ππ∈或,又[]0,x π∈,3x π∴=或π.所以()f x 在区间[]0,π上的零点是3π、π. 6分 (2)在ABC ∆中,2b ac =,所以222221cos 2222a cb ac ac ac B ac ac ac +-+-==≥=. 由1cos 2B ≥且(0,)B π∈,得(0,],3B π∈--666B πππ⎛⎤∈ ⎥⎝⎦从而,10分 11sin()(,]622B π-∈-∴, 1()sin()(1,0]62f B B π=-+∈-∴ 12分 考点:1.数量积的坐标表示;2.余弦定理;3.三角函数的性质.17.(1)T π=;(2)2m =.【解析】试题分析:(1)借助向量数量积运算,利用两角和与差公式化为一角一函数()2sin(2)6g x x m π=++,可求函数周期;(2)由x 的范围求出26x π+的范围,借助函数图象求出函数最值.试题解析:(1)()14sin cos()14sin (cos cos sin sin )666g x a b m x x m x x x πππ=⋅=+++=++-2cos2x x m ++2sin(2)6x m π=++ 5分 所以T π=.(2)因为03x π≤<,所以52666x πππ≤+<, 9分 所以6x π=时,()2max g x m =+;0x =时,min ()1g x m =+ 12分所以217,2m m m +++==. 14分考点:1.函数的性质:周期、最值;2.三角函数的化简.18.(1)2π;(2)2AC =,S =. 【解析】 试题分析:(1)利用//的充要条件得出)(x f y =,再化简成sin()y A x B ωϕ=++类型求周期;(2)先由条件3)3(=-πA f 求出角A ,再由正弦定理B AC A BC sin sin =求AC ,然后只需求出AB 或sin C 即可求ABC ∆的面积.试题解析:解:由//得0)cos 23sin 21(21=+-x x y 3分 即 )3sin(2)(π+==x x f y 5分 (1)函数)(x f 的周期为π2=T 6分(2)由3)3(=-πA f 得3)33sin(2=+-ππA 即23sin =A ∵ABC ∆是锐角三角形∴3π=A 8分由正弦定理:BAC A BC sin sin =及条件7=BC ,721sin =B 得2237217sin sin =⋅=⋅=A B BC AC , 10分又∵A AC AB AC AB BC cos 2222⋅⋅-+=即2122472⨯⨯⋅-+=AB AB 解得3=AB 11分 ∴ABC ∆的面积233sin 21=⋅⋅=A AC AB S 12分 考点:1、平面向量与三角函数结合,2、正弦定理与余弦定理综合运用,3、三角形面积公式.19.(1)1[22-;(2)8c a ==. 【解析】试题分析:(1)先利用倍角公式、两角差的正弦公式将解析式化简,将已知x 代入,求值域;本卷由【在线组卷网 】自动生成,请仔细校对后使用,答案仅供参考。
平面向量练习题及答案
平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
平面向量数学试题及答案
平面向量数学试题及答案一、选择题(每题3分,共30分)1. 若向量\(\vec{a} = (2, 3)\),向量\(\vec{b} = (1, -1)\),则向量\(\vec{a} + \vec{b}\)的坐标为:A. (3, 2)B. (1, 4)C. (-1, 4)D. (3, -2)答案:A2. 若向量\(\vec{a}\)与向量\(\vec{b}\)的夹角为90°,则下列哪个选项是正确的?A. \(\vec{a} \cdot \vec{b} = 0\)B. \(\vec{a} \cdot \vec{b} = 1\)C. \(\vec{a} \cdot \vec{b} = -1\)D. \(\vec{a} \cdot \vec{b} = \vec{a} \times \vec{b}\)答案:A3. 已知向量\(\vec{a} = (4, 0)\),向量\(\vec{b} = (0, 5)\),则向量\(\vec{a}\)与向量\(\vec{b}\)的点积为:A. 20B. 0C. 5D. 4答案:B4. 若向量\(\vec{a} = (x, y)\)与向量\(\vec{b} = (1, 2)\)共线,则\(x\)和\(y\)的关系为:A. \(x = 2y\)B. \(x = -2y\)C. \(2x = y\)D. \(2x = -y\)答案:A5. 已知向量\(\vec{a} = (3, -1)\),向量\(\vec{b} = (-1, 3)\),则向量\(\vec{a}\)与向量\(\vec{b}\)的叉积的模长为:A. 0B. 10C. 5D. 2答案:B6. 若向量\(\vec{a} = (2, 4)\),向量\(\vec{b} = (-1, 3)\),则向量\(\vec{a}\)与向量\(\vec{b}\)的夹角的余弦值为:A. \(\frac{1}{5}\)B. \(\frac{1}{2}\)C. \(\frac{1}{3}\)D. \(\frac{1}{4}\)答案:A7. 向量\(\vec{a} = (1, 1)\),向量\(\vec{b} = (2, 2)\),则向量\(\vec{a}\)与向量\(\vec{b}\)的单位向量分别为:A. \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\) 和\(\left(\frac{2}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)\)B. \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\) 和\(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\)C. \(\left(\frac{1}{2}, \frac{1}{2}\right)\) 和\(\left(\frac{2}{2}, \frac{2}{2}\right)\)D. \(\left(\frac{1}{2}, \frac{1}{2}\right)\) 和\(\left(\frac{1}{2}, \frac{1}{2}\right)\)答案:A8. 若向量\(\vec{a} = (3, 4)\),则向量\(\vec{a}\)的模长为:A. 5B. 7C. 2D. √7答案:A9. 已知向量\(\vec{a} = (4, -3)\),向量\(\vec{b} = (-2, 1)\),则向量\(\vec{a}\)与向量\(\vec{b}\)的点积为:A. 10B. -10C. 2D. -2答案:B10. 若向量\(\vec{a}\)与向量\(\vec{b}\)的模长相等,且向量\(\vec{a}\)与向量\(\vec{b}\)的点积为0,则向量\(\vec{a}\)与向量\(\vec{b}\)的关系为:A. 平行B. 垂直C. 共线D. 反向答案:B。
高中数学第六章平面向量及其应用知识汇总大全(带答案)
高中数学第六章平面向量及其应用知识汇总大全单选题1、下列命题中假命题是( )A .向量AB⃗⃗⃗⃗⃗ 与BA ⃗⃗⃗⃗⃗ 的长度相等 B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等答案:D分析:利用相反向量的概念可判断A 选项的正误;利用相等向量的定义可判断B 选项的正误;利用零向量的定义可判断C 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,AB⃗⃗⃗⃗⃗ 与BA ⃗⃗⃗⃗⃗ 互为相反向量,这两个向量的长度相等,A 选项正确; 对于B 选项,两个相等的向量,长度相等,方向相同,若两个相等向量的起点相同,则终点也相同,B 选项正确;对于C 选项,只有零向量的模等于0,C 选项正确;对于D 选项,共线的单位向量是相等向量或相反向量,D 选项错误.故选:D.小提示:本题考查平面向量的相关概念,考查相等向量、相反向量、共线向量以及零向量的定义的应用,属于基础题.2、已知向量a =(1,−√7),|b ⃗ |=3,a ⋅b ⃗ =3√6,则a 与b⃗ 的夹角为( ) A .π6B .π4C .π3D .2π3答案:A分析:先计算向量a 的模,再根据向量数量积的定义,将a ⋅b⃗ =3√6展开,即可求得答案. 