固相微萃取技术及其应用

合集下载

固相微萃取SPME

固相微萃取SPME
第四组
其它领域的应用
SPME在日用品有害物质的质量监测,纺织品 中偶氮染料的测定,建材中甲醛的分析以及烟 叶中有机酸含量的分析等各个方面都被广泛应 用。
第四组
展望
随着人们所面对的分析体系越来越复杂,人们采 用的分析手段越来越高。固相微萃取技术作为一 种真正的无溶剂萃取技术,随着性能更好的萃取 头涂层材料的出现,其技术、仪器装置等的不断 完善,它必将拥有更为广阔的发展前景。
第四组
顶空萃取(HS-SPME)
在顶空萃取模式中,萃取过程可以分为两个步骤:① 被分析组分从液相中先扩散穿透到气相中;②被分析 组分从气相转移到萃取固定相中。这种改型可以避免 萃取固定相受到某些样品基质(比如人体分泌物或尿 液)中高分子物质和不挥发性物质的污染。在该萃取 过程中,步骤②的萃取速度总体上远远大于步骤①的 扩散速度,所以步骤①成为萃取的控制步骤。因此挥 发性组分比半挥发性组分萃取速度快。实际上对于挥 发性组分而言,在相同的样品混匀条件下,顶空萃取 的平衡时间远远小于直接萃取平衡时间。
当萃取达到平衡时,进入萃取相的分析物的量为: N=KfsV1CoV2/(KfsV1+V2)
其中,Co为萃取前分析物在样品中的浓度;Kfs 为分析物在萃取相和试样间的分配系数; V1 为 萃取相的体积;V2为样品的体积。
第四组
固相微萃取装置
第四组
固相微萃取装置
SPME的装置由手柄和萃取纤维头两 部分构成,纤维头是一根1cm长涂有 不同色谱固定液的熔融石英纤维,装 在类似于微量注射器的针管内,针管 可以保护纤维头不易折断,当针头穿 过样品瓶中,压下管芯,使纤维头从针 管中伸出,浸入溶液中(浸入方式)或 置于易挥发样品的上部空间(顶空方
第四组
第四组

固相微萃取技术

固相微萃取技术

萃取时间
萃取时间即待测物在各相达到平衡的时间,是
由涂层厚度及理化性质、分配系数、扩散速率、 样品基质等多种因素决定的。涂层对待测物的 吸附初始是一段快速吸附期,随后会进人一个 平台期,吸附速度减慢。一般分析挥发性有机 物时,10min左右可达到平衡,而对于复杂的 基质或半挥发性有机物时,平衡所需时间会延 长30~60分钟。为保证分析工作有良好的重现 性,应严格控制萃取时间的一致性。
环境检测中的应用
有报道称,SPME技术对于各种农药、除草 剂、灭菌剂残留,挥发性碳化合物、苯及其 同系物、多环芳烃、芳香胺化合物和酚类化 合物等环境污染物的测定,都具有较宽的线 性范围和较高的灵敏度。对一些重金属污染 物的应用也有报道。
食品检测方面的应用
SPME法在食品检测中的作用主要是评价 食品营养价值,监测各种食品添加剂含量, 测定芳香剂和香料含量以及食品中农药、 杀虫剂、除草剂等有害物质的残留等。
无机盐效应及pH值影响
样品中加人无机盐,可增加样品体系的离子浓度, 使待测物溶解度降低,从而增加分配系数,提高萃 取效率和分析灵敏度。但过高的盐浓度会增加体系 的粘度,影响扩散速度,产生负效应。 适当调节体系pH值,可防止液体试样中待测物质离 子化,使其处于分子状态,增加亲脂性,降低溶解 度,提高萃取效率。对于弱酸、弱碱性化合物,pH 值会直接影响其存在形态,因此,体系pH值的调节 很有必要。
医药卫生领域的应用
SPME方法已逐渐成为生理、病理、毒理学 领域重要的检测手段。在临床检验中应用 SPME萃取血、尿等样本中药物及代谢产物、 醇类物质、农药残留等成分进行检测。 SPME技术还可用于分析唾液、粪便等样品 中的药物及其代谢产物。
其它领域的应用
SPME在日用品有害物质的质量监测,纺织品 中偶氮染料的测定,建材中甲醛的分析以及烟 叶中有机酸含量的分析等各个方面都被广泛应 用。

