平面向量常见题型与解题方法归纳学生版
平面向量常考方法总结

平面向量中的基本方法一、向量基本不等式向量基本不等式:b a b a ⋅≥+222,()42b a b a +≤⋅当且仅当b a =时取等【例1】已知平面向量a 、b 满足1422=+⋅+b b a a,则a +2的最大值是.【练习1】已知平面向量a 、b 满足12922=+⋅+b b a a,则a +3的最大值是.【例2】已知平面向量a 、b满足32≤a ,则b a ⋅的最小值是.【练习2】已知平面向量a 、b满足323≤-a ,则b a ⋅的最小值是.向量三角不等式:+≤±≤-,当向量a 、b 共线时,取等推论:y x y x y x +≤±≤-,Ry x ∈,{}y x y x y x -+=+,max ,{}y x y x y x -+=-,min【例3】已知平面向量a 、b 是非零向量,且12=-a ,2=-,则-的最大值是.【练习3】已知平面向量a 、b 是非零向量,且22=+a ,310=-,则的最大值是.【例4】已知平面向量a 、b 1=2=,若对任意单位向量e ,6≤+,ba ⋅的取值范围是.【练习4】已知平面向量a 、b 1=21=,若对任意单位向量e 26≤+,b a ⋅的取值范围是.向量回路恒等式:CBAD CD AB +=+【例5】在平面凸四边形ABCD 中,已知2=AB ,N M ,分别是边BC AD ,的中点,且23=MN .若()1=-⋅BC AD MN ,则=⋅CD AB .【练习5】在平面四边形ABCD 中,设3=AC ,2=BD ,则()()=++AD BC CD AB .四、向量对角线定理向量对角线定理:记D C B A 、、、是空间中的任意四点,则有⎪⎭⎫--+=⋅21BD AC 【例6】在四边形ABCD 中,已知F E ,分别是边BC AD ,的中点,且m BC AD =⋅,n BD AC =⋅,2=AB ,1=EF ,3=CD ,则=-n m .五、互换系数恒等式若向量a ,b =,则有a a μλ+=+【例7】已知a ,b ,c 是平面内的三个单位向量,且b a ⊥,b a +++23的最小值为.【练习7】已知a ,b ,c o60=,的最小值为.六、极化恒等式极化恒等式的代数形式:()()⎥⎦⎤⎢⎣⎡-++=⋅2241b a b a b a 极化恒等式的对偶形式:()()22222b a b a b a -++=⎪⎭⎫ ⎝⎛+【例8】已知a ,b 是满足31≤≤,31≤≤,31≤≤,的取值范围是.【练习8】已知a ,b 是满足31≤≤,31≤≤3≤+,的取值范围是.【例9】已知a ,b 是满足31≤≤,31≤≤,31≤≤,则b a ⋅的取值范围是.【例10】在四边形ABCD 中,已知O 分别是边BD 的中点,且7-=⋅AD AB ,3=OA ,5=OC ,则=⋅DC BC .【练习9】在ABC ∆中,已知D 分别是边BC 的中点,F E ,分别是边AD 的两个三等份点,且4=⋅CA BA ,1-=⋅CF BF ,则=⋅CE BE .【练习10】如图,在同一平面内,点A 位于两直线n m ,同侧,且A 到于两直线n m ,的距离分别为3,1点C B ,分别在n m ,5=+,则AC AB ⋅最大值为.【例11】在ABC ∆中,F E ,分别是边AC AB ,的中点,P 在EF 的上,若ABC ∆的面积为2,则2BC PC PB +⋅最小值为.【练习11】已知AB 中为圆O 的直径,M 为弦CD 的一点,8=AB ,6=CD ,则MB MA ⋅的取值范围是.七、矩形大法点O 矩形ABCD 所在平面内任意一点,则有:2222OD OB OC OA +=+【例12】在直角ABC ∆中,D 为斜边AB 的中点,P 为CD=.【练习12】在平面内,若21AB AB ⊥1==,21AB AB AP +=21<的取值范围是.。
平面向量题型归类及解题方法

平面向量题型归类及解题方法1. 平面向量的定义和性质平面向量是指在平面上具有大小和方向的量,用箭头来表示。
平面向量通常用一个字母加上一个箭头(如a→)来表示。
平面向量有以下性质: - 零向量的方向是任意的,大小为0。
- 向量的大小等于其模长,记作∥a∥。
- 向量可以相等,相等的向量有相同的大小和方向。
- 向量可以相反,相反的向量大小相等,方向相反。
- 向量可以相加,向量相加满足三角形法则。
- 向量可以缩放,即乘以一个标量。
- 向量可以平移,即使原点发生变化。
2. 平面向量的基本运算2.1 向量的加法向量a和b的和记作a + b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的终点。
2.2 向量的减法向量a和b的差记作a - b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的起点。
2.3 向量的数乘向量a与一个实数k的积记作k a,其几何意义是将向量a的长度缩放为原来的k 倍,方向不变(当k>0时)或反向(当k<0时)。
2.4 平行向量和共线向量如果两个向量的方向相同(可能大小不同),那么它们是平行向量。
如果两个向量共线,即一个向量是另一个向量的倍数,那么它们是共线向量。
2.5 两个向量的数量积(点积)设a = (x1, y1)和b = (x2, y2),则向量a和b的数量积(点积)定义为:a·b= x1x2 + y1y2。
2.6 向量的模长和方向角设向量a = (x, y),则向量a的模长定义为∥a∥= √(x^2 + y^2)。
向量a的方向角定义为与x轴的正方向之间的夹角θ,其中tanθ = y / x。
3. 平面向量的题型归类及解题方法平面向量的题型主要包括平面向量的加减法、数量积、平行向量和共线向量、模长和方向角等。
3.1 平面向量的加减法题型•已知两个向量,求其和或差向量。
•已知一个向量和其和或差向量,求另一个向量。
高中数学高一平面向量常见题型分类总结

平面向量常见题型题型一、利用平面向量待定系数求参数值(平面向量基本定理的应用)例题1: 在正方形中, 分别是的中点,若,则的值为( )变式1: 如图,两块斜边长相等直角三角板拼在一起.若AD →=xAB →+yAC →,则x =___y =___题型二、向量基本定理与不等式,、三角函数相结合例题2: 在Rt ABC ∆中,090A ∠=,点D 是边BC 上的动点,且3AB =,4AC =,(0,0)AD AB AC λμλμ=+>>,则当λμ取得最大值时, AD 的值为变式2: 已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC −−= 则221a ba b b+++的最小值是___________变式3: 给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以ABCD ,M N ,BC CD AC AM BN λμ=+λμ+O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______.变式4:变式5: 若非零向量a b 、满足a b b −=,则下列不等式恒成立的为( ) A. 22b a b >− B. 22b a b <− C. 22a a b >− D. 22a a b <−题型三、坐标系法处理平面向量的数量积在处理向量数量积问题时,若几何图形特殊(如正方形,等边三角形等),易于建系并写出点的坐标,则考虑将向量坐标化解1. 数量积的定值问题例2.在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则AD BE ⋅=____变式6: 如图,在矩形ABCD中,2AB BC ==,点E 为BC 中点,点F 在边CD 上,若2AB AF ⋅=AE BF ⋅的值是____________变式7: 如图,平行四边形ABCD 的两条对角线相交于M ,点P 是MD 的中点,若2AB =,1AD =,且60BAD ∠=,则AP CP ⋅=_________2. 数量积的最值问题例3.平面向量,,a b c 满足1,2,2,1a e b e a b e ⋅=⋅=−==,则a b ⋅最小值是______变式8.已知点M 为等边三角形ABC 的中心,2AB =,直线l 过点M 交边AB 于点P ,交边AC 于点Q ,则BQ CP ⋅的最大值为 .3. 数量积的范围问题例题3: 如图,在直角三角形ABC中,1AC BC ==,点,M N 分别是,AB BC 的中点,点P 是ABC 内及边界上的任一点,则AN MP ⋅的取值范围是_______变式8: 如图,四边形ABCD 是半径为1的圆O 的外切正方形,PQR 是圆O 的内接正三角形,当PQR 绕着圆心O 旋转时,AQ OR ⋅的取值范围是变式9: 在平面上,12AB AB ⊥ ,12121,OB OB AP AB AB ===+,若12OP <,则OA 的取值范围是题型四、平面向量的投影问题数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题。
平面向量解题方法完全归纳与总结

平面向量解题方法完全归纳与总结
平面向量解题方法完全归纳与总结!