因为a =(1,−√7),所以|a |=√12+(−√7)2=2√2,又因为a ⋅b ⃗ =3√6,设a 与b ⃗ 的夹角为θ ,θ∈[0,π] ,所以|a ||b ⃗ |cosθ=3√6 ,即2√2×3×cosθ=3√6 ,解得cosθ=√32 ,故θ=π6 ,故选:A.3、已知非零平面向量a →,b →,c →,下列结论中正确的是( )(1)若a →⋅c →=b →⋅c →,则a →=b →;(2)若|a →+b →|=|a →|+|b →|,则a →//b →(3)若|a →+b →|=|a →−b →|,则a →⊥b →(4)若(a →+b →)⋅(a →−b →)=0,则a →=b →或a →=−b →A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a →,b →,c →,(1)若a →⋅c →=b →⋅c →,则(a →−b →)⋅c →=0,所以a →=b →或(a →−b →)⊥c →,即(1)错;(2)若|a →+b →|=|a →|+|b →|,则a →与b →同向,所以a →//b →,即(2)正确;(3)若|a →+b →|=|a →−b →|,则|a →|2+|b →|2+2a →⋅b →=|a →|2+|b →|2−2a →⋅b →,所以2a →⋅b →=0,则a →⊥b →;即(3)正确;(4)若(a →+b →)⋅(a →−b →)=0,则|a →|2−|b →|2=0,所以|a →|=|b →|,不能得出向量共线,故(4)错;故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.4、设在△ABC 中,角A ,B,C 所对的边分别为a ,b,c , 若bcosC +ccosB =asinA , 则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰三角形D .钝角三角形答案:A分析:根据两角和的正弦公式和正弦定理求得,得到sinA =1,求得A =π2,即可求解. 2sin sin A A因为,由正弦定理可得,即sin (B +C )=sin 2A ,即,所以sinA =1,又因为A ∈(0,π),所以A =π2,所以是直角三角形.故选:A.5、已知在△ABC 中,a =x ,b =2,B =30°,若三角形有两解,则x 的取值范围是( )A .x >2B .0<x <2C .2<x <3D .2<x <4答案:D分析:根据三角形有两个解,转化为以C 为圆心,以2为半径的圆与BA 有两个交点,再结合正弦定理求解. 如图所示:因为AC =b =2,若三角形有两个解,则以C 为圆心,以2为半径的圆与BA 有两个交点,当∠A =90∘时,圆与BA 相切,不合题意;当∠A =30∘时,圆与BA 交于B 点,不合题意;所以30∘<∠A <150∘,且∠A ≠90∘,所以12<sinA <1由正弦定理得:sinA =asinB b =14x ,则12<14x <1, 解得2<x <4,故选:D6、在△ABC 中,已知AB =4,AC =3,∠BAC =120°,点E 在线段BC 上,且满足2BE =EC ,则的长度cos cos sin b C c B a A +=2sin cos sin cos sin B C C B A +=2sin sin A A=AEA .52B .73C .2√73D .2√2 答案:B分析:在△ABC 中,利用余弦定理先求得BC ,再在△ABC 中利用余弦定理求得cosB ,再在△ABE 中利用余弦定理求得的长.在△ABC 中,由余弦定理有BC 2=AB 2+AC 2−2AB ×ACcos∠BAC =37,所以BC =√37,在△ABC 中,由余弦定理有cosB =AB 2+BC 2−AC 22×AB×BC =11√3774,又2BE =EC ,所以BE =√373, 在△ABE 中,由余弦定理有AE 2=AB 2+BE 2−2AB ×BE ×cosB=16+379−2×4×√373×11√3774=499, 所以AE =73.故选:B7、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =( )A .AB ⃗⃗⃗⃗⃗ B .CD ⃗⃗⃗⃗⃗C .D .AD ⃗⃗⃗⃗⃗答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ , 所以12AC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ . AE CB u u u r8、已知非零向量a →与b →共线,下列说法不正确的是( )A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果.非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确;对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确;对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确.故选:A.多选题9、下列说法中错误..的为( ). A .已知a →=(1,2),b →=(1,1)且a →与a →+λb →的夹角为锐角,则实数λ的取值范围是(−53,+∞)B .向量e →1=(2,−3),e →2=(12,−34)不能作为平面内所有向量的一组基底C .非零向量a →,b →,满足|a →|>|b →|且a →与b →同向,则a →>b →D .非零向量a →和b →,满足|a →|=|b →|=|a →−b →|,则a →与a →+b →的夹角为30°答案:AC分析:由向量的数量积,向量的夹角,判断A ;向量的基本定理判断B ;向量的定义判断C ;平面向量的基本定理与向量的夹角等基本知识判断D .解:对于A ,∵a →=(1,2),b →=(1,1),a →与a →+λb →的夹角为锐角,∴a →(a →+λb →)=(1,2)(1+λ,2+λ)=1+λ+4+2λ=3λ+5>0,且λ≠0(λ=0时a →与a →+λb →的夹角为0),所以λ>−53且λ≠0,故A 错误;对于B ,向量e →1=4e →2,即共线,故不能作为平面内所有向量的一组基底,B 正确;向量是有方向的量,不能比较大小,故C 错误;对于D .因为|a →|=|a →−b →|,两边平方得,|b →|2=2a →·b →,则a →(a →+b →)=|a →|2+a →b →=32|a →|2,|a →+b →|=√(a →+b →)2=√|a →|2+2a →b →+|b →|2=√3|a →|, 故cos <a →,a →+b →>=a →(a →+b →)|a →||a →+b →|=32|a →|2|a →|√3|a →|=√32, 而向量的夹角范围为[0°,180°],得a →与a →+b →的夹角为30°,故D 项正确.故错误的选项为AC .故选:AC .10、已知O 是△ABC 内一点,且OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,点M 在△OBC 内(不含边界),若AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,则λ+2μ的值可能为( )A .97B .117C .137D .157答案:ABC分析:根据OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ 可知O 为△ABC 的重心;根据点M 在△OBC 内,判断出当M 与O 重合时,λ+2μ最小;当M 与C 重合时,λ+2μ的值最大,因不含边界,所以取开区间即可.因为O 是△ABC 内一点,且OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ 所以O 为△ABC 的重心M 在△OBC 内(不含边界),且当M 与O 重合时,λ+2μ最小,此时AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ =23×[12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )]=13AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ 所以λ=13,μ=13,即λ+2μ=1当M 与C 重合时,λ+2μ最大,此时AM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗所以λ=0,μ=1,即λ+2μ=2因为M 在△OBC 内且不含边界所以取开区间,即λ+2μ∈(1,2),结合选项可知ABC 符合,D 不符合故选:ABC11、如图所示,四边形ABCD 为梯形,其中,AB =2CD ,M ,N 分别为AB ,CD 的中点,则下列结论正确的是( )A .AC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ B .MC ⃗⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ C .MN ⃗⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +14AB ⃗⃗⃗⃗⃗ D .BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 答案:ABD解析:根据向量运算法则依次计算每个选项得到答案.AC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,A 正确; MC ⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =12BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =12(BC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )+AC ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ ,B 正确; MN ⃗⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =−12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +14AB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −14AB ⃗⃗⃗⃗⃗ ,C 错误; BC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =−AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ ,D 正确. 故选:ABD .小提示:本题考查了向量的运算,意在考查学生的计算能力.12、在△ABC 中,根据下列条件解三角形,其中有两解的是( )A .b =10,A =45°,C =70°B .b =45,c =48,B =60°C .a =14,b =16,A =45°D .a =7,b =5,A =80°答案:BCAB CD ∥分析:结合选项逐个求解,可进行判断.对于A ,因为A =45°,C =70°,所以B =65°,只有一解;对于B ,因为sinC =csinB b =8√315<1,且sinC >sinB ,所以有两解; 对于C ,因为sinB =bsinA a =4√27<1,且sinB >sinA ,所以有两解; 对于D ,因为sinB =bsinA a =5sin80°7<1,但sinB <sinA ,所以有一解; 故选:BC.13、对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( )A .AO ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ 2 B .OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ C .过点G 的直线l 交AB 、AC 于E 、F ,若AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =μAC ⃗⃗⃗⃗⃗ ,则1λ+1μ=3 D .AH ⃗⃗⃗⃗⃗⃗ 与AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cosC 共线 答案:ACD分析:根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ 即OA ⊥BC ,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cosC 与BC ⃗⃗⃗⃗⃗ 垂直,从而说明D 正确.如图,设AB 中点为M,则OM ⊥AB ,∴|AO |cos∠OAM =|AM |∴AO ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =|AO ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ |cos∠OAB =|A →B|(|AO ⃗⃗⃗⃗⃗ |cos∠OAB)=|AB ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ |2=12|AB ⃗⃗⃗⃗⃗ |2,故A 正确;OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ 等价于OA ⃗⃗⃗⃗⃗ ·(OB ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )=0等价于OA ⃗⃗⃗⃗⃗ ·CB⃗⃗⃗⃗⃗ =0,即OA ⊥BC , 对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误;设BC 的中点为D ,则AG ⃗⃗⃗⃗⃗ =23AD ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(1λAE ⃗⃗⃗⃗⃗ +1μAF ⃗⃗⃗⃗⃗ )=13λAE ⃗⃗⃗⃗⃗ +13μAF ⃗⃗⃗⃗⃗ , ∵E,F,G 三点共线,∴13λ+13μ=1,即1λ+1μ=3,故C 正确;(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC )⋅BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC =|AB ⃗⃗⃗⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ |cos (π−B )|AB ⃗⃗⃗⃗⃗ |cosB +|AC ⃗⃗⃗⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ |cosC |AC ⃗⃗⃗⃗⃗ |cosC=−|BC ⃗⃗⃗⃗⃗ |+|BC⃗⃗⃗⃗⃗ |=0, ∴AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC 与BC ⃗⃗⃗⃗⃗ 垂直,又∵AH ⃗⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,∴AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |cosC 与AH ⃗⃗⃗⃗⃗⃗ 共线,故D 正确. 故选:ACD.小提示:本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.填空题14、已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2acosB =c ,D 是BC 的中点,若AD =2,则b +√2c 的最大值为______.答案:4√2分析:利用正弦定理将边化角,即可得到A =B ,再结合cos∠ADB +cos∠ADC =0得到b 2+2c 2=16,最后借助基本不等式即可求解.解:因为2acosB =c ,由正弦定理可得2sinAcosB =sinC所以2cosBsinA =sinC =sin(A +B)=sinAcosB +sinBcosA ,化简得sinBcosA −sinAcosB =0,即sin(A −B)=0,因为A,B ∈(0,π),所以A −B ∈(−π,π)所以A =B ,又∠ADB +∠ADC =π,cos∠ADB +cos∠ADC =0,由余弦定理知AD 2+DB 2−AB 22AD⋅DB +AD 2+DC 2−AC 22AD⋅DC =0, 即22+(a 2)2−c 22×2⋅a 2+22+(a 2)2−b 22×2⋅a 2=0,又a =b ,化简得b 2+2c 2=16,b 2+2c 2=(b +√2c)2−2b ⋅√2c =16,又2b ⋅√2c ≤2⋅(b+√2c 2)2=(b+√2c)22,当且仅当b =√2c 时取等号, 故(b +√2c)2−(b+√2c)22⩽16,即b +√2c ⩽4√2.所以答案是:4√2.15、已知向量a =(-4,3),b ⃗ =(6,m ),且a ⊥b⃗ ,则m =__________. 答案:8.分析:利用a ⊥b ⃗ 转化得到a •b⃗ =0加以计算,得到m . 向量a =(−4,3),b ⃗ =(6,m ),a ⊥b⃗ , 则a •b⃗ =0,−4×6+3m =0,m =8. 小提示:本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.16、已知向量a →,b →,其中|a →|=1,|b →|=2,且(a →−2b →)⊥(3a →+b →),则向量a →与b →的夹角等于____; 答案:2π3##120°分析:利用夹角公式求出向量a →与b →的夹角.