固相微萃取的原理

固相微萃取的原理

固相微萃取的原理固相微萃取,是一种常见的富集分离技术。

其原理主要基于化学分配平衡的基础,利用固定于吸附材料上的萃取溶剂,对待分析物进行选择性吸附,实现分离富集的目的。

下面,我们将系统地介绍固相微萃取的原理及其相关知识点。

一、基本原理固相微萃取的基本原理是化学分配平衡条件下,利用吸附材料上的萃取液物质与样品中待分析物发生相互作用,使待分析物在吸附剂上发生富集,并去除杂质,达到提高检测灵敏度和准确性的作用。

二、吸附材料的选择在固相微萃取中,吸附材料的种类与性质非常重要。

常用的吸附材料主要有有机硅胶、壳聚糖、活性炭、分子筛等。

这些吸附材料可以按照待分析物的物理化学特性进行选择,使其能够对待分析物具有良好的选择性和吸附能力。

三、萃取溶剂的选择萃取溶剂是固相微萃取中一个非常重要的环节,它可以对样品的萃取效果产生直接影响。

合适的萃取溶剂需要具备良好的选择性、稳定性和良好的萃取能力等特点。

通常情况下,萃取溶剂主要分为两种,即极性萃取剂和非极性萃取剂。

极性萃取剂(如甲醇、乙酸乙酯等)常用于富集极性化合物,而非极性萃取剂(如正己烷、苯等)则常用于富集非极性化合物。

四、固相微萃取操作步骤固相微萃取主要分为样品准备和固相微萃取两大步骤。

其中样品准备主要包括取样和前处理步骤,而固相微萃取实际上是将准备好的样品溶液通过化合物分配平衡的原理,沿着一个预定方向通过萃取剂实现分离富集的过程。

五、几个需要注意的问题固相微萃取在实际操作中常常会出现一些问题,需要注意以下几点:1. 固相微萃取时间的长短会影响样品中的待分析物的富集程度,同时也会影响识别待分析物的基峰。

2. 固相微萃取温度的变化也会影响到样品中化合物的富集能力,通常情况下较高的温度可以加速富集的速度,但是也会带来不必要的扰动和不良后果。

3. 固相微萃取过程中,需要小心避免草率决定萃取液的浓度。

浓度选择不当或萃取时间过长或过短都有可能引起分析误差。

综上所述,固相微萃取是一种基于化学分配平衡原理的分离富集技术,其有效性和精度取决于吸附材料、萃取液的选择以及操作方法的正确使用。

固相微萃取原理及使用

固相微萃取原理及使用
第四页,共55页。
二、SPME的原理
固相微萃取法(SPME)的原理与固相萃取不同,固相微萃取不 是将待测物全部萃取出来,其原理是建立在待测物在固定相和水相之间
达成的平衡分配基础上。
设固定相所吸附的待测物的量为WS,因待测物总量在43;C2 •V2
(1)
式中, C0是待测物在水样中的原始浓度; C1 、 C2分别为待测
二、SPME的原理
由式(4): WS =K • C0 • V1 ,可知WS与C0呈线性关系,并与K 和呈正比。决定K值的主要因素是萃取头固定相的类型,因此,对某 一种或某一类化合物来说选择一个特异的萃取固定相十分重要。 萃取头固定液膜越厚, WS越大。由于萃取物全部进入色谱柱,一个 微小的固定液体积即可满足分析要求。通常液膜厚度为5-100um,这 一已比一般毛细管柱的液膜厚度(0.2-1um)厚得多。
um) 萃取柱; 40μl 样品, 100ul/min,20 次反复萃取, 搬阀进样。线性范围: 10 - 200 pg/ml (r≥0.9996), 检测限 2.7 to 11.7 pg/ml. 86% 回收率, RSD 0.9–8.8%.
ESI(-) ,MRM,five 50 pg/mL 雌激素标样 雌激素酮, 17-雌二醇,雌激素三醇, 乙炔基雌二醇 和二乙基已烯雌酚
第二页,共55页。
一、概述
固相微萃取(solid phase microextraction)
• 1989年;Pawliszyn • Supelco1993年推出了商品化的SPME装置
• 1995年Pawliszyn等;空气中苯系物分析;SPME在气相色谱
中快速进样装置; 萃取丝内用CO2冷却装置
SPE、SPME的简单比较