1、基底法
在处理平面向量问题时,有一类是所求的向量模长和夹角是在变化的,我们利用平面向量的基本定理,选取一组不共线的且模长和夹角知道的非零向量作为基底,把所求向量都用所选基底表示来处理问题.
2、平方法
在向量中,遇到和模长有关的问题,很多时候都可以考虑把相关式子两边同时平方来处理,并且要灵活运用:向量的平方等于它模长的平方这个规律
3、投影法
①我们可以理解成:两向量的数量积等于他们各自的模长,乘以它们夹角的余弦值;
②也可以理解成:两向量的数量积等于其中一个向量的模长,乘以另外一个向量在它上面的投影;
4、坐标法
几何问题代数化是数学中比较重要的一个思想方法,在平面向量中,这个思想在处理很多问题时比较“直接无脑”。
只要题目中给出了向量之间的夹角就可以考虑使用坐标来处理向量问题。
5、数形结合法
在处理一些平面向量的问题时,需要利用图形,结合向量的运算法则,综合分析,来处理一些动态变化问题。
这类问题主要包含:圆上动点、直线上动点等。
6、三点共线结论及其推广
7、绝对值不等式
8、极化恒等式
9、等和线
以上就是老师对高中数学向量这一板块的解题方法汇总总结,这
些方法足以应付高中数学中出现的向量题型,当然有同学想要更深入一些关于向量的解题方法的话还需要学习三角形与向量的五心相关知识,更高层次的还有复数与向量结合这种强基计划或者竞赛中的一些知识,这些我们在后期的一些文章当中会涉及。
我们这个自媒体主要服务于高中生数学,高考数学,强基计划、数学竞赛,大家有兴趣可以关注一下我们,我们上的都是一些干货,绝对不会让你失望!。
最全归纳平面向量中的范围与最值问题 (十大题型)(学生版)

最全归纳平面向量中的范围与最值问题目录题型一:三角不等式题型二:定义法题型三:基底法题型四:几何意义法题型五:坐标法题型六:极化恒等式题型七:矩形大法题型八:等和线题型九:平行四边形大法题型十:向量对角线定理方法技巧总结技巧一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果技巧二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)技巧三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2技巧四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB(λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;技巧五.平行四边形大法1.中线长定理2AO 2=AB 2+AD 2-12DB 22.P 为空间中任意一点,由中线长定理得:2PO 2=PA 2+PC 2-12AC 22PO 2=PD 2+PB 2-12DB 2两式相减:PA 2+PC 2-PD 2+PB 2=AC2-BD 22=2AB ⋅AD技巧六.向量对角线定理AC ⋅BD =(AD 2+BC 2)-(AB 2+CD2)2必考题型归纳题型一:三角不等式1(2023·全国·高三专题练习)已知向量a ,b ,c 满足|a |=2,|b |=1,|c -a -b |=1,若对任意c ,(c -a )2+(c-b )2≤11恒成立,则a ⋅b 的取值范围是.2(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:|a|=1,b ⋅a =-1,若对满足条件的任意向量b ,|c -b |≥|c -a |恒成立,则cos c +a ,a 的最小值是.3已知向量a ,b ,c 满足a =b =c =2,a ⋅b =0,若关于t 的方程ta +b2-c=12有解,记向量a ,c 的夹角为θ,则sin θ的取值范围是.1.已知e 1 ,e 2 ,e 3 是平面向量,且e 1 ,e 2 是互相垂直的单位向量,若对任意λ∈R 均有e 3 +λe 1的最小值为e 3 -e 2 ,则e 1 +3e 2 -e 3 +e 3-e 2 的最小值为.2.已知平面向量e 1 ,e 2 满足2e 2 -e 1 =2,设a =e 1 +4e 2 ,b =e 1 +e 2 ,若1≤a ⋅b ≤2,则|a|的取值范围为.3.(2023·浙江金华·统考一模)已知平面向量a ,b ,c 满足a ⋅b =74,|a -b|=3,(a -c )(b -c )=-2,则c的取值范围是.1已知向量a ,b 的夹角为π3,且a ⋅b =3,向量c 满足c =λa +1-λ b 0<λ<1 ,且a ⋅c =b ⋅c ,记x =c ⋅aa ,y =c ⋅b b,则x 2+y 2-xy 的最大值为.2(2023·四川成都·高二校联考期中)已知向量a ,b ,c 满足a =1,b=2,a ⋅b=-1,向量c -a 与向量c -b 的夹角为π4,则c 的最大值为.3(2023·浙江绍兴·高二校考学业考试)已知向量a ,b 满足a =1,b=3,且a ⊥b ,若向量c 满足c -a -b =2a -b ,则c的最大值是.1.已知向量a ,b 满足a =1,b =3,且a ⋅b =-32,若向量a -c 与b -c 的夹角为30°,则|c |的最大值是. 2.已知向量a ,b ,满足a =2b =3c =6,若以向量a ,b 为基底,将向量c 表示成c =λa+μb (λ,μ为实数),都有λ+μ ≤1,则a ⋅b的最小值为 3.已知向量a 、b 满足:a -b=4,a =2b .设a -b 与a +b 的夹角为θ,则sin θ的最大值为.1.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE =λBC ,DF=μDC .若λ+μ=23,则AE ⋅AF 的最小值为.2.(2023·天津·高三校联考阶段练习)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC ,CD 上,BE =λBC ,DF =μDC ,若2λ+μ=52,则AE ⋅AF 的最小值.3.如图,菱形ABCD 的边长为4,∠BAD =30°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.4.菱形ABCD 的边长为4,∠BAD =30°,若N 为菱形内任意一点(含边界),则AB ⋅AN的最大值为.5.如图,菱形ABCD 的边长为4,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.6.平面四边形ABCD 是边长为2的菱形,且∠A =120°,点N 是DC 边上的点,且DN =3NC,点M 是四边形ABCD 内或边界上的一个动点,则AM ⋅AN的最大值为.7.(2023·全国·高三专题练习)已知向量a ,b 满足a +b =3,a ⋅b =0.若c =λa+1-λ b ,且c ⋅a =c ⋅b,则c 的最大值为.8.已知平面向量a ,b ,c 满足a =2,b =1,a ⋅b =-1,且a -c 与b -c 的夹角为π4,则c 的最大值为.9.已知平面向量a 、b 、c 满足a=4,b =3,c =2,b ⋅c =3,则a -b 2a -c 2-a -b⋅a -c 2最大值为.10.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC,则λ2+μ2的最小值为.题型四:几何意义法1(2023·全国·模拟预测)已知a ,b ,c 是平面向量,满足a -b =a +b ,a =2b =2,c +a -b=5,则向量c 在向量a上的投影的数量的最小值是.2(2023·上海浦东新·上海市建平中学校考三模)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π4,c -a与c -b 的夹角为3π4,a -b=2,c -b =1,则b ⋅c 的取值范围是.3(2023·全国·高三专题练习)已知平面向量a ,b 夹角为π3,且平面向量c 满足c -a =c -b =1,c -a ⋅c -b =-12,记m 为f t =ta +1-t b (t ∈R )的最小值,则m 的最大值是. 1.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足a ⋅b =-3,a -b=4,c -a 与c -b 的夹角为π3,则c -a -b 的最大值为. 2.(2023·四川内江·高二四川省内江市第六中学校考开学考试)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π3,c -a 与c -b的夹角为2π3,a -b =23,c -b =2,则b ⋅c 的取值范围是.3.已知非零平面向量a ,b ,c 满足a -b =2,且(c -a )⋅(c -b )=0,若a 与b 的夹角为θ,且θ∈π6,π3,则|c |的最大值是.4.(2023·全国·高三专题练习)平面向量a ,b ,c 满足:a ,b 的夹角为π3,|a -b|=|b -c |=|a -c |=23,则b ⋅c的最大值为. 5.(2023·广东阳江·高二统考期中)已知非零平面向量a ,b ,c 满足a -b =4,且a -c⋅b -c =-1,若a 与b 的夹角为θ,且θ∈π3,π2,则c 的模取值范围是. 6.(2023·浙江·高三专题练习)已知平面向量a ,b ,c ,若a =b =a -b =1,且2a -c+2b +c =23,则a -c的取值范围是.7.(2023·安徽阜阳·高三安徽省临泉第一中学校考期末)已知向量a ,b 满足a =b =1,且a ⋅b=0,若向量c 满足c +a +b=1,则c 的最大值为.8.(2023·浙江·模拟预测)已知向量a ,b ,c 满足a -b +c=2b =2,b -a 与a 的夹角为3π4,则c 的最大值为.9.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:a -b =5,向量a与向量b 的夹角为π3,a -c=23,向量a -c 与向量b -c 的夹角为2π3,则a 2+c 2的最大值为.题型五:坐标法1(2023·全国·高三专题练习)已知向量a ,b 满足2a +b=3,b =1,则a +2a +b 的最大值为.2(2023·江苏常州·高三统考期中)已知平面向量a ,b ,c 满足|a |=2,|b |=4,a ,b 的夹角为π3,且(a -c )⋅(b -c )=2,则|c |的最大值是.3设平面向量a ,b ,c 满足a =b =2,a 与b 的夹角为2π3,a -c ⋅b -c =0则c 的最大值为.1.(2023·安徽滁州·校考三模)已知平面向量a ,b ,c 满足|a|=1,|b |=3,a ⋅b =0,c -a 与c -b 的夹角是π6,则c ⋅b -a 的最大值为.2.(2023·河北·统考模拟预测)如图,在边长为2的正方形ABCD 中.以C 为圆心,1为半径的圆分别交CD ,BC 于点E ,F .当点P 在劣弧EF 上运动时,BP ⋅DP的最小值为.3.(2023·山东·山东省实验中学校考一模)若平面向量a ,b ,c 满足a =1,b ⋅c =0,a ⋅b =1,a⋅c=-1,则b +c 的最小值为.4.