因为(a →−2b →)⊥(3a →+b →),所以(a →−2b →)(3a →+b →)=0,即3a →2−5a →·b →−2b →2=0,所以5a →·b ⃗⃗⃗⃗ =3−8=−5,所以a ·⃗⃗⃗⃗ b →=−1.而a →b →=|a →||b →|cos 〈a →,b →〉=−1,所以cos 〈a →,b →〉=−12,因为〈a →,b →〉∈[0,π],所以〈a →,b →〉=2π3. 所以答案是:2π3解答题17、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,sinB −cosC =c 2−a 22ab . (1)求A ;(2)若b =√34c ,且BC 边上的高为2√3,求△ABC 的面积. 答案:(1)π6;(2)7√3.分析:(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积.(1)由sinB −cosC =c 2−a 22ab 得2absinB −2abcosC =c 2−a 2,由余弦定理得2absinB +c 2−a 2−b 2=c 2−a 2,所以2asinB =b ,由正弦定理得2sinAsinB =sinB ,B 是三角形内角,,所以sinA =12,又A 为锐角,所以.(2)由(1)a 2=b 2+c 2−2bccosA =316c 2+c 2−2×√34c ⋅c ⋅cos π6=716c 2,a =√74c , 所以S △ABC =12bcsinA =12a ×2√3,即12×√34c 2×12=12×√74c ×2√3,c =4√7, b =√34c =√21,S △ABC =12bcsinA =12×√21×4√7×12=7√3.小提示:思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技sin 0B ≠6A π=巧.18、△ABC 的内角A,B,C 的对边分别为a,b,c ,已知asinAsinB +ccosA =(acosA +2b )cosB(1)求B ;(2)若b =2√3,AB⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =6,求△ABC 的周长 答案:(1)B =π3;(2)6√3.分析:(1)根据asinAsinB +ccosA =(acosA +2b )cosB ,利用正弦定理结合两角和与差的三角函数化简为2sinBcosB =sinB 求解;(2)利用余弦定理得到(a +c )2−3ac =12,然后由AB⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =6求得ac 代入即可. (1)因为 asinAsinB +ccosA =(acosA +2b )cosB ,所以a (sinAsinB −cosAcosB )+ccosA =2bcosB ,所以−acos(A +B)+ccosA =2bcosB所以acosC +ccosA =2bcosB由正弦定理得sinAcosC +sinCcosA =2sinBcosB整理得sin (A +C )=2sinBcosB =sinB因为在△ABC 中,所以,则2cosB =1所以B =π3(2)由余弦定理得 ,即(a +c )2−3ac =12,因为AB ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =accosB =12ac =6, 所以ac =12,所以(a +c )2−36=12,解得a +c =4√3.所以△ABC 的周长是6√3小提示:方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,sin 0B ≠2222cos b a c ac B =+-要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.。
第六章 平面向量及其应用 复习参考题——高一数学人教A版(2019)必修第二册洞悉课后习题
第六章 平面向量及其应用 复习参考题——高一数学人教A 版(2019)必修第二册洞悉课后习题【教材课后习题】1.判断下列命题是否正确(正确的在括号内打“√”,错误的打“×”). (1)AB BA +=0.( ) (2)AB BC AC +=.( ) (3)AB AC BC -=.( ) (4)00AB =.( )2.选择题(1)如果a ,b 是两个单位向量,那么下列四个结论中正确的是( ). A.=a bB.1⋅=a bC.22≠a bD.22||||=a b(2)对于任意两个向量a 和b ,下列命题中正确的是( ). A.若a ,b 满足||||>a b ,且a 与b 同向,则>a b B.||||||+≤+a b a b C.||||||⋅≥a b a b D.||||||-≤-a b a b(3)在四边形ABCD 中,若AC AB AD =+,则( ). A.四边形ABCD 是矩形 B.四边形ABCD 是菱形 C.四边形ABCD 是正方形D.四边形ABCD 是平行四边形(4)设a 是非零向量,λ是非零实数,下列结论中正确的是( ). A.a 与λ-a 的方向相反 B.||||λ-≥a a C.a 与2λa 的方向相同D.||||λλ-=a a(5)设M 是ABCD 的对角线的交点,O 为任意一点,则OA OB OC OD +++=( )A.OMB.2OMC.3OMD.4OM(6)在下列各组向量中,可以作为基底的是( ). A.1(0,0)=e ,2(1,2)=-e B.1(1,2)=-e ,2(5,7)=eC.1(3,5)=e ,2(6,10)=eD.1(2,3)=-e ,213,24⎛⎫=- ⎪⎝⎭e3.已知六边形ABCDEF 为正六边形,且AC =a ,BD =b ,分别用a ,b 表示DE ,AD ,BC ,EF ,FA ,AB ,CE .4.已知平面直角坐标系中,点O 为原点,(3,4)A --,(5,12)B -. (1)求AB 的坐标及||AB 的值;(2)若OC OA OB =+,OD OA OB =-,求OC 与OD 的坐标; (3)求OA OB ⋅的值.5.已知点(1,1)A ,(1,0)B -,(0,1)C .若AB CD =,则点D 的坐标是什么?6.已知向量(1,0)=a ,(1,1)=b ,(1,0)=-c ,求满足λμ=+c a b 的λ和μ的值.7.已知ABC △的顶点坐标分别为(1,1)A ,(4,1)B ,(4,5)C ,求cos A ,cos B ,cos C 的值.8.已知向量(1,0)=a ,(1,1)=b .当λ为何值时,λ+a b 与a 垂直?9.已知向量a 与b 的夹角为30°,||=a ,||2=b ,求||+a b ,||-a b 的值. 10.如图,支座A 受1F ,2F 两个力的作用,已知1F 与水平线成θ角,140N =F ,2F 沿水平方向,270N =F ,1F 与2F 的合力F 的大小为100N ,求cos θ以及F 与2F 的夹角β的余弦值.11.在ABC △中,分别根据下列条件解三角形(角度精确到1′,边长精确到0.01cm ):(1)12cm a =,5cm b =,120A =︒; (2)6cm a =,8cm b =,30A =︒; (3)7cm a =,23cm b =,130C =︒; (4)2cm a =,3cm b =,4cm c =.12.海中有一座小岛,周围3nmile 内有暗礁.一艘海轮由西向东航行,望见该岛在北偏东75°;海轮航行8nmile 以后,望见该岛在北偏东55°.如果这艘海轮不改变航向继续前进,有没有触礁的危险? 13.选择题(1)已知a ,b 是不共线的向量,且5AB =+a b ,28BC =-+a b ,3()CD =-a b ,则( ).A.A ,B ,D 三点共线B.A ,B ,C 三点共线C.B ,C ,D 三点共线D.A ,C ,D 三点共线(2)已知正方形ABCD 的边长为1,AB =a ,BC =b ,AC =c ,则||++=a b c ( ).A.0B.3D.(3)已知OA =a ,OB =b ,OC =c ,OD =d ,且四边形ABCD 为平行四边形,则( ).A.0+++=a b c dB.0-+-=a b c dC.0+--=a b c dD.0--+=a b c d(4)若1e ,2e 是夹角为60°的两个单位向量,则122a =+e e 与1232=-+b e e 的夹角为( ). A.30°B.60°C.120°D.150°(5)已知等边三角形ABC 的边长为1,BC =a ,CA =b ,AB =c ,那么⋅+⋅+⋅=a b b c c a ( ).A.3B.-3C.32 D.32-(6)若平面向量a ,b ,c 两两的夹角相等,且||1=a ,||1=b ,||3=c ,则||++=a b c ( ).A.2B.5C.2或514.已知a ,b ,c ,d 为非零向量,证明下列结论,并解释其几何意义. (1)||||⊥⇔+=-a b a b a b ;(2)若+=a b c ,-=a b d ,则||||=⇔⊥a b c d .15.