14第十一章 固相微萃取技术 SPME详解

14第十一章 固相微萃取技术 SPME详解
② 在水溶液中加入NaCl,Na2SO4等可增强水溶液的离子强 度,减少被分离有机物的溶解度,使分配系数增大提高分析 灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的溶解度。例如, 采用固相微萃取分离法分离脂肪酸时需要控制溶液较小的 pH值使溶液中脂肪酸主要是以分子形式存在,以降低溶解 度,增大分配系数,提高分离萃取效率。
气体萃取(顶空技术)
取样品基质(液体和固体)上方的气相部分进行色谱分析。 用途:痕量高挥发性物质的分析测定,气体是挥发性物质的最 理想的溶剂。
分类
静态顶空过程
静态顶空:在一个密闭的容器中,样品与样品上方气体逐渐达到平衡。
分类
动态顶空过程
捕集阱中捕集浓缩。
连续气体萃取方法,经捕集浓缩后进行测定:
原理是基于待测物质在样品及微型萃取涂层中的
平衡分配进行萃取。不要求将待测组分全部分离 出来,而是通过样品与固相涂层间的平衡来达到
分离。
通过控制萃取纤维的长度、厚度,取样时间,调 节酸碱度、温度等萃取参数,实现痕量组分的可重现性、准确测定。
以Fiber-SPME为例
固相微萃取装置由手柄和萃取头或纤维头两部分组成。萃取头
为一根1cm 长,涂上不同色谱固定相或吸附剂的熔融石英纤维, 可在不锈钢套管内伸缩。 5
SPME的优点


(1 ) 不使用有机溶剂萃取,降低了成本,避免了二次污染; (2) 操作时间短,从萃取进样到分析结束不足1h; (3) 样品用量少,几mL—几十mL; (4) 操作简便,可减少待测组分的挥发损失 ; (5) 检测限达 μg/L—ng/L水平; (6) 适于挥发性有机物、半挥发性有机物及不具挥发性的 有机物。
用流动的气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹出来的物 质吸附下来。关闭吹扫气,由切换阀将捕集器接入GC,然后经热解吸将样品送入GC进 行。

固相微萃取技术在纺织品检测中的应用[论文]

固相微萃取技术在纺织品检测中的应用[论文]

固相微萃取技术在纺织品检测中的应用摘要:固相微萃取技术是一项新型的纺织品检测技术,在现代的纺织品检测工作中被广泛的采用,在纺织品检测方面发挥着很大的作用。

本文通过对固相微萃取技术的相关介绍,分析了固相微萃取技术在纺织品各项检测工作中的应用。

关键字:固相微萃取技术纺织品检测应用一、固相微萃取技术纺织品检测的原理固相微萃取技术简称spme,属于非溶剂选择性萃取方法的范畴。

固相微萃取采用的是形状类似于色谱注射器的小巧型进样器,该工具主要由手柄以及萃取头(纤维头)组成,固相微萃取过程中,将纤维头在样品溶液以及顶空气体中浸入,然后通过一定速率的搅拌来实现两相间的平衡,然后将纤维头取出,放入气相色谱汽化室中,在汽化室中将纤维头上的溶剂进行热解、吸附操作,最后将萃取物导入色谱柱中,这就是整个固相微萃取的操作过程。