(2023·四川眉山·仁寿一中校考一模)如图,在平面四边形ABCD 中,∠CDA =∠CBA =90°,∠BAD =120°,AB =AD =1,若点E 为CD 边上的动点,则AE ⋅BE的最小值为.5.(2023·安徽滁州·校考模拟预测)已知a=1,b +a +b -a =4,则b -14a 的最小值是.6.(2023·浙江·模拟预测)已知向量a ,b 满足a=3,且b -λa 的最小值为1(λ为实数),记a,b =α,a ,a -b=β,则b ⋅b -a cos α+β最大值为.7.在矩形ABCD 中,AB =4,AD =3,M ,N 分别是AB ,AD 上的动点,且满足2AM +AN =1,设AC =xAM +yAN ,则2x +3y 的最小值为()A.48B.49C.50D.51题型六:极化恒等式1(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是.2(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,AD =4,AB =83,BC =12,则BE ⋅BF的取值范围为. 3(2023·陕西榆林·三模)四边形ABCD 为菱形,∠BAC =30°,AB =6,P 是菱形ABCD 所在平面的任意一点,则PA ⋅PC的最小值为. 1.(2023·福建莆田·模拟预测)已知P 是边长为4的正三角形ABC 所在平面内一点,且AP=λAB +(2-2λ)AC (λ∈R ),则PA ⋅PC 的最小值为()A.16B.12C.5D.42.(2023·重庆八中模拟预测)△ABC 中,AB =3,BC =4,AC =5,PQ 为△ABC 内切圆的一条直径,M 为△ABC 边上的动点,则MP ⋅MQ的取值范围为()A.0,4B.1,4C.0,9D.1,9题型七:矩形大法1已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.2在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,23(2023·全国·高三专题练习)已知圆Q :x 2+y 2=16,点P 1,2 ,M 、N 为圆O 上两个不同的点,且PM⋅PN =0若PQ =PM +PN ,则PQ的最小值为.1.设向量a ,b ,c满足|a |=|b |=1,a ⋅b =12,(a -c )⋅(b -c )=0,则|c |的最小值是()A.3+12B.3-12C.3D.1题型八:等和线1如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC,则2x +2y 的最大值为()A.83B.2C.43D.12在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的取值范围是()A.0,13B.13,12C.[0,1]D.[1,2]3(2023·全国·高三专题练习)如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .当x =-12时,y 的取值范围是()A.0,+∞ B.12,32C.12,+∞ D.-12,321.(2023·全国·高三专题练习)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB,则3x +y 的取值范围是.2.(2023·江西上饶·统考三模)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC=xOA +yOB ,则2x +y 的取值范围是.3.(2023·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.4.(2023·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.5.(2023·全国·高三专题练习)如图,OM ⎳AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP =xOA +yOB,则实数对x ,y 可以是()A.-14,34B.-15,75C.14,-12D.-23,236.如图,B 是AC 的中点,BE =2OB ,P 是平行四边形BCDE 内(含边界)的一点,且OP=xOA +yOBx ,y ∈R ,则下列结论正确的个数为()①当x =0时,y ∈2,3②当P 是线段CE 的中点时,x =-12,y =52③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段④x -y 的最大值为-1A.1B.2C.3D.47.(2023·全国·高三专题练习)在△ABC 中,AB =AC=AB ⋅AC=2,点Q 在线段BC (含端点)上运动,点P 是以Q 为圆心,1为半径的圆及内部一动点,若AP =λAB +μAC,则λ+μ的最大值为()A.1B.33C.3+33D.328.在△ABC 中,AD 为BC 上的中线,G 为AD 的中点,M ,N 分别为线段AB ,AC 上的动点(不包括端点A ,B ,C ),且M ,N ,G 三点共线,若AM =λAB ,AN =μAC,则λ+4μ的最小值为()A.32 B.52C.2D.949.(2023·全国·高三专题练习)在ΔABC 中,AC =2,AB =2,∠BAC =120°,AE =λAB ,AF=μAC ,M 为线段EF 的中点,若AM=1,则λ+μ的最大值为()A.73B.273C.2D.21310.在扇形OAB 中,∠AOB =60o ,OA =1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]11.(2023·全国·高三专题练习)如图,在扇形OAB 中,∠AOB =600,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若u =x +λy (λ>0)存在最大值,则λ的取值范围为()A.(1,3)B.13,3C.12,1D.12,2题型九:平行四边形大法1如图,圆O 是半径为1的圆,OA =12,设B ,C 为圆上的任意2个点,则AC ⋅BC 的取值范围是.2如图,C ,D 在半径为1的⊙O 上,线段AB 是⊙O 的直径,则AC ⋅BD的取值范围是.3(2023·浙江·模拟预测)已知e 为单位向量,平面向量a ,b 满足|a +e |=|b -e |=1,a ⋅b的取值范围是.1.(2023·江西宜春·校联考模拟预测)半径为1的两圆M 和圆O 外切于点P ,点C 是圆M 上一点,点B 是圆O 上一点,则PC ⋅PB的取值范围为.2.(2023·福建·高三福建师大附中校考阶段练习)设圆M ,圆N 的半径分别为1,2,且两圆外切于点P ,点A ,B 分别是圆M ,圆N 上的两动点,则PA ⋅PB的取值范围是()A.-8,12B.-16,34C.-8,1D.-16,1题型十:向量对角线定理1已知平行四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,若记a =OA⋅OB ,b =OB ⋅OC ,c =OC ⋅OD ,则()A.a <b <cB .a <c <bC .c <a <bD .b <a <c2如图,在圆O 中,若弦AB =3,弦AC =5,则AO ⋅BC的值是()A.-8B .-1C .1D .83如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥BC 若,AB =a ,AD =b ,则AC ⋅BD 等于()A.b 2-a 2B.a 2-b 2C.a 2+b 2D.a 2⋅b 2。
(完整版)平面向量题型及方法

平面向量方法、题型、及应试技巧总结一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如:已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行. 提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
如 下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =.(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c .其中正确的是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
平面向量痛点问题之三角形“四心”问题(学生版)--高一数学微专题
平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC +CA⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.【典型例题】题型一:重心定理1(2024·重庆北碚·高一西南大学附中校考阶段练习)如图所示,已知点G 是△ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AM =xAB ,AN =yAC ,则1x +1y的值为()A.3B.4C.5D.62(2024·全国·高一随堂练习)已知△ABC 中,点G 为△ABC 所在平面内一点,则“AB +AC -3AG=0”是“点G 为△ABC 重心”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3(2024·全国·高一专题练习)已知O 是三角形ABC 所在平面内一定点,动点P 满足OP =OA+λAB AB sin B +AC AC sin C λ≥0 ,则P 点轨迹一定通过三角形ABC 的()A.内心B.外心C.垂心D.重心题型二:内心定理1(2024·全国·高一专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为.2(2024·江苏南通·高一如皋市第一中学期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=.3(2024·广西柳州·高一统考期末)设O 为△ABC 的内心,AB =AC =5,BC =8,AO =mAB+nBCm ,n ∈R ,则m +n =题型三:外心定理1(2024·吉林长春·高一东北师大附中校考阶段练习)已知点O 是△ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM ⋅AO=.2(2024·安徽六安·高一六安市裕安区新安中学校考期末)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +OB 2+λCA CA cos A +CBCB cos B ,λ∈R ,则P 的轨迹一定经过△ABC 的.