七年级数学上册有理数知识点总结

合集下载

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点1.整数的概念:正整数、负整数和零。

2.数轴的概念和使用。

3.整数的比较和大小关系。

4.整数的相反数和绝对值。

5.整数的加法与减法。

6.整数的加减法性质。

7.整数的乘法与除法。

8.乘积的正负性。

9.除法的性质。

10.乘方的概念和运算。

11.乘方的特例:0、1和负整数指数。

12.平方根的概念和运算。

13.数的正负的乘方。

14.有理数的概念和表示。

15.有理数的四则运算。

16.有理数的加减乘除法性质。

17.加减乘除法的混合运算。

18.小数的概念和表示。

19.有限小数和循环小数的概念。

20.小数的相加与相减。

21.有理数的乘法和除法。

22.有理数乘除运算的性质。

23.百分数的概念和表示。

24.百分数与小数的相互转换。

25.百分数的增减。

26.百分数的倍数和倍数的百分数。

27.分数的概念和表示。

28.真分数、假分数和带分数的概念。

29.分数的大小比较和性质。

30.分数的相加和相减。

31.分数的相乘和相除。

32.倒数的概念和运算。

33.分数化简与约分。

34.分数的混合运算。

35.分数方程的解法。

36.分数不等式的解法。

37.分数的小数表示。

38.循环小数与无理数的概念。

39.循环小数与分数的相互转换。

40.循环小数的加减乘除法。

41.百分数的小数表示。

42.百分数的应用。

43.有理数的运算问题的解法。

以上是七年级数学上册必考的43个知识点,学生可以通过对这些知识点的理解和掌握,提高自己的数学水平,更好地应对考试和日常学习中的数学问题。

七年级数学上册“有理数”知识点梳理

七年级数学上册“有理数”知识点梳理

七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。

0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。

- 有理数的分类:正整数、负整数、正分数、负分数和零。

- 有理数的运算:加法、减法、乘法、除法及混合运算。

2. 整式的加减- 单项式:数与字母的乘积。

- 多项式:几个单项式的和。

- 同类项:所含字母相同,且相同字母的指数也相同的项。

- 合并同类项:将同类项的系数相加,字母和指数不变。

3. 一元一次方程- 方程的定义:含有未知数的等式。

- 解方程:求出使方程成立的未知数的值。

- 一元一次方程的解法:移项、合并同类项、系数化为1。

4. 代数式的值- 代数式的计算:按照运算顺序求得代数式的数值。

- 代数式的简化:通过化简,使代数式尽可能简单。

二、图形与几何1. 线段、射线、直线- 线段:有限长度,有两个端点。

- 射线:有起点无终点,无限延伸。

- 直线:无起点无终点,无限延伸。

2. 角- 角的定义:两条射线的公共端点称为角的顶点。

- 角的分类:锐角、直角、钝角。

- 角的度量:使用度作为单位。

3. 几何图形的性质- 对称性:轴对称、中心对称。

- 相似性:形状相同,大小可能不同。

- 全等性:形状和大小完全相同。

4. 三角形- 三角形的定义:由三条线段围成的图形。

- 三角形的性质:内角和为180度。

- 等腰三角形:两条边相等的三角形。

- 等边三角形:三条边相等的三角形。

三、数据的收集、整理与描述1. 统计调查- 调查方法:全面调查和抽样调查。

- 调查步骤:明确调查目的、制定调查计划、收集数据、处理数据。

2. 频数与频率- 频数:某一数据出现的次数。

- 频率:某一数据出现的次数与总次数的比值。

3. 统计图表- 条形图:用条形的高度表示数据的大小。

- 折线图:用线段的起伏表示数据的变化趋势。

- 扇形图:用扇形的大小表示部分与整体的关系。

四、可能性1. 确定事件与随机事件- 确定事件:必然发生或不可能发生的事件。

- 随机事件:可能发生也可能不发生的事件。

2024版七年级数学上册知识点归纳

2024版七年级数学上册知识点归纳
- 点的坐标表示:在平面直角坐标系中,每一个点都有一个唯一的坐标与之对应