已知123PP P △,向量1OP ,2OP ,3OP 满足条件1230OP OP OP ++=,123OP OP OP ==.求证:123PP P △是等边三角形.16.如图,已知OA =a ,OB =b ,任意点M 关于点A 的对称点为S ,点S 关于点B 的对称点为N ,用a ,b 表示向量MN .(本题可以运用信息技术发现规律)17.一个人骑自行车由A 地出发向东骑行了9km 到达B 地,然后由B 地行了16km 到达D 地,求这个人由A 地到D 地的位移(角度精确到1°).【定点变式训练】18.在ABC △中,设,,AB AC D ==a b 为AC 边的中点,则BD =( ) A.12+a bB.12+a bC.12-a bD.12-b a19.已知向量,a b 不共线,若向量λ+a b 与λ+b a 的方向相反,则λ的值为( ) A.1B.0C.-1D.1±20.如图所示,在四边形ABCD 中,1,3DC AB E =为BC 的中点,且AE xAB y AD =+,则32x y -=( )A.12B.32C.1D.221.已知作用在点A 的三个力1(3,4)=f ,2(2,5)=-f ,3(3,1)=f ,且(1,1)A ,则合力123=++f f f f 的终点坐标为( )A.(9,1)B.(1,9)C.(9,0)D.(0,9)22.P 是 ABC 所在平面内一点,满足|||2|0PB PC PB PC PA --+-=,则ABC 的形状是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形23.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .若60A =︒,1b =,其面积sin sin sin a b cA B C++=++( )A. 24.在ABC △中,2cos 3C =,4AC =,3BC =,则tan B =( )B. C. D.25.自古以来,人们对于崇山峻岭都心存敬畏,同时感慨大自然的鬼斧神工,一代诗圣杜甫曾赋诗《望岳》:“岱宗夫如何?齐鲁青未了.造化钟神秀,阴阳割昏晓.荡胸生层云,决毗入归鸟.会当凌绝顶,一览众山小.”然而,随着技术手段的发展,山高路远便不再人们出行的阻碍,伟大领袖毛主席曾作词:“一桥飞架南北,天堑变通途”.在科技腾飞的当下,路桥建设部门仍然潜心研究如何缩短空间距离方便出行,如港珠澳跨海大桥等.如图为某工程队将A 到D 修建一条隧道,测量员测得一些数据如图所示(A ,B ,C ,D 在同一水平面内),则A ,D 间的距离为( )kmkm26.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,则ABC △是( )A.直角三角形B.等边三角形C.等腰(非等边)三角形D.等腰直角三角形27.已知向量(3,4),(2,4)m =-=a b .若向量23-a b 与b 共线,则实数m =________. 28.平面向量(1,2),(4,2),()m m ===+∈R a b c a b ,且c 与a 的夹角等于c 与b 的夹角,则m =________.29.已知在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且满足22sin sin sin 6sin 0A A B B +-=,且c a =,则cos B =____________.30.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100m BC =,则山高MN =__________m.31.设,a b 是不共线的两个非零向量.(1)若2,3,3OA OB OC =-=+=-a b a b a b ,求证:A ,B ,C 三点共线; (2)若8k +a b 与2k +a b 共线,求实数k 的值;(3)若,23,2AB BC CD k =+=-=-a b a b a b ,且A ,C ,D 三点共线,求实数k 的值.32.已知||=a ||=b 5⋅=-a b ,(1)x x =+-c a b . (1)当⊥b c 时,求实数x 的值;(2)当||c 取最小值时,求向量a 与c 的夹角的余弦值. 33.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A Ca b A +=. (1)求B .(2)若ABC △为锐角三角形,且1c =,求ABC △面积的取值范围.34.如图,在海岸A 处,发现南偏东45°方向距A 为2)海里的B 处有一艘走私船,在A 处正北方向,距A 为C 处的缉私船立即奉命以海里/时的速度追截走私船.(1)刚发现走私船时,求两船的距离.(2)若走私船正以/时的速度从B 处向南偏东75°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(精确到分钟,参考数据:2.5≈≈)35.已知在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,满足222sin sin sin sin A B C A B +-=.(1)求角C 大小.(2)若2c =b +的取值范围.答案以及解析1.答案:(1)√ (2)√ (3)× (4)×解析:(1)AB 与BA 是相反向量,它们的和为零向量.故正确.(2)当第一个向量的终点是第二个向量的起点时,这两个向量的和等于第一个向量的起点指向第二个向量的终点的向量.故正确.(3)当两个向量有共同的起点时,那么这两个向量的差等于减向量的终点指向被减向量的终点的向量.故不正确.(4)实数0与任意向量的数乘结果是零向量,而不是实数0.故不正确. 2.答案:(1)D (2)B (3)D (4)C (5)D (6)B解析:(1)因为a ,b 是两个单位向量,所以||||=a b ,因此22||||=a b ,也即22=a b ,故C 项错误,D 项正确;两个单位向量尽管长度相等,但方向不一定相同,故A 项错误;||||cos θ⋅=⋅a b a b ,只有a ,b 的夹角θ为0时,才有1⋅=a b ,故B 项错误.(2)A 项错误,向量不能比较大小;B 项正确;C 项错误,||||||⋅≤a b a b ;D 项错误,||||||-≤-a b a b .故选B.(3)AC AB AD =+是向量加法的平行四边形法则.(4)当0λ>时,a 与λ-a 的方向相反,当0λ<时,a 与λ-a 的方向相同,故A 项错误;||||||λλ-=a a ,只有当||1λ≥时,才有||||λ-≥a a ,故B 项错误;因为20λ>,所以a 与2λa 同向,故C 项正确;D 项错误.故选C.(5)因为2,2OA OC OM OB OD OM +=+=, 所以4OA OB OC OD OM +++=.(6)两个不共线的向量可以作为基底.A 项中12//e e ,故不能作为基底;B 项中1e ,2e 不共线,可以作为基底;C 项中1212=e e ,所以12//e e ,不能作为基底;D 项中124=e e ,不能作为基底,故选B.3.答案:2133DE =-+a b ,2233AD =+a b ,1133BC =+b a ,1133EF =--a b ,1233FA =-a b ,1233CD =-+a b ,CE =-+a b解析:如图,设ACBD M =.因为六边形ABCDEF 为正六边形, 所以120ABC BCD ∠=∠=︒, 且ABC DCB ≌△△. 又ABC △是等腰三角形, 所以30BAC BCA ∠=∠=︒, 从而可有90ACD DBA ∠=∠=︒,则1sin 302CM BM AM AM ==︒=, 则1sin 302CM BM AM AM ==︒=,所以13MC =a ,23AM =a ,同理有13BM =b ,23MD =b .所以2133DE BA MA MB ==-=-+a b ,2233AD AM MD =+=+a b ,1133BC BM MC =+=+b a .1133EF BC =-=--a b ,1233FA DC DM MC ==+=-a b ,1233CD FA =-=-+a b ,2133AB DE =-=-a b ,CE CD DE =+=-+a b .4.答案:(1)(8,8)AB =-,||82AB = (2)(2,16)OC =-,(8,8)OD =- (3)33解析:(1)(5,12)(3,4)(8,8)AB =----=-,2||8AB ==. (2)(3,4)(5,12)(2,16)OC OA OB =+=--+-=-,(3,4)(5,12)(8,8)OD OA OB =-=----=-.(3)(3,4)(5,12)154833OA OB ⋅=--⋅-=-+=. 5.