(从“重心”,“外心”,“内心”,“垂心”中选择一个填写)3(2024·四川遂宁·高一射洪中学校考阶段练习)已知△ABC 中,∠A =60°,AB =6,AC =4,O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ的值为()A.1B.2C.1118D.12题型四:垂心定理1(2024·江苏泰州·高一统考期末)已知△ABC 的垂心为点D ,面积为15,且∠ABC =45°,则BD ⋅BC=;若BD =12BA +13BC ,则BD=.2(2024·湖北黄冈·高一校联考期末)若O 为△ABC 的垂心,2OA +3OB +5OC =0 ,则S △AOB S △AOC=,cos ∠BOC =.3(2024·山西·高一校联考阶段练习)已知H 为△ABC 的垂心(三角形的三条高线的交点),若AH=13AB+25AC ,则sin ∠BAC =.【过关测试】一、单选题1(2024·全国·高一专题练习)在直角三角形ABC 中,A =90°,△ABC 的重心、外心、垂心、内心分别为G 1,G 2,G 3,G 4,若AG i =λi AB +μi AC(其中i =1,2,3,4),当λi +μi 取最大值时,i =()A.1B.2C.3D.42(2024·黑龙江牡丹江·高一牡丹江一中校考阶段练习)若O 是△ABC 所在平面上一定点,H ,N ,Q 在△ABC 所在平面内,动点P 满足OP =OA +λAB AB +ACAC,λ∈0,+∞ ,则直线AP 一定经过△ABC 的心,点H 满足HA = HB = HC ,则H 是△ABC 的心,点N 满足NA +NB +NC=0,则N 是△ABC 的心,点Q 满足QA ·QB =QB ·QC =QC ·QA ,则Q 是△ABC 的心,下列选项正确的是()A.外心,内心,重心,垂心B.内心,外心,重心,垂心C.内心,外心,垂心,重心D.外心,重心,垂心,内心二、多选题3(2024·河南郑州·高一校联考期末)点O 为△ABC 所在平面内一点,则()A.若OA +OB +OC =0 ,则点O 为△ABC 的重心B.若OA ⋅AC AC -AB AB =OB ⋅BC BC -BABA =0,则点O 为△ABC 的垂心C.若OA +OB ⋅AB =OB +OC ⋅BC=0.则点O 为△ABC 的垂心D.在△ABC 中,设AC 2 -AB 2 =2AO ⋅BC,那么动点O 的轨迹必通过△ABC 的外心4(2024·内蒙古呼和浩特·高一呼市二中校考阶段练习)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若AM =12AB +12AC ,则点M 是边BC 的中点B.若AM =2AB -AC ,则点M 是边BC 的三等分点C.若AM =-BM -CM ,则点M 是边△ABC 的重心D.若AM =xAB +yAC ,且x +y =13,则△MBC 的面积是△ABC 面积的235(2024·山东枣庄·高一校考阶段练习)数学家欧拉在1765年发表的《三角形的几何学》一书中提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是△ABC 的外心、重心、垂心,且M 为BC 的中点,则()A.OH =OA +OB +OCB.S △ABG =S △BCG =S △ACGC.AH =3OMD.AB +AC =4OM +2HM6(2024·安徽池州·高一统考期末)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法正确的是()A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BC D.OD +OE +OF =07(2024·广东广州·高一校考期末)下列命题正确的是()A.若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB =CDB.在△ABC 中,若O 点满足OA +OB +OC =0,则O 点是△ABC 的重心C.若a =(1,1),把a 右平移2个单位,得到的向量的坐标为(3,1)D.在△ABC 中,若CP =λCA |CA |+CB|CB |,则P 点的轨迹经过△ABC 的内心8(2024·新疆·高一兵团第三师第一中学校考阶段练习)点O 在△ABC 所在的平面内,则下列结论正确的是()A.若OA ⋅OB =OB ⋅OC =OC ⋅OA ,则点O 为△ABC 的垂心B.若OA +OB +OC =0 ,则点O 为△ABC 的外心C.若2OA +OB +3OC =0,则S △AOB :S △BOC :S △AOC =3:2:1D.若AO ⋅AB AB =AO ⋅AC AC 且CO ⋅CA CA =CO ⋅CB CB ,则点O 是△ABC 的内心三、填空题9(2024·甘肃武威·高一校联考期末)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若O 为△ABC 的重心,OB ⊥OC ,3b =4c ,则cos A =.10(2024·全国·高一专题练习)点O 是平面上一定点,A 、B 、C 是平面上△ABC 的三个顶点,∠B 、∠C 分别是边AC 、AB 的对角,以下命题正确的是(把你认为正确的序号全部写上).①动点P 满足OP =OA +PB +PC,则△ABC 的重心一定在满足条件的P 点集合中;②动点P 满足OP =OA +λAB |AB |+AC|AC |(λ>0),则△ABC 的内心一定在满足条件的P 点集合中;③动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),则△ABC 的重心一定在满足条件的P 点集合中;④动点P 满足OP =OA+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的垂心一定在满足条件的P 点集合中;⑤动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的外心一定在满足条件的P 点集合中.11(2024·辽宁·高一校联考期末)某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三角形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角△ABC 外接圆的半径为2,且三条圆弧沿△ABC 三边翻折后交于点P .若AB =3,则sin ∠PAC =;若AC :AB :BC =6:5:4,则PA +PB +PC 的值为.12(2024·宁夏银川·高一银川唐徕回民中学校考期末)已知P 为△ABC 所在平面内一点,有下列结论:①若P 为△ABC 的内心,则存在实数λ使AP =λAB |AB |+AC|AC |;②若PA +PB +PC =0 ,则P 为△ABC 的外心;③若PA =PB =PC ,则P 为△ABC 的内心;④若AP =13AB +23AC ,则△ABC 与△ABP 的面积比为2:3.其中正确的结论是.(写出所有正确结论的序号)13(2024·广西河池·高一校联考阶段练习)在△ABC 中,已知AB =5,AC =3,A =2π3,I 为△ABC 的内心,CI 的延长线交AB 于点D ,则△ABC 的外接圆的面积为,CD =.14(2024·四川遂宁·高一遂宁中学校考阶段练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP =OB +OC 2+λAB AB cos B +ACAC cos C ,λ∈0,+∞ ,则动点P 的轨迹一定通过△ABC 的(填序号).①内心 ②垂心 ③ 重心 ④外心15(2024·高一课时练习)已知O 为△ABC 的内心,∠BAC =π3,且满足AO =xAB +yAC ,则x +y 的最大值为.16(2024·高一课时练习)已知A ,B ,C 是平面内不共线的三点,O 为ΔABC 所在平面内一点,D 是AB 的中点,动点P 满足OP =132-2λ OD +1+2λ OCλ∈R ,则点P 的轨迹一定过△ABC 的(填“内心”“外心”“垂心”或“重心”).17(2024·高一课时练习)已知点O 是ΔABC 的内心,若AO =37AB +17AC,则cos ∠BAC =.18(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点O 是△ABC 的外心,AB =6,BC =8,B =2π3,若BO =xBA +yBC ,则3x +4y =.19(2024·湖北武汉·高一期末)△ABC 中,AB =2,BC =26,AC =4,点O 为△ABC 的外心,若AO=mAB +nAC ,则实数m =.20(2024·湖北·高一校联考阶段练习)在△ABC 中,已知AB =2,AC =5,∠BAC =60°,P 是△ABC 的外心,则∠APB 的余弦值为.21(2024·四川达州·高一达州中学校考阶段练习)设O 为△ABC 的外心a ,b ,c 分别为角A ,B ,C 的对边,若b =3,c =5,则OA ⋅BC=.22(2024·广东汕头·高一金山中学校考期末)已知O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,则cos A 最小值.23(2024·重庆渝中·高一重庆巴蜀中学校考期末)某同学在查阅资料时,发现一个结论:已知O 是△ABC 内的一点,且存在x ,y ,z ∈R ,使得xOA +yOB +zOC =0,则S △AOB :S △AOC :S △COB =z :y :x .请以此结论回答:已知在△ABC 中,∠A =π4,∠B =π3,O 是△ABC 的外心,且AO =λAB +μAC λ,μ∈R ,则λ+μ=.24(2024·辽宁大连·高一育明高中校考期末)已知点P 在△ABC 所在的平面内,则下列各结论正确的有①若P 为△ABC 的垂心,AB ⋅AC =2,则AP ⋅AB =2②若△ABC 为边长为2的正三角形,则PA ⋅PB +PC的最小值为-1③若△ABC 为锐角三角形且外心为P ,AP =xAB +yAC且x +2y =1,则AB =BC④若AP =1AB cos B +12 AB +1ACcos C+12AC ,则动点P 的轨迹经过△ABC 的外心25(2024·全国·高一专题练习)(1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的(填“内心”“外心”“重心”或“垂心” ).(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λAB |AB |+AC |AC |,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的.(填“内心”“外心”“重心”或“垂心” )四、解答题26(2024·全国·高一专题练习)已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为S 1,△ABC 的面积为S 2,AP =pPB ,AQ =qQC.(1)求GA +GB +GC ;(2)求证:1p +1q =1.(3)求S1S 2的取值范围.。
高考平面向量题型归纳总结
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