第八章 二元一次方程组
- 二元一次方程组的概念:含有两个未知数,且未知数的次数都为1的方程组
- 二元一次方程组的解法:代入法、消元法
第九章 不等式与不等式组
- 不等式的概念:用不等号表示大小关系的式子
- 不等式的性质:不等式的加法、减法、乘法、除法性质
2024版七年级数学上册知识点归纳
章节/知识点
具体内容
第一章 有理数
- 有理数的概念:可以写成分数形式的数称为有理数
- 数轴:规定了原点、正方向、单位长度的直线
- 相反数:只有符号不同的两个数叫做互为相反数
- 绝对值:数轴上某个数与原点的距离
- 有理数的性质与运算:包括有理数的加法、减法、乘法、除法以及混合运算
第二章 整式的加减
- 整式的概念:单项式和多项式的统称
- 整式的加减法则:同Байду номын сангаас项合并
第三章 一元一次方程
- 一元一次方程的概念:含有一个未知数,且未知数的次数为1的方程
- 一元一次方程的解法:去分母、去括号、移项、合并同类项、系数化为1
第四章 几何图形初步
- 基本几何图形的认识:点、线、面、角
- 几何图形的性质:如线段、射线的性质
第五章 相交线与平行线
- 相交线的性质:对顶角相等、邻补角互补
- 平行线的性质:平行线间的距离相等、平行线被第三条直线所截形成的同位角相等
第六章 实数
- 实数的概念:有理数和无理数的统称
- 实数的性质:实数具有封闭性、有序性、稠密性等
第七章 平面直角坐标系
- 平面直角坐标系的建立:由两条互相垂直且有公共原点的数轴组成

初一上册数学第一章《有理数》知识点总结

初一上册数学第一章《有理数》知识点总结

初一上册数学第一章《有理数》知识点总结?一、正数与负数1.在实际中表示意义相反的量上升5米记为5米; -8米则表示下降8米。

2.正数:大于0的数。

3.负数:在正数的前面加上“-”。

4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比如0元;③0表示某种量的基准,比如0℃表示温度的基准5.有理数的分类②分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都能够转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592... 2.010010001...③、“非”的概念非负数:正数和0 非正分数:负分数非正数:负数和0 非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。

通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一样画成水平的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。

3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)左边的数0>负数;2.两个负数比较①右边的点表示的数比左边的点表示的数大。

②绝对值大的反而小。

六、有理数的运算1.有理数的加法:加法一样步骤:①确定符号:同号取相同的符号。

异号取绝对值大的加数的符号。

②确定绝对值:同号将绝对值相加。

异号用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数与0相加,仍得那个数。

用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+ c)。

三个或三个以上有理数相加,能够写成这些数的连加式,关于连加式,依照加法交换律和加法结合律,能够任意交换加数的位置,也可先把其中的某几个数相加。

依照算式的特点,恰当地运用运算律,能够使运算简便:①符号相同的数先相加--同号结合法②互为相反数的先相加--相反数结合法③分母相同的数先相加--同分母结合法④正数与正数,小数与小数相加--同形结合法2.有理数的减法:减法法则:减去一个数,等于加上那个数的相反数。

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结一、有理数1. 有理数的概念有理数是指可以表示为分数的数,即整数、分数、有限小数和循环小数的总称。