答案:(2,0)-解析:设(,)D x y ,由(1,1)A ,(1,0)B -,(0,1)C 知(2,1)AB =--,(,1)CD x y =-,要使AB CD =,则有2,11,x y =-⎧⎨-=-⎩解得2,0.x y =-⎧⎨=⎩所以点D 的坐标为(2,0)-.6.答案:10λμ=-⎧⎨=⎩解析:由λμ=+c a b ,得(1,0)(1,0)(1,1)(,)λμλμμ-=+=+.即1,0,λμμ+=-⎧⎨=⎩解得1,0.λμ=-⎧⎨=⎩7.答案:3cos 5A =,cos 0B =,4cos 5C = 解析:由(1,1)A ,(4,1)B ,(4,5)C 可知(3,0)AB =,(0,4)BC =,所以0AB BC ⋅=,即AB BC ⊥,所以90B ∠=︒,||3AB =,||4BC =,所以||5AC =,故3cos 5A =,cos 0B =,4cos 5C =. 8.答案:1λ=-解析:(1,0)=a ,(1,1)=b ,(1,)λλλ∴+=+a b . 又λ+a b 与a 垂直,()0λ∴+⋅=a b a ,(1,)(1,0)0λλ∴+⋅=,即10λ+=,1λ∴=-.9.答案:||+=a b ,||1-=a b解析:||||cos3023⋅=︒==a b a b ,||∴+====a b||1-====a b . 10.答案:5cos 8θ=,19cos 20β=解析:12+=F F F ,()2212∴+=F F F ,即22212122++⋅=F F F F F .222407024070cos 100θ∴++⨯⨯⨯=,解得5cos 8θ=.又21-=F F F ,()2221∴-=F F F ,即2222212-⋅+=F F F F F , 222100210070cos 7040β∴-⨯⨯⨯+=,解得19cos 20β=. 11.答案:见解析解析:(1)在ABC △中,根据正弦定理,得219B '=︒,602193851C ''=︒-︒=︒,8.69cm c ≈(2)在ABC △中,根据正弦定理,得2sin 3B =,因为b a >,所以4149B '≈︒或13811B '≈︒;当4149B '=︒时,10811C '=︒,11.40cm c ≈; 当13811B '=︒时,1149C '=︒, 2.46cm c ≈.(3)在ABC △中,根据余弦定理,得28.02cm c ≈,根据正弦定理,得112A '≈︒,501123858B ''≈︒-︒=︒.(4)在ABC △中,根据余弦定理的推论,得cos 0.875A ≈,即2857A '≈︒,同理可得4634B '≈︒,10429C '≈︒. 12.答案:没有解析:设海轮在B 处望见小岛A 在北偏东75°,在C 处望见小岛A 在北偏东55°,从小岛A 向海轮的航线BC 作垂线,垂足为D .设垂线段AD 的长度为x nmile ,CD 为y nmile (如图),则tan 35,tan15,8x y x y ⎧=︒⎪⎪⎨⎪=︒⎪+⎩即,,tan 358,tan15xy x y ⎧=⎪⎪︒⎨⎪=+⎪︒⎩则8tan 35tan15x x =-︒︒,解得8tan15tan 35 3.473tan 35tan15x ︒︒=≈>︒-︒.所以这艘海轮不改变航向继续前进,没有触礁的危险.13.答案:(1)A (2)D (3)B (4)C (5)D (6)C解析:(1)283()5BD BC CD AB =+=-++-=+=a b a b a b ,∴A ,B ,D 三点共线.(2)因为AB BC AC +=,所以|||2|++=a b c c .因为||=c,所以||++=a b c 故选D.(3)易知OB OA AB -=,OC OD DC -=,而在平行四边形ABCD中,AB DC =,所以OB OA OC OD -=-,即-=-b a c d ,也即-+-=0a b c d =0,故选B.(4)12121cos602⋅=⋅︒=e e e e , ()()221212112217232626222a b ∴⋅=+⋅-+=-+⋅+=-++=-e e e e e e e e , ()222221211221||24444172==+=+⋅+=+⨯+=e a a e e e e e ,()222221211221||329124912472==-+=-⋅+=-⨯+=b b e e e e e e .设向量a 与向量b 的夹角为θ,则71cos ||2θ-⋅===-‖a b a b .又0180θ︒≤≤︒,所以120θ=︒,故选C.(5)311cos12011cos12011cos1202⋅+⋅+⋅=⨯⨯︒+⨯⨯︒+⨯⨯︒=-a b b c c a .(6)由向量a ,b ,c 两两所成的角相等,故向量a ,b ,c 两两所成的角都等于0或2π3.当a ,b ,c 两两所成的角为2π3时,2π111cos 32⋅=⨯⨯=-a b ,2π313cos 32⋅=⨯⨯=-b c ,2π331cos 32⋅=⨯⨯=-c a .则22222||()222c ++=++=+++⋅+⋅+⋅a b c a b a b c a b b c c a1331192224222⎛⎫⎛⎫⎛⎫=+++⨯-+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,||2∴++=a b c .当a ,b ,c 唡两所成的角为0时,||||||||5++=++=a b c a b c .故选C. 14.答案:(1)见解析 (2)见解析解析:(1)先证||||⊥⇒+=-a b a b a b .||+==a b||-==a b .因为⊥a b ,所以,于是||||+=-a b a b . 再证||||+=-⇒⊥a b a b a b .由||||+=-a b a b ,两边平方得2222||2||||2||+⋅+=-⋅+a a b b a a b b , 所以0⋅=a b ,于是⊥a b .几何意义是矩形的两条对角线相等. (2)先证||||=⇒⊥a b c d .22()()||||⋅=+⋅-=-c d a b a b a b .又||||=a b ,所以0⋅=c d , 所以⊥c d .再证||||⊥⇒=c d a b , 由⊥c d 得0⋅=c d ,即22()()||||0+⋅-=-=a b a b a b , 所以||||=a b ,几何意义是菱形的对角线互相垂直,如图所示.15.答案:见解析解析:由已知,可得123OP OP OP +=-, 两边平方得222121232OP OP OP OP OP +⋅+=,令2311OP OP OP ===,2112OP OP ∴⋅=-, ()222212121121211232PP OP OP OP OP OP OP ⎛⎫∴=-=+-⋅=+-⨯-= ⎪⎝⎭,123PP ∴=. 同理233112OP OP OP OP ⋅=⋅=-,1223313PP P P P P ∴=== 故123PP P △是等边三角形.16.答案:22MN =-b a解析:连接AB (图略),由对称性可知,AB 是SMN △的中位线,22()2()22MN AB OB OA ==-=-=-b a b a .17.答案:这个人的位移是沿北偏东约67°方向前进了 解析:以A 为原点,AB 所在直线为x 轴建立直角坐标系如图.由题意可得(0,0)A ,(9,0)B ,(12,C -,D .AD AB BC CD ∴=++=,||20AD ==tan 204DOx ∠==, 23DOx ∴∠≈︒,902367DOy ∠≈-=︒︒︒.∴这个人的位移是沿北偏东约67°方向前进了.18.答案:D解析:因为,,AB AC D ==a b 为AC 边的中点,所以12AD AC =.由向量减法的三角形法则可得,1122BD AD AB AC AB =-=-=-b a ,故选D. 19.答案:C解析:向量λ+a b 与λ+b a 的方向相反,()//()λλ∴++a b b a .由向量共线的性质定理可知,存在一个实数m ,使得()m λλ+=+a b b a , 即(1)()m m λλ-=-a b .a 与b 不共线,10m m λλ∴-=-=,可得2.10,1m λλλ=∴-==±.当1λ=时,向量+a b 与+b a 是相等向量,其方向相同,不符合题意,故舍去.1λ∴=-.20.答案:C解析:由题意,得11()22AE AB BE AB BC AB AB AD DC =+=+=+-++11212332AB AB AD AB AB AD ⎛⎫=+-++=+ ⎪⎝⎭.21,32AE xAB yAD xAB yAD AB AD =+∴+=+. AB 与AD 不共线,∴由平面向量基本定理得2,31.2x y ⎧=⎪⎪⎨⎪=⎪⎩ 213232132x y ∴-=⨯-⨯=.故选C.21.答案:A解析:123(3,4)(2,5)(3,1)(8,0)=++=+-+=f f f f ,设合力f 的终点为(,)P x y ,O 为坐标原点,则(1,1)(8,0)(9,1)OP OA =+=+=f .故选A. 22.