暑期培优:第四章 平面向量(必记知识点+必明易错点+必会方法)学生版
专题四、平面向量平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算平行四边形法则向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.作两个向量的差时,要注意向量的方向是指向被减向量的终点;2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个; 3.要注意向量共线与三点共线的区别与联系.[试一试]1.(2013·苏锡常镇二调)如图,在△OAC 中,B 为AC 的中点,若OC =x OA +y OB (x ,y ∈R ),则x -y =________.2.若菱形ABCD 的边长为2,则|AB -CB +CD |=________.1.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP =12(OA +OB ).2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB (λ≠0)⇔ OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[练一练]1.D 是△ABC 的边AB 上的中点,若CD =x BA +y BC ,则x +y =________. 2.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =CD 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是________.[类题通法]平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,-a|a |是与a 反向的单位向量.[典例] (2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.[类题通法]在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.[针对训练]若A ,B ,C ,D 是平面内任意四点,给出下列式子: ①AB +CD =BC +DA ;②AC +BD =BC+AD ; ③AC -BD =DC +AB .其中正确的有________个.(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.[类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB =λAC ,则A 、B 、C 三点共线. [针对训练]已知a ,b 不共线,OA =a ,OB =b ,OC =c ,OD =d ,OE =e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.[练通考点] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量. ②两个向量不能比较大小,但它们的模能比较大小. ③λa =0(λ为实数),则λ必为零.④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的有________个.2.如图,已知AB =a ,AC =b ,BD =3DC ,用a ,b 表示AD ,则AD =________. 3.(2013·苏锡常镇二调)已知点P 在△ABC 所在的平面内,若2PA +3PB +4PC =3AB ,则△P AB 与△PBC 的面积的比值为________.4.(2014·“江南十校”联考)如图,在△ABC 中,∠A =60°,∠A 的平分线交BC 于D ,若AB =4,且AD =14AC +λAB (λ∈R ),则AD 的长为________.5.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =________(用a ,b 表示).6.设点M 是线段BC 的中点,点A 在直线BC 外,BC 2=16,|AB +AC |=|AB -AC |,则|AM |=________.第Ⅰ卷:夯基保分卷1.设a 、b 是两个非零向量,下列结论正确的有________.(填写序号)①若|a +b |=|a |-|b |,则a ⊥b ②若a ⊥b ,则|a +b |=|a |-|b |③若|a +b |=|a |-|b |,则存在实数λ,使得b =λa ④若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |2.(2013·徐州期中)设O 是△ABC 内部一点,且OA +OC =-2OB ,则△AOB 与△AOC 的面积之比为________.3.在△ABC 中,N 是AC 边上一点,且AN =12NC ,P 是BN 上的一点,若AP =m AB +29AC ,则实数m 的值为________.4.(2013·南通期中)设D ,P 为△ABC 内的两点,且满足AD =14(AB +AC ),AP =AD +15BC ,则S △APD S △ABC=________. 5.(2014·南通期末)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且3a BC +4b CA +5c AB =0,则a ∶b ∶c =________.6.(2014·淮阴模拟)已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM 成立,则m =________.7.(2014·苏北四市质检)已知a ,b 是非零向量,且a ,b 的夹角为π3,若向量p =a |a |+b |b |,则|p |=________.8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC =a ,CA =b ,给出下列命题:①AD =12a -b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确命题的个数为________.9.(2013·苏北四市三调)如图,在边长为1的正三角形ABC 中,E ,F 分别是边AB ,AC 上的点,若AE =m AB ,AF =n AC ,其中m ,n ∈(0,1).设EF 的中点为M ,BC 的中点为N .(1)若A ,M ,N 三点共线,求证:m =n ; (2)若m +n =1,求|MN |的最小值.10.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,AB=a,AC=b.(1)用a,b表示向量AD,AE,AF,BE,BF;(2)求证:B,E,F三点共线.第Ⅱ卷:提能增分卷1.A,B,O是平面内不共线的三个定点,且OA=a,OB=b,点P关于点A的对称点为Q,点Q关于点B的对称点为R,用a、b表示PR,则PR=________.2.已知O为四边形ABCD所在平面内一点,且向量OA,OB,OC,OD满足等式OA +OC=OB+OD,则四边形ABCD的形状为________.平面向量的基本定理及坐标表示1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模:设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=x21+y21.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1),|AB|=(x2-x1)2+(y2-y1)2.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.a∥b⇔x1y2-x2y1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.[试一试]1.(2014·南京、盐城一模)若向量a =(2,3),b =(x ,-6),且a ∥b ,则实数x =________. 2.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________.用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .1.(2014·苏中三市、宿迁调研(一))在平面直角坐标系中,已知向量AB =(2,1),AC =(3,5),则向量BC 的坐标为________.2.(2013·北京高考)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .[类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.[典例] 如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC的中点.设BA =a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD .[类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.[针对训练](2014·济南调研)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =m AB +211AC ,则实数m 的值为________.1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;[类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.[针对训练]已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB ,求点C 的坐标.[练通考点]1.(2013·南京二模)若平面向量a ,b 满足|a +b |=1,a +b 平行于y 轴,a =(2,-1),则b =________.2.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于________.3.(2014·苏北四市质检)已知向量a =(sin θ,cos θ),b =(3,-4),若a ∥b ,则tan 2θ=________.4.已知点A (2,1),B (0,2),C (-2,1),O (0,0),给出下面的结论: ①直线OC 与直线BA 平行;②AB +BC =CA ; ③OA +OC =OB ;④AC =OB -2OA . 其中正确结论的个数是________.5.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC =-OA +λOB (λ∈R ),则λ的值为________.6.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为________.