固相微萃取萃取头是一根石英纤维细管,细管上涂有固相微萃取涂层,涂层为不同色谱的固定相或吸附剂。

细管外套保护作用的不锈钢管,通过固相微萃取纤维头在不锈钢管内的伸缩来进行样品的萃取和吸附操作,固相微萃取的手柄用来进行萃取头的固定工作。

在我国传统的纺织品检测中,利用固相微萃取进行纺织品检测时,样品前处理一般采用分液漏斗来进行检测液的萃取,利用这种萃取方法进行萃取工作时往往需要大量的有机溶剂,萃取操作过程极为复杂,而且萃取的溶剂多为有毒溶剂,一方面会对萃取人员的身体造成危害,同时也容易造成环境污染;此外,这种传统的萃取方法萃取效率低,浪费了大量的时间,而且萃取检验结果也不是很准确,因此效果不是很好。

随着现代萃取技术的发展,纺织品检测萃取技术逐渐朝着少溶剂甚至是无溶剂的方向发展。

现在常用的萃取技术方法主要有:固相萃取法、静态上空间采样法以及薄膜萃取法等。

这些萃取方法萃取的效果都比较好,使用的萃取溶剂量也比较少,但是萃取操作所耗费的成本比较高,操作方法同样比较繁琐,在实际的纺织品检测中操作性不强。

因此,固相微萃取法在纺织品检测中逐渐的被广泛采用。

固相微萃取综述


涂层种类介绍

2 非商品化涂层 尽管传统涂层型的 SPME 纤维涂层呈现蓬勃发展的前景, 但它的应用仍有 一定的局限性, 如现有有机涂层的耐热性较差, 限制了解吸温度的范围; 吸附质 的成本高, 吸附量小, 制作程序要求严格, 使用寿命短等原因使其在推广上受到 一定的限制。因此, 制备适合较大范围的 SPME 实验条件、具有较高稳定性、 容量相对较大、且在萃取过程中能快速地萃取被分析物、解吸过程中与被分 析物能快速地进行分离的涂层, 这些是SPME 发展的关键。 Mangani 等报道了使用石墨化碳黑( GBC) 作为固定相涂层, 从气相或液 相中萃取并分析有机污染物,该涂层具有较好的萃取效果。Djozan 等 将一种 活性炭多孔层( PLAC) 涂在 SPME 萃取头上, 并与气相色谱联用萃取挥发性有 机物。Buszewski 等研制出了环氧 聚二甲基硅氧烷( PDES) 和聚亚胺酯丙烯酸 涂层( polyurethaneacrylate) , PDES 适合萃取非极性化合物,萃取时间比聚 亚胺丙烯酸涂层短。Lee 等则将HPLC 的固定相用于 SPME 涂层上。他们发 现纯硅胶很难从水中萃取出非极性化合物, 但当硅胶表面键合了C8 或 C18固 定相后则可以从水中吸附非极性化合物。又如 Popp 等使用一种新的 C8 涂 层, 对多种挥发性和中等挥发性的有机物进行了萃取, 并与一些商品化涂层进 行了比较, 发现它对多种化合物都可以萃取, 但效率都不是最高的。Chong 等 使用溶胶 凝胶技术( sol- gel) , 将键合了 PDMS 的溶胶凝胶涂层作为萃取头, 萃取了 PAHS 和烷烃等化合物, 均得到了满意的结果。几种非商品化涂层的比 较见表 2。
与商用100mpdms萃取头相比该萃取头显示出了更高的萃取效率分析原因可能归因于萃取头长度15cm和苯基增强了涂层与分析物之间的相互作用固相微萃取在药品和生物样品分析中的应用应用于spme方面的生物样品大多数是血液尿液唾液还有头发等品种多组成复杂介质干扰大分析成分与生物样品一般都具有很强的亲和力且分析成分多为大分子强极性高沸点难挥发热不稳定这对spme技术具有很大的挑战性