有理数可以用分数形式表示,分子为整数,分母为自然数。

2. 有理数的大小比较有理数的大小比较可利用坐标轴表示。

在数轴上,数越往右,数值越大;数越往左,数值越小。

3. 有理数的加减法有理数的加减法规则与整数的运算一样。

同号两数相加、异号两数相减,要先取绝对值,再按两数同号加、异号减的原则进行加减法操作。

4. 有理数的乘除法有理数的乘法和除法规则与整数的运算法则一致,同号相乘得正数,异号相乘得负数;除数不等于零时,正数除以正数得正数,负数除以负数也得正数。

5. 有理数的混合运算将有理数的加减法、乘除法结合起来进行运算,按照运算的先乘除后加减的原则进行混合运算。

6. 有理数的应用有理数在生活中的应用非常广泛,如计量、比较、计算等方面。

二、代数1. 代数式、字母、代数式的值代数式是由数字、字母和运算符号组成的式子。

字母是未知数,代数式的值是指将字母用具体的数代入代数式中去求得的结果。

2. 代数表达式的加减法代数表达式的加减法要进行相同字母项合并,并按照合并的原则进行加减法操作。

3. 代数表达式的乘法代数表达式的乘法是指将代数式进行分配率展开,并用分配率原理进行乘法运算。

4. 代数表达式的除法代数表达式的除法是指先找出最高次项,再按照最高次项进行除法操作,得到商和余数。

5. 代数式的应用代数式在生活中的应用非常广泛,如方程、不等式、数列等方面。

三、方程1. 一元一次方程一元一次方程是指未知数的最高次项是一次的方程。

2. 解一元一次方程解一元一次方程的方法有两种,分别是移项法和等价变形法,可以通过逆运算的原理来解决方程。

3. 一元一次方程的应用一元一次方程在生活中的应用非常广泛,如比例问题、配比问题、运动问题等方面。

四、集合1. 集合的概念集合是包含一组确定对象的整体,其中的对象称为元素。

七年级上册数学有理数知识点总结

七年级上册数学有理数知识点总结有理数是整数和分数的统称,包括正整数、负整数、零以及各种分数。

在七年级数学教学中,学生会学习有理数的四则运算、绝对值、比较大小、混合运算等知识点。

下面是七年级上册数学有理数知识点的总结。

一、有理数的概念1.整数的概念:自然数、零和负整数的集合。

2.分数的概念:整数和整数的商。

3.有理数的概念:整数和分数的统称。

二、有理数的表示1.整数的表示:正数用正号“+”表示,负数用负号“-”表示。

2.分数的表示:分子、分母表示分数。

3.有理数的表示:可以用数轴、分数形式或小数形式进行表示。

三、有理数的比较1.同号比较:绝对值大,数值大。

2.异号比较:绝对值大者为负。

四、有理数的加法和减法1.同号整数相加减:绝对值相加减,符号不变。

2.异号整数相加减:绝对值相减,取绝对值大的符号。

3.分数相加减:通分之后,分子相加减,分母不变。

五、有理数的乘法1.乘法的性质:同号得正,异号得负。

2.绝对值的乘法:绝对值相乘。

六、有理数的除法1.除法的性质:除法可看作乘法的倒数。

2.被除数为零的情况:被除数为零,商也为零。

七、有理数的混合运算1.先乘除后加减:乘除优先级高于加减。

2.小数、分数和整数的混合运算。

八、有理数的应用1.有理数的数轴表示。

2.有理数在实际问题中的应用。

以上是七年级上册数学有理数知识点的总结,有理数是数学学习中非常重要的概念,学好有理数的知识对学生以后学习代数、方程等数学知识有很大的帮助。

在学习过程中,学生需要多做题,多进行实际应用,才能更好地掌握有理数的知识。

七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。

三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。

4.相反数的商为-1。

5.相反数的绝对值相等。

四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

七年级上册数学有理数知识点总结

七年级上册数学有理数知识点总结有理数是整数和分数的统称,包括正整数、负整数、零,以及各种形式的分数。

在七年级上册数学中,有理数是一个非常重要的知识点。

本文将对七年级上册数学有理数知识点进行总结和介绍。

1.有理数的定义有理数指的是一切可以表示为分子、分母都是整数且分母不为零的数。

可以用有理数的准确分数表示及有理数的小数表示两种方式予以表示。

2.有理数的四则运算有理数的加法、减法、乘法和除法依然遵循相同的规律。

加法和乘法满足交换律和结合律,除法满足相反数的乘法性质。

3.数轴数轴是一个非常重要的概念,它能够帮助我们直观地理解有理数之间的大小关系。

正数在数轴上位于原点的右侧,负数在数轴上位于原点的左侧。

4.绝对值绝对值表示一个数到原点的距离,用符号|a|表示,其中a是一个数。