第Ⅰ卷:夯基保分卷1.(2013·辽宁高考改编)已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为________.2.已知△ABC 中,点D 在BC 边上,且CD =2DB ,CD =r AB +s AC ,则r +s 的值是________.3.已知向量a =⎝⎛⎭⎫8,12x ,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x 的值为________. 4.(创新题)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.5.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误的是________.(填写序号)①AC =AB +AD ②BD =AD -AB ③AO =12AB +12AD④AE =53AB +AD6.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA =(4,3),PQ =(1,5),则BC =________.7.P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q 等于________.8.已知向量OA =(1,-3),OB =(2,-1),OC =(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.9.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?10.已知点O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB . (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.第Ⅱ卷:提能增分卷(2013·南通二模)如图,正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点.设AP =αAB +βAF (α,β∈R ),则α+β的取值范围是________.平面向量的数量积与平面向量应用举例1.平面向量的数量积 平面向量数量积的定义已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a·b .即a·b =|a||b|cos θ,规定0·a =0.2.向量数量积的运算律 (1)a·b =b·a ;(2)(λa )·b =λ(a·b )=a·(λb ); (3)(a +b )·c =a·c +b·c .3.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c ,若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.2.数量积运算不适合结合律,即(a ·b )·c ≠a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )·c 与a ·(b ·c )不一定相等.[试一试]1.(2014·苏锡常镇一调)已知两个单位向量e 1,e 2的夹角为120°,若向量a =e 1+2e 2,b =4e 1,则a ·b =________.2.(2013·镇江期末)在菱形ABCD 中,AB =23,B =2π3,BC =3BE ,DA =3DF ,则EF ·AC =________.1.明确两个结论:(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立). 2.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [练一练]1.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为________. 2.(2013·南通三模)已知向量a 与b 的夹角为60°,且|a |=1,|b |=2,那么(a +b )2的值为________.1.(2014·南通、泰州、扬州一调)在平面直角坐标系xOy 中,已知向量a =(1,2),a -12b =(3,1),则a ·b =________.2.已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为________.3.(2012·江苏高考)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F在边CD 上,若AB ·AF =2,则AE ·BF 的值是________. 4.在△ABC 中,若∠A =120°,AB ·AC =-1,则|BC |的最小值是________.[类题通法]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||ba ,b .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.平面向量数量积的性质是高考的重点,归纳起来常见的命题角度有:(1)平面向量的模;(2)平面向量的夹角; (3)平面向量的垂直.角度一 平面向量的模1.(2014·南京一模)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为________.角度二 平面向量的夹角2.(1)(2013·盐城二模)已知向量a 的模为2,向量e 为单位向量,e ⊥(a -e ),则向量a 与e 的夹角大小为________.(2)(2014·苏北四市一调)设a ,b ,c 是单位向量,且a =b +c ,则向量a ,b 的夹角等于________.角度三 平面向量的垂直3.(1)(2013·盐城二模)已知向量a =(-3,2),b =(-1,0),且向量λa +b 与a -2b 垂直,则实数λ的值为________.(2)在直角三角形ABC 中,已知AB =(2,3),AC =(1,k ),则k 的值为________. [类题通法]1.求两非零向量的夹角时要注意: (1)向量的数量积不满足结合律;(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角就是钝角.2.利用数量积求解长度问题的处理方法(1)a 2=a ·a =|a |2或|a |=a ·a .(2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.平面向量与三角函数的综合[典例]sin α),b =(cos β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.[类题通法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.[针对训练]已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.[练通考点]1.(2011·江苏高考)已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2.若a·b=0,则实数k 的值为________.2.在△ABC 中,若AB ·AC =AB ·CB =2,则边AB 的长等于________.3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则实数k 的取值范围是________. 4.(2013·淮安二模)在△ABC 中,已知AB =2,BC =3,∠ABC =60°,BD ⊥AC ,D 为垂足,则BC BD ⋅的值为________.5.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 6.在△ABC 中,AB =10,AC =6,O 为BC 的垂直平分线上一点,则AO ·BC =________. 第Ⅰ卷:夯基保分卷1.(2013·盐城二模)若e 1,e 2是两个单位向量,a =e 1-2e 2,b =5e 1+4e 2,且a ⊥b ,则e 1,e 2的夹角为________.2.(2014·南通一模)在△ABC 中,若AB =1,AC =3,|AB +AC |=|BC |,则BA ·BC|BC |=________.3.在平面直角坐标系中,O 为坐标原点,已知向量OA =(2,2),OB =(4,1),在x 轴上取一点P ,使AP ·BP 有最小值,则P 点的坐标是________.4.在直角三角形ABC 中,∠C =π2,AC =3,取点D 使BD =2DA ,那么CD ·CA =________.5.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EMEC ⋅的取值范围是________.6.已知向量a,b夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.7.已知向量a=(2,-1),b=(x,-2),c=(3,y),若a∥b,(a+b)⊥(b-c),M(x,y),N(y,x),则向量MN的模为________.8.(2013·山东高考)已知向量AB与AC的夹角为120°,且|AB|=3,|AC|=2.若AP=λAB+AC,且AP⊥BC,则实数λ的值为________.9.(2014·泰州)已知向量a=(cos λθ,cos(10-λ)θ),b=(sin(10-λ)θ,sin λθ),λ,θ∈R.(1)求|a|2+|b|2的值;(2)若a⊥b,求θ;(3)若θ=π20,求证:a∥b.10.已知△ABC为锐角三角形,向量m=(3cos2A,sin A),n=(1,-sin A),且m⊥n.(1)求A的大小;(2)当AB=p m,AC=q n(p>0,q>0),且满足p+q=6时,求△ABC面积的最大值.第Ⅱ卷:提能增分卷1.(2014·扬州期末)在边长为6的等边三角形ABC中,点M满足BM=2MA,则CM·CB=________.2.(2013·盐城二模)若点G为△ABC的重心,且AG⊥BG,则sin C的最大值为________.3.(2014·泰州模拟)如图,半径为1,圆心角为3π2的圆弧AB 上有一点C .(1)若C 为圆弧AB 的中点,点D 在线段OA 上运动,求|OC +OD |的最小值;(2)若D ,E 分别为线段OA ,OB 的中点,当C 在圆弧AB 上运动时,求CE ·DE 的取值范围.。
考点31平面向量基本定理及坐标表示(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版