顶空固相微萃取法

顶空固相微萃取法
顶空固相微萃取法是一种新型的样品前处理技术,基于顶空技术和固相微萃取技术的结合而成。

该技术具有操作简便、灵敏度高、选择性好等优点,已经得到广泛的应用。

该方法的原理是将固相微萃取材料(如聚苯乙烯、聚酰胺等)放置于顶空瓶中,然后将待测样品加入到顶空瓶中,通过顶空技术将样品中的挥发性或半挥发性有机物挥发到顶空瓶中,再通过固相微萃取材料对样品中的目标化合物进行富集,最终将富集的目标化合物洗脱后进行分析。

顶空固相微萃取法可以应用于水、土壤、空气等各种环境样品中目标化合物的分析,同时也可以用于食品、药品等领域中的残留物分析。

该方法具有操作简便、灵敏度高、选择性好等优点,已经成为环境和食品检测领域中的一种重要的分析方法。

- 1 -。

固相微萃取


有机氯农药
管内固相微萃取(in-细管的内表面,可采用气相色谱毛细管
优点:毛细管柱方便易得,使用寿命长,内径小涂层薄,样
品扩散快,平衡时间短。
In-tube-SPME-GC联用方式
热解析:用注射器将样品溶液注入毛细管柱,萃 取平衡后将水吹出,然后用石英压接头将萃取柱与分 析柱连接,放入气相色谱仪炉箱中热解吸。这种方法
盐的作用和溶液酸度的影响
① 由于被分离物质在固相和液相之间的分配 系数受基体性质的影响,当基体变化时分配系 数也会改变。
② 在水溶液中加入NaCl,Na2SO4等可增强水 溶液的离子强度,减少被分离有机物的溶解度, 使分配系数增大提高分析灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的 溶解度。
与气相色谱或高效液相色谱仪联用样品前处理技术。
固相微萃取装置

最初的SPME是将高分 子材料均匀涂渍在硅 纤维上 ,形成圆柱形 的涂层,根据相似相溶 原理进行萃取的。
与SPE 相比SPME具有以下优点:
(1 ) 不使用有机溶剂萃取,降低了成本,避免了二次污 染; (2) 操作时间短,从萃取进样到分析结束不足1h; (3) 样品用量少,几mL—几十mL; (4) 操作简便,可减少待测组分的挥发损失 ; (5) 检测限达 μg/L—ng/L水平;
(6) 适于挥发性有机物、半挥发性有机物及不具挥发性
的有机物。
利用特殊的固相对分析组分的吸
附作用,将组分从试样基质中萃 取出来,并逐渐富集,完成试样前
处理过程。
当萃取体系处于动态平衡状态时,待测物的富集量: n = kvfvsc0/(kvf+vs) 由于芯片上固定液的总体积 (Vf) 仅几十微升,远远地 小于水相的体积 (Vs),而多数有机待测物的 k值并不大, 容易满足Vf <<Vs的条件,因此简化为 n = kvfc0

固相微萃取技术及其在N-亚硝胺分析中的应用

肉类研究M EAT RES EARCHw w w .c m r c.c om .c n 2008.4攻关项目:天津农学院科学基金项目肉制品中亚硝胺的阻断及快速检测研究()部分研究内容。

作者简介:方长发(),男,研究生,研究方向是肉类科学与技术。

固相微萃取技术及其在N -亚硝胺分析中的应用方长发1,马俪珍2,刘会平3,王瑞2(1.山西农业大学食品学院 太谷 030801 2.天津农学院食品科学系 天津 3003843.天津科技大学食品学院 天津 300222)摘 要:固相微萃取技术(SPM E )是在固相萃取基础上发展起来的一种无溶剂的样品前处理技术,集采样、萃取、浓缩、进样于一体。