答案:B解析:P 是ABC 所在平面上一点,且||2|0,|||()()0PB PC PB PC PA CB PB PA PC PA --+-=∴--+-=∣∣,即||||,||||CB AB AC AB AC AB AC =+∴-=+,两边平方并化简得0,,90AC AB AC AB A ︒⋅=∴⊥∴=,即ABC 是直角三角形.故选B. 23.答案:C解析:设ABC △的面积为S ,由题意知1sin 2S bc A =1sin602c =⋅︒,解得4c =.由余弦定理得22212cos 1168132a b c bc A =+-=+-⨯=,即a =由正弦定理可得sin sin sin sin a b c a A B C A ++===++.故选C.24.答案:C解析:方法一:在ABC △中,由余弦定理可得22222cos 16924393AB AC BC AC BC C =+-⋅=+-⨯⨯⨯=,所以3AB =,则2221cos 29AB BC AC B AB BC +-==⋅.又因为(0,π)B ∈,所以sin B,所以sin tan cos BB B==.故选C.方法二:过点B 作BD AC ⊥交AC 于点D ,则1cos 22DC BC C AC ===,可得ABC △为等腰三角形,且AB BC =.在Rt BCD △中,BD ==,所以tan 2B DC BD ===,所以22tan2tan 1tan 2BB B ==-故选C. 25.答案:A解析:本题考查两角差的余弦公式以及余弦定理的应用.连接AC ,设ACB α∠=,ACD β∠=,则在ACB △中,4AB =,5BC =,90ABC ∠=︒,所以AC =sin α=cos α=,所以()1cos cos 1202βα=︒-=-+=2222cos 4192365AD AC CD AC CD β=+-⋅⋅=+-=-AD =故选A.26.答案:B解析:()()3a b c b c a bc +++-=,22()3b c a bc ∴+-=,222b bc c a -+=.根据余弦定理2222cos a b c bc A =+-,得222222cos b bc c a b c bc A -+==+-,即2cos bc bc A =,1cos 2A ∴=.0180A <<︒︒,60A ∴=︒.又sin 2sin cos A B C =,sin 2cos sin A C B∴=,即22222a a b c b ab+-=⋅,化简可得22b c =,即b c =,ABC ∴△是等边三角形.故选B.27.答案:32-解析:因为23(66,4)m -=---a b ,所以(66)42(4)m m --⨯=⨯-,故32m =-. 28.答案:2解析:由(1,2),(4,2)==a b ,得(4,22),|||m m m =+=++==c a b a b ,58,820m m ⋅=+⋅=+a c b c .c 与a 的夹角等于c 与b 的夹角,||||||||⋅⋅∴=c a c bc a c b ,即=,解得2m =.29.答案:78解析:根据正弦定理得2222sin sin sin 6sin 60A A B B a ab b +-=+-=,即(3)(2)0,2a b a b a b +-=∴=,则2c b =,根据余弦定理得2222222447cos 288a c b b b b B ac b +-+-===.30.答案:150解析:在ABC △中,45BAC ∠=︒,90ABC ∠=︒,100BC =,100sin 45AC ∴==︒在AMC △中,75MAC ∠=︒,60MCA ∠=︒,45AMC ∴∠=︒,由正弦定理可得sin sin AM ACACM AMC=∠∠,即sin 60sin 45AM =︒︒,解得AM =在Rt AMN △中,sin MN AM MAN =⋅∠sin 60=︒150(m)=. 故答案为150. 31.答案:(1)见解析 (2)值为4± (3)43k =解析:(1)2,2AB OB OA AC OC OA =-=+=-=--a b a b , 所以AC AB =-.又因为A 为公共点,所以A ,B ,C 三点共线.(2)设8(2),k k λλ+=+∈a b a b R ,则8,2, k k λλ=⎧⎨=⎩解得4,2k λ=⎧⎨=⎩或4,2,k λ=-⎧⎨=-⎩所以实数k 的值为4±.(3)()(23)32AC AB BC =+=++-=-a b a b a b . 因为A ,C ,D 三点共线,所以AC 与CD 共线. 从而存在实数μ使AC CD μ=,即32(2)k μ-=-a b a b ,得32,2,k μμ=⎧⎨-=-⎩解得3,24.3k μ⎧=⎪⎪⎨⎪=⎪⎩所以43k =.32.答案:(1)12x = (2解析:(1)⊥b c ,2[(1)](1)55(1)0x x x x x x ∴⋅=⋅+-=⋅+-=-+-=b c b a b b a b ,解得12x =.(2)222222||[(1)]2(1)(1)x x x x x x =+-=+-⋅+-=c a b a a b b 222221010(1)5(1)252052515x x x x x x x ⎛⎫--+-=-+=-+ ⎪⎝⎭.当25x =时,2||c 有最小值1,即||c 有最小值1.此时,2355=+c a b .223232310(5)1555555⎛⎫⋅=⋅+=+⋅=⨯+⨯-= ⎪⎝⎭a c a a b a a b ,设向量a ,c 的夹角为θ,则cos ||||θ⋅===a c a c . 33.答案:(1)60B =︒(2)⎝⎭解析:(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=. 由180A BC ++=︒,可得sin cos 22A C B+=, 故cos2sin cos 222B B B =. 因为cos 02B≠,故1sin22B =,因此60B =︒.(2)由题设及(1)知ABC △的面积ABC S =△.由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===+. 由于ABC △为锐角三角形,故090,090A C ︒<<︒︒<<︒, 由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<,ABC S <<△.因此,ABC △面积的取值范围是⎝⎭. 34.答案:(1)4海里.(2)南偏东60°方向,需47分钟才能追上走私船.解析:(1)在ABC △中,因为2)AB =海里,AC =海里,135BAC ∠=︒,由余弦定理,得4BC =(海里). (2)根据正弦定理,可得sin1351sin 2AC ABC BC ︒∠==. 所以30ABC ∠=︒,易知15ACB ∠=︒,设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,如图所示.则有CD =(海里),BD =(海里).而120CBD ∠=︒,在BCD △中,根据正弦定理,可得sin sin BD CBD BCD CD ∠∠===所以45,15BCD BDC ∠∠=︒=︒,所以60ACD ∠=︒.在CBD △中根据正弦定理,得sin sin CB CD BDC CBD =∠∠,解得0.78t ≈小时≈47分钟. 故缉私船沿南偏东60°方向,需47分钟才能追上走私船.35.答案:(1)5π6C =. (2)取值范围是(2,.解析:(1)因为222sin sin sin sin A B C A B +-=,所以由正弦定理得222a b c +-=,所以222cos 2a b c C ab +-=== 因为(0,π)C ∈,所以5π6C =. (2)由正弦定理得24sin c R C==,2sin )b R A B +=+π4sin 6A A ⎤⎛⎫=+- ⎪⎥⎝⎭⎦14cos 2A A A ⎫=+⎪⎪⎭π4sin 6A ⎛⎫=+ ⎪⎝⎭,因为π0,6A ⎛⎫∈ ⎪⎝⎭, 所以πππ,663A ⎛⎫+∈ ⎪⎝⎭,所以π1sin 62A ⎛⎛⎫+∈ ⎪ ⎝⎭⎝⎭,b +的取值范围是(2,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大毛毛虫★倾情搜集★精品资料
大毛毛虫★倾情搜集★精品资料
向量
作业:1—3、BAD;4、一条直线、两点;5、3;6、菱形;7、略;
8、(1)如图所示,(2)450 m。
9、答:{AC、CA、BD、DB、AB、AD、BA、DA}
向量的加法
作业:1—4、CDAA; 5、略; 6、Zkkn,4。
向量的减法
作业:
1—3、BBD; 4、-f , -e , f , 0; 5、2 km/h;
6、a与b的方向相反且都不为零向量; 7、b+ d-a-c;8、
5.3.1实数与向量的积
作业:1—6、CDCAAC; 5、ji97; 6、baAD21;
7、baAB21;baAD21; 8、baBC21;baMN41;
9、PO4; 10、OBOAOM3132;OBOAON3231;
11、、∵BFABEAEF,CFDCEDEF,∴ DCABEF2.