考点31平面向量基本定理及坐标表示(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算4.理解用坐标表示的平面向量共线的条件.【知识点】1.平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任一向量a ,一对实数λ1,λ2,使a =.若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个 .2.平面向量的正交分解把一个向量分解为两个 的向量,叫做把向量作正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =,a -b =,λa =,|a |=.(2)向量坐标的求法①若向量的起点是坐标原点,则 坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →= ,|AB →|=.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔ .常用结论已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为(x 1+x 22,y 1+y 22);已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33)..【核心题型】题型一 平面向量基本定理的应用(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一个基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【例题1】(2024·湖南衡阳·三模)在三角形ABC 中,点M 在平面ABC 内,且满足(,)BM BA BC l m l m =+ÎR uuuu r uuu r uuu r ,条件:3P AM MC =uuuu r uuu u r,条件:221Q m l -=,则P 是Q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【变式1】(2024·河北·模拟预测)在边长为1的正三角形ABC 中,13A A DB =uuu u u ru r ,13BE BC =uuu r uuu r ,AE 与CD 交于点F ,则CD BF ×=uuu r uuu r( )A .1B .0C .12-D .【变式2】(2023·陕西咸阳·模拟预测)在ABC V 中,点D 是BC 的中点,点E 在AD 上,且13BE BA BC l =+uuu r uuu r uuu r ,AE xBA yBC =+uuu r uuu r uuu r,则x y l -=.【变式3】(2023·广东佛山·模拟预测)在ABC V 中,2AB =,BC =,M 点为BC 的中点,N 点在线段AC 上且13AN AC =,2BN =.(1)求AC ;(2)若点P 为AM 与BN 的交点,求MPN Ð的余弦值.题型二 平面向量的坐标运算(1)利用向量的坐标运算解题,主要是利用加法、减法、数乘运算法则,然后根据“两个向量相等当且仅当它们的坐标对应相等”这一原则,化归为方程(组)进行求解.(2)向量的坐标表示使向量运算代数化,成为数与形结合的载体,可以使很多几何问题的解答转化为我们熟知的数量运算.【例题2】(2023·广东佛山·二模)已知ABCD Y 的顶点()1,2--A ,()3,1B -,()5,6C ,则顶点D 的坐标为( )A .()1,4B .()1,5C .()2,4D .()2,5【变式1】(2024·全国·模拟预测)在平面直角坐标系xOy 内,已知点()()1,1,1,2A AB -=-uuu r ,则OB =uuu r( )A .()2,3-B .()0,1-C .()2,3-D .()0,1【变式2】(多选)(2022·海南·模拟预测)用下列1e u r ,2e u ur 能表示向量()3,2a =r 的是( )A .()16,4e =u r ,()29,6e =u u rB .()11,2e =-u r,()25,2e =-u u r C .()13,5e =u r,()26,10e =u u r D .()12,3e =-u r,()22,3e =-u u r 【变式3】(2023·全国·模拟预测)在平行四边形ABCD 中,点()0,0A ,()4,4B -,()2,6D .若AC 与BD 的交点为M ,则DM 的中点E 的坐标为,题型三 向量共线的坐标表示平面向量共线的坐标表示问题的解题策略(1)若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是x 1y 2=x 2y 1.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).命题点1 利用向量共线求参数【例题3】(2024·陕西渭南·三模)已知向量()2,m l =r ,()2,4n l =--r ,若m r与n r 共线且反向,则实数l 的值为( )A .4B .2C .2-D .2-或4【变式1】(2024·浙江·模拟预测)已知向量()4,a m =r ,()2,2b m =r ,若a b r r ∥,则m =( )A .4或2B .2-C .2D .2或2-【变式2】(2024·四川绵阳·模拟预测)已知向量()3,4a =r ,()2,b k =r,且()//a b a +r r r ,则实数k = .【变式3】(2023·四川成都·一模)已知向量()sin ,1a x =r,),2b x =-r ,函数()()f x a b a =+×r r r .(1)若//a b r r ,求cos2x 的值;(2)a ,b ,c 为ABC V 的内角A ,B ,C 的对边,2a =,且()12f A =,求ABC V 面积的最大值.命题点2 利用向量共线求向量或点的坐标【例题4】(2024·全国·模拟预测)已知()4,2M -,()6,4N --,且12MP MN =-uuu r uuuur ,则点P 的坐标为( )A .()1,1B .()9,1-C .()2,2-D .()2,1-【变式1】(2024·江苏南京·二模)已知向量()1,2a =r ,(),3b x x =+r .若a b rr P ,则x =( )A .6-B .2-C .3D .6【变式2】(2023·山东青岛·一模)已知()0,0O ,()1,2A ,()3,1B -,若向量m OA uuu r r ∥,且mr 与OB uuu r 的夹角为钝角,写出一个满足条件的m r的坐标为 .【变式3】(2024·河南信阳·模拟预测)抛物线E :24y x =的焦点为F ,直线AB ,CD 过F 分别交抛物线E 于点A ,B ,C ,D ,且直线AD ,BC 交x 轴于N ,M ,其中()2,0N ,则M 点坐标为.【课后强化】【基础保分练】一、单选题1.(2024·全国·模拟预测)如图所示,在边长为2的等边ABC V 中,点E 为中线BD 的三等分点(靠近点B ),点F 为BC 的中点,则FE FB ×=uuu r uuu r( )A .B .12-C .34D .122.(2024·河北承德·二模)在ABC V 中,D 为BC 中点,连接AD ,设E 为AD 中点,且,BA x BE y ==uuu r uuu r r r ,则BC =uuu r( )A .42x y+r r B .4x y-+r r C .42x y--r r D .42y x-r r 3.(2024·河北秦皇岛·二模)已知向量(),23a m m =+r ,()1,41b m =+r ,则“34m =-”是“a r 与br 共线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.(2024·四川·模拟预测)已知向量()2,1a =r ,(),2b x =r ,若//a b r r ,则x =( )A .4B .2C .1D .1-二、多选题5.(2024·全国·模拟预测)已知向量()(),1,4,2a x b ==r r ,则( )A .若a b r r∥,则2x =B .若a b ^rr ,则12x =C .若3x =,则向量a r 与向量b rD .若=1x -,则向量b r 在向量a r上的投影向量为6.(23-24高三上·山东枣庄·期末)设()1,3m =-r,()1,2n =r ,则( )A .210m n -=r rB .()2m n m-^r r rC .若()2m n -r r P ()km n +r r ,则12k =-D .n r 在m r上的投影向量为12mr 三、填空题7.(2023·河南郑州·模拟预测)已知点O 为坐标原点,()1,1OA =uuu r ,()3,4OB =-uuu r,点P 在线段AB 上,且1AP =uuu r,则点P 的坐标为 .8.(2024·陕西安康·模拟预测)已知平面向量()()3,4,3a b m ==r r ,.若向量2a b -r r与a b +r r 共线,则实数m 的值为.9.(2023·河南开封·模拟预测)已知两点(1,2)A -,(2,4)B ,若向量(2,)a m =r与AB uuu r垂直,则m =.四、解答题10.(2024·湖北·二模)如图,O 为坐标原点,F 为抛物线22y x =的焦点,过F 的直线交抛物线于,A B 两点,直线AO 交抛物线的准线于点D ,设抛物线在B 点处的切线为l .(1)若直线l 与y 轴的交点为E ,求证:DE EF =;(2)过点B 作l 的垂线与直线AO 交于点G ,求证:2||AD AO AG =×.11.(2022·北京·三模)如图四棱锥P ABCD -中,PAD V 是以AD 为斜边的等腰直角三角形,BC AD ∥,AB AD ^,222AD AB BC ===,PC =E 为PD 的中点.(1)求证:直线CE ∥平面PAB(2)求直线PB 与平面PAC 所成角的正弦值.(3)设F 是BE 的中点,判断点F 是否在平面PAC 内,并证明结论.【综合提升练】一、单选题1.(2024·安徽合肥·模拟预测)已知向量(2,)a t =r,(1,2)b =r ,若当1=t t 时,a b a b ×=×r r r r ,当2=t t 时,a b ^rr ,则( )A .14t =-,21t =-B .14t =-,21t =C .14t =,21t =-D .14t =,21t =2.(2024·山西·模拟预测)已知向量()2,a x =r ,()1,3b =-r ,若a b ∥r r,则a b +=r r ( )A B .C .3D 3.(2024·重庆·三模)已知向量(2,3),(1,21)a b m m ==-+r r ,若//a b rr ,则m =( )A .3B .18C .18-D .5-4.(2024·浙江温州·三模)平面向量()(),2,2,4a m b ==-r r,若()a ab -r r r ∥,则m =( )A .1-B .1C .2-D .25.(2024·辽宁·二模)已知平行四边形ABCD ,点P 在BCD △的内部(不含边界),则下列选项中,AP uuu r可能的关系式为( )A .1355AP AB AD=+uuu r uuu r uuu rB .1344AP AB AD =+uuu r uuu r uuu rC .2334AP AB AD =+uuu r uuu r uuu r D .2433AP AB AD=+uuu r uuu r uuu r6.