该技术有着操作简单迅速、低耗费、安全、易解析、高灵敏度及无有机溶剂的优点。

本文介绍了固相微萃取技术的原理、萃取装置、萃取方式、操作过程,并综述了固相微萃取技术在N-亚硝胺分析中的研究进展及应用前景。

关键词:固相微萃取;亚硝胺;分析Solid Phase Microextraction (SPME)and Its Application in Nitrosamine AnalysisFang Chang-fa 1,Ma Li-zhen 2*,Liu Hui-ping 3,W ang Rui 2(1.Shanxi AgriculturalUniversity,Taigu030801;2.Food Science Department,TianjinAgricultural College,Tianjin 300384,China;3.TianjinScience and Thechnique U niversity,Tianjin 300222,China)Abstract:Solid phase microextraction (SPME)as a new extraction technique is based on the solid phase extraction(SPE).This system consists of sampling,extraction and concentration in one unit and has the advantage of simple operation,rapid analysis,low cost,safety,good resolution,high sensitivity and being free of organic solvents.The principle,equipment,extraction modes and operation were introduced in this paper.Based on that its application in nitrosamine analysis were summarized and Its future development was also discussed in this paper.Key words:Solid phase microextraction(SPME);Nitrosamine;Analysis中图分类号:TS207.3 文献标志码:A 文章编号:1001-8123(2008)04-0049-05引 言N -亚硝胺是亚硝基化合物中的一种,其一般结构为R 2(R 1)N -N=O 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固相微萃取技术及其应用
一、引言
固相微萃取技术是一种新型的样品前处理方法,其基本原理是利用微量有机溶剂在固相萃取柱中与水样中的目标分子进行反应,将目标分子从水样中萃取出来。

该技术具有操作简单、提取效率高、耗时短等优点,因此在环境监测、食品安全检测等领域得到了广泛应用。

二、固相微萃取技术原理
1. 固相萃取柱
固相微萃取技术的核心是固相萃取柱,其主要成分为聚合物吸附剂。

聚合物吸附剂具有较大的比表面积和良好的化学稳定性,能够有效地吸附分子。

因此,在样品前处理过程中,将待测样品通过固相萃取柱时,目标物质会被吸附在柱上。

2. 微量有机溶剂
微量有机溶剂通常用于洗脱被吸附在固相萃取柱上的目标物质。

由于微量有机溶剂对目标物质具有较强的亲和力,因此可以有效地将目标物质从固相萃取柱上洗脱下来。

3. 水样处理
水样处理是固相微萃取技术的关键步骤之一。

在水样处理过程中,通
常需要将水样进行预处理,以便更好地提取目标物质。

例如,在环境监测中,可以通过调节水样pH值、添加盐酸等方法,使目标物质更容易被吸附在固相萃取柱上。

三、固相微萃取技术应用
1. 环境监测
固相微萃取技术在环境监测中得到了广泛应用。

例如,在地下水中检测有机污染物时,可以使用该技术对水样进行前处理,提高检测灵敏度和准确性。

2. 食品安全检测
固相微萃取技术也可以用于食品安全检测。

例如,在葡萄酒中检测残留的农药时,可以使用该技术对葡萄酒进行前处理,提高检测灵敏度和准确性。

3. 药物分析
固相微萃取技术也可以用于药物分析。

例如,在生物组织或体液中检测药物时,可以使用该技术对样品进行前处理,提高检测灵敏度和准确性。

四、固相微萃取技术优缺点
1. 优点
固相微萃取技术具有操作简单、提取效率高、耗时短等优点。

此外,
该技术还可以对样品进行预处理,以提高检测灵敏度和准确性。

2. 缺点
固相微萃取技术的缺点主要包括:样品处理量较小、柱寿命较短、柱
的选择性有限等。

五、总结
总之,固相微萃取技术是一种新型的样品前处理方法,具有操作简单、提取效率高等优点,在环境监测、食品安全检测等领域得到了广泛应用。

但是,该技术仍存在一些局限性,需要进一步完善和改进。

相关文档
最新文档