当a为正数时,其绝对值等于a;当a为负数时,其绝对值等于-a。

5.有理数的比较在数轴上,我们可以通过有理数的大小关系来比较两个有理数的大小。

绝对值大的数较大,同号数相减取绝对值来比较,异号数按照绝对值大小来比较。

6.约分和通分约分是指将一个分数化为最简分数,通分是指寻找多个分数的最小公倍数,使它们的分母相等。

7.有理数的加减混合运算有理数的加减混合运算需要按照运算法则进行,可以先化为同号数进行加减运算,再根据结果的正负进行具体的计算。

8.有理数的乘法和除法有理数的乘法和除法也需要遵循相同的规律,同号数相乘为正,异号数相乘为负;同号数相除为正,异号数相除为负。

在乘法和除法的计算中,可以先化为同号数进行运算,根据结果的正负进行具体的计算。

9.有理数的应用有理数在生活中有很多实际应用,例如温度变化、海拔高度变化等都可以用有理数来表示和计算。

在学习七年级上册数学有理数知识点时,我们需要掌握有理数的定义、四则运算、数轴、绝对值、有理数的比较、约分和通分、有理数的加减混合运算、有理数的乘法和除法以及有理数的应用。

通过深入学习这些知识点,并进行大量的练习,可以帮助我们更好地掌握有理数的相关知识,并在日常生活中灵活运用。

人教版七年级数学上册各章知识点总结-PPT

14
二、选择题
三、计算题 1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:-4.27+3.8-0.73+1.2
减第 二 章 整 式 的 加
1.整式的概念: (1)单项式:都是数字与字母的乘积的代数式叫做单项式。
①单项式的系数:单项式中的数字因数。 ②单项式的次数:单项式中所有的字母的指数和 ※注意 ①圆周率π是常数; ②只含有字母因式的单项式的系数是1或-1时,“1”通常 省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关。如23a6的次数为6 ④单项式的系数是带分数时,应化成假分数。 ⑤单项式的系数包括它前面的符号。 ⑥单独的一个数字是单项式,它的系数是它本身;非零常数 的次数是0。
如果a=b,那么ac=bc; 如果a=b(c≠0),那么a/c=b/c 此外等式还有其它性质: 若a=b,则b=a.
若a=b,b=c,则a=c.
说明:①等式两边不可能同时除以为零的数或式子 ②等式的性质是解方程的重要依据.
22
3:方程的概念:含有未知数的等式叫方程,方程中 一定含有未知数,而且必须是等式,二者缺一不可. 说明:代数式不含等号,方程是用等号把代数式连接而成 的式子,且其中一定要含有未知数.
(2)有理数除法法则: 1、除以一个不等于0的数,等于乘这个数的
.
2、两数相除,同号得
把绝对值相

,异号得
,并
0除以任何一个不等于0的数都得 。
12
1.5有理数的乘方
求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂, 其中a叫做底数,n叫做指数。
(1)乘方的幂意义:a n 表示n个a相乘,如34表示4个3相乘,
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

5.a 可以表示什么数
⑴a>0表示a 是正数;反之,a 是正数,则a>0;
⑵a<0表示a 是负数;反之,a 是负数,则a<0
⑶a=0表示a 是0;反之,a 是0,,则a=0
课时2. 实数的运算与大小比较
【考点链接】
一、实数的运算
1.实数的运算种类有:加法、减法、乘法、除法、 、 六种,其中减法转化为 运算,除法、乘方都转化为 运算。

2. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .
3. =0a (其中a 0 且a 是 )=-p a (其中a 0)
4. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.
二、实数的大小比较
1.数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.
2.正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.
3.实数大小比较的特殊方法
⑴设a 、b 是任意两个数,若a-b>0,则a b ;若a-b=0,则a b ,若a-b<0,则 a b.
⑵平方法:如3>2,则3 2; ⑶商比较法:已知a>0、b>0,若
b a >1,则a b ;若b a =1,则a b ;若b a <1,则a b. ⑷近似估算法
⑸找中间值法
4.n 个非负数的和为0,则这n 个非负数同时为0.
例如:若a +2b +c =0,则a=b=c=0.。

相关文档
最新文档