(2024·全国·模拟预测)在ABC V 中,点D 满足20BD AD +=uuu r uu r ru .若3CA =uuu r π4ACD Ð=,则CB =uuu r ( )A .4B .C .D .7.(2023·全国·模拟预测)在ABC V 中,点D 是线段AB 上靠近B 的四等分点,点E 是线段CD 上靠近D 的三等分点,则AE =uuu r( )A .2133CA CB-+uuur uuu r B .1526CA CB-uuur uuu r C .5162CA CB -+uuu r uuu r D .1233CA CB-+uuur uuu r 8.(2024·山东泰安·模拟预测)已知向量()2,3a =-r ,()3,b m =r ,且a b r r∥,则m =( )A .2B .-2C .92D .92-二、多选题9.(2024·江西景德镇·三模)等边ABC V 边长为2,2AD DC =uuu r uuu r ,AE EB =uuu r uuu r,BD 与CE 交于点F ,则( )A .2133BD BA BC=+uuu r uuu r uuu r B .12CF CE=uuu r uuu r C .1BD CE ×=-uuu r uuu rD .BD uuu r 在BC uuu r 方向上的投影向量为56BCuuur10.(2024·山东济南·二模)如图,在直角三角形ABC 中,AB BC ==AO OC =,点P 是以AC 为直径的半圆弧上的动点,若BP xBA yBC =+uuu r uuu r uuu r,则( )A .1122BO BA BC =+uuu r uuu r uuu r B .1CB BO ×=uuu r uuu rC .BP BC ×uuu r uuu r最大值为1D .B ,O ,P 三点共线时2x y +=11.(2024·湖北武汉·模拟预测)已知向量()()cos ,sin ,3,4a b q q ==-r r,则下列命题为真命题的是( )A .若//a b rr ,则4tan 3q =-B .若a b ^rr ,则3sin 5q =C .a b -rr 的最大值为6D .若()0a a b ×-=r r r ,则a b -=rr 三、填空题12.(2022·黑龙江·一模)已知向量()3,4a =-r ,2AB a =uuu r r,点A 的坐标为()3,4-,则点B 的坐标为 .13.(2020高三上·全国·专题练习)已知向量(),2a x =v ,()2,1b =v ,且//a b v v ,则a =v14.(2023·上海徐汇·三模)函数()ln y x =-沿着向量a r 平移后得到函数()ln 12y x =-+,则向量a r的坐标是.四、解答题15.(2023·吉林·一模)已知向量),cos a x x =r,()cos ,cos b x x =r.(1)若//a b r r且()0,πx Î,求x ;(2)若函数()12=×-r r f x a b ,求()f x 的单调递增区间.16.(2023·安徽滁州·模拟预测)已知ABC V 的内角A B C ,,的对边分别为a b c ,,,向量(),,p a c b =-u r()si n si n ,si n si n q C B A B =++r,且p q u r r ∥.(1)求角C ;(2)若c ABC =V ABC V 的周长.17.(2020·山东济宁·模拟预测)已知向量()1,1a =r,()2,b m =r ,R m Î.(1)若//a b r r,求m 的值;(2)若a b ^r r,求m 的值;(3)若a r 与b r夹角为锐角,求m 的取值范围.18.(2023·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知()2cos cos cos2c a A B b A A B =-£.(1)求A ;(2)若D 是BC 上的一点,且:1:2,2BD DC AD ==,求a 的最小值.19.(2023·福建福州·三模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知()sin cos sin A A C C a=+,2c =.(1)求B ;(2)D 为AC 的中点,234BD BC =,求ABC V 的面积.【拓展冲刺练】一、单选题1.(2024·河南·模拟预测)已知向量()2,1AB =-uuu r ,()3,2AC =uuu r ,点()1,2C -,则点B 的坐标为( )A .()2,1--B .()0,5C .()2,5-D .()2,1-2.(2024·山东济南·一模)已知(),1a m =r ,()31,2b m =-r ,若//a b r r ,则m =( )A .1B .1-C .23D .23-3.(2024·陕西榆林·二模)若向量()()0,1,,2,AB CD m AB ==-uuu r uuu r uuu r P CD uuu r ,则m =( )A .1-B .2C .1D .04.(2024·全国·模拟预测)已知O 为平面直角坐标系的原点,向量(1,3),(2,1),(1,2)OA AB AP ==--=-uuu r uuu r uuu r ,设M 是直线OP 上的动点,当MA MB ×uuu r uuu r 取得最小值时,OM =uuuu r ( )A .11,2æöç÷èøB .11,2æö--ç÷èøC .(2,1)D .(2,1)--二、多选题5.(2023·全国·模拟预测)已知向量(1,2),(2,1)a b ==-r r .若()//()xa b a xb --r r r r ,则x =( )A .1-B .0C .1D .26.(2024·辽宁葫芦岛·二模)已知向量a r ,b r ,c r 为非零向量,下列说法正确的有( )A .若a b ^r r ,b c ^r r ,则a c^r r B .已知向量()1,2a =r ,()23,2a b +=r r ,则()1,2b =r C .若a b a c ×=×r r r r ,则b r 和c r 在a r 上的投影向量相等D .已知2AB a b =+uu r u r r ,56BC a b =-+uuu r r r ,72CD a b =-uuu r r r ,则点A ,B ,D 一定共线三、填空题7.(2024·山东潍坊·三模)已知向量()()()1,2,4,2,1,a b c l ==-=r r r ,若()20c a b ×+=r r r ,则实数l =8.(23-24高三下·陕西西安·阶段练习)已知向量()1,1a =-r ,()2,1b =r ,则()a ab ×-=r r r 9.(2023·上海普陀·二模)设x 、R y Î,若向量a r ,b r ,c r 满足(,1)a x =r ,(2,)b y =r ,(1,1)c =r ,且向量a b -r r 与cr 互相平行,则||2||a b +r r 的最小值为 .四、解答题10.(2023·河南洛阳·一模)已知函数2()cos 2sin 2f x x x x p æö=-+ç÷èø,在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()3f A =.(1)求角A ;(2)若b =3,c =2,点D 为BC 边上靠近点C 的三等分点,求AD 的长度.11.(2023·江苏·三模)已知椭圆E :221164x y +=,椭圆上有四个动点A ,B ,C ,D ,//CD AB ,AD 与BC 相交于P 点.如图所示.(1)当A ,B 恰好分别为椭圆的上顶点和右顶点时,试探究:直线AD 与BC 的斜率之积是否为定值?若为定值,请求出该定值;否则,请说明理由;(2)若点P 的坐标为()8,6,求直线AB 的斜率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量常见题型与解题方法归纳
(1)
常见题型分类
题型一:向量的有关概念与运算
例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是.
例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少
题型二:向量共线与垂直条件的考查
例1(1),a b为非零向量。
“a b⊥”是“函数()()()
=+⋅-
f x xa b xb a
为一次函数”的
A 充分而不必要条件
B 必要不充分条件
C 充要条件
D 既不充分也不必要条件
(2)已知O ,N ,P 在ABC ∆所在平面内,且
,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的
A.重心 外心 垂心
B.重心 外心 内心
C.外心 重心 垂心
D.外心 重心 内心
例2.已知平面向量a =(3,-1),b =(21, 2
3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间.
例3: 已知平面向量a =(3,-1),b =(2
1,23),若存在不为零的实数k 和角α,使向量c =a +(sin α
-3)b , d =-k a +(sin α)b ,且c ⊥d ,试求实数k 的
取值范围.
例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量
b t a k y b t a x 1)1(2
+-=++=与垂直,求k 的最小值.
题型三:向量的坐标运算与三角函数的考查
向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查.
例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-
3π,3π],求x ;(2)若函数y =2sin2x 的图象按向量
c =(m , n) (m ﹤2π
)平移后得到函数y =f(x )的图象,求
实数m 、n 的值.
例8:已知a =(cosα,sin α),b =(cosβ,sinβ)(0<α<β<π),
(1)求证: a +b 与a -b 互相垂直; (2)若k a +b 与a -k b 的模大小相等(k ∈R 且k ≠0),求β-α
巩固练习
1.函数cos(2)26
y x π=+-的图象按向量a 平移到,的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于
.(,2)6
A π-- .(,2)6
B π- .(,2)6
C π- .(,2)6
D π 1.
2.给定两个长度为1的平面向量
和,它们的夹角为.
如图所示,点C在以O为圆心的圆弧上变动.若
OC xOA yOB
=+其中,x y R∈,则的最大值是________.
,
3给出下列命题
①非零向量a、b满足|a|=|b|=|a-b|,则a与a+b的夹角为30°;
②a·b>0是a、b的夹角为锐角的充要条件;
③将函数y=|x-1|的图象按向量a=(-1,0)平移,得到的图像对应的函数为y=|x|;
④若(AC
AB-)=0,则△ABC为等腰三角AB+)·(AC
形
以上命题正确的是。
(注:把你认为正确的命题的序号都填上)。