12、∵ECAEDBAD,∴ kACAEABAD,
∵ BCkABACkADAEDE,∴ BCDE//.
13、∵ CBCDBD,∴ CDCBBDCBCN23131,
∵ CNCDCBCDCBBMCBCM2322321,
∴ CMCN//,即:M、N、C三点共线.
14、解法一:∵AB=a, BC=b 则BD=21BC=21b
∴AD=AB+BD=a+21b而AG=32AD
D
A
E
Ca b B
F
G
大毛毛虫★倾情搜集★精品资料
大毛毛虫★倾情搜集★精品资料
∴AG=32a+31b
解法二:过G作BC的平行线,交AB、AC于E、F
∵△AEF∽△ABC, AE=32AB=32a EF=32BC=32b EG=21EF=31b
∴AG=AE+EG=32a+31b
实数与向量的积
作业:1—3、ACD; 4、- 181b+277c; 5、- 41; 6、平行四边形; 7、略。
8、p=q=0; 9、略。
10、解:由H、M、F所在位置有: AM=AD+DM=AD+21DC=AD+21AB=b+21a,
HF=AF-AH=AB+BF
-AH
=AB+1132BCAD=AB+31AD-21AD=a-61b
11、解:∵PQ∥BC,且BCPQ=t,有△APQ∽△ABC,且对应
边比为t(=
BCPQ),即ACAQAB
AP
=t.
转化为向量的关系有:AP=tAB,AQ=tAC,
又由于:AP=OP-OA,AQ=OQ-OA,
AB
=OB-OA,AC=OC-OA
∴OP=OA+AP=OA+t(OB-OA)
=a+t(b-a)=(1-t)a+tb,
OQ=OA+AQ
=OA+t(OC-OA)
=t(c-a)+a=(1-t)a+tc
AM
=
12、分析:首先把图形语言:M、N是AB、AC的中点翻译成向量语言:
21AB,AN=2
1
AC
。然后再把向量的一种语言转化为向量的另一种语言,即
MN=AN-AM=21AC-21AB=21(AC-AB)=21BC
。
最后又将向量语言MN=21BC翻译成图形语言就是:MN=21BC且MN∥BC。
13、证明:因为E、F为DC、AB的中点,∴DE=21DC,BF=21BA,
B
F
C
M
D
HA
B
O
C
Q
P
A
B
N
C
M
A
大毛毛虫★倾情搜集★精品资料
大毛毛虫★倾情搜集★精品资料
由向量加法法则可知:AE=AD+DE=AD+21DC,CF=CB+BF=CB+21BA。
∵四边形ABCD为平行四边形,∴AD=-CB,DC=-BA,
∴AE=-CB-21BA=-(CB+21BA)=-CF∴ AE∥CF,∴ AE∥CF。
平面向量的坐标运算
作业:
1、B;2、D;3、B;4、(6,-9);5、(-3,0);6、(-8,3),)21,25(;7、D(2,2),)25,21(O;8、
(-5,1);9、略。
平面向量的坐标运算
作业:
1、D; 2、C; 3、C; 4、2; 5、±1; 6、2; 7、D;8、D; 9、- 31;
10、略。
线段的定比分点
作业:
1、D 2、C 3、A 4、2或27 5、(8,-4) 6、 71
7、P1(1,-2),P2(3,0),A、B分12pp所成的比λ1、λ2分别为-21,-2
8、 125 9、B(8,-1),C(4,-3),D(-6,-1)
10.P1(1,-2) P2(3,0)1=-21 2= -24 11. E(2,-2)
平面向量的数量积及运算律
作业:
1.(1),(8)正确 2、该四边形ABCD为菱形 3. 1)23 (2)-13 4. -24。
平面向量的数量积及运算律
作业:
1、D; 2、B; 3、C; 4、21; 5、 –63; 6、 11;
7、(1)- 2; (2)23; (3)45°; 8、 120°。
平面向量数量积的坐标表示
作业:一、BDBC
大毛毛虫★倾情搜集★精品资料
大毛毛虫★倾情搜集★精品资料
二、1、3,1a或3,1a; 2、2; 3、,5
4、311k; 5、54cos; 6、2B的三角形。
三、
1、3,2c。
2、设yxD,,则1,2yxAD,2,3yxBD,3,6CB,
∵ CBBDCBAD// ,∴ 263301326yxyx,解得:11yx。
于是:1,1D,2,1AD。
3.不能(理由略)
4、不妨设:1,0A,1,1B,0,1C,aaP,,则有:aE,1,0,aF。
∵1,aaAP,aaEF,1,∴EFaaPA221;
又∵011aaaa,∴EFPA。
平移
作业:一、 CAACA
二、1、3,1'A; 2、6,10; 3、32xey; 4、32k; 5、2,3a;
6、
3,2a;
1,7AB
。
三、
1、∵ ABC的重心为2,2G,DEF的重心为3,3'G,∴ 平移向量1,1a。
于是:3,2D,4,3E,2,4F。
2、(1)∵212xy,∴2,1A; (2)4,4'A,442xy; (3)2,1b,2xy。
3、(1)∵222312xxgxxf,∴3,1a;
(2)设yxm,,则403yxyx,解得:13yx,∴1,3m。