高考数学专题《椭圆》练习
高考数学 专题06 椭圆解题技法(解析版)

专题06椭圆解题技法一.【学习目标】1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.熟练掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归. 3.了解椭圆的实际背景及椭圆的简单应用. 二.【知识要点】 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于____________)的点的轨迹叫做椭圆,这两个定点F 1,F 2叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) ______________ (a >b >0),焦点F 1(-c ,0),F 2(c ,0),其中c =_____________. (2)y 2a 2+x 2b 2=1(a >b >0),焦点___________________,其中c =_____________. 3.椭圆的几何性质以x 2a 2+y 2b 2=1(a >b >0)为例(1)范围:________________.(2)对称性:对称轴:x 轴,y 轴;对称中心:O (0,0).(3)顶点:长轴端点:A 1(-a ,0),A 2(a ,0),短轴端点:B 1(0,-b ),B 2(0,b );长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,焦距|F 1F 2|=2c .(4)离心率e =_______,0<e <1,e 越大,椭圆越______,e 越_______,椭圆越圆. (5)a ,b ,c 的关系:c 2=a 2-b 2或a 2=c 2+b 2. 三.【题型总结】(一)椭圆的定义应用 (二)焦点三角形的应用(三)椭圆的几何意义与离心率 (四)椭圆与圆的综合(五)向量的几何意义与椭圆 (六)向量的数量积与椭圆综合 (七)椭圆中的反射 (八)椭圆的应用问题 (九)轨迹的求法 四.【题型方法】 (一)椭圆的定义应用例110=的化简结果为( )A.2212516x y += B.2212516y x += C.221259x y += D.221259y x +=【答案】D【解析】曲线方程()()2222+4+410x y x y ++-=,所以其几何意义是动点(),x y 到点()0,4-和点()0,4的距离之和等于10,符合椭圆的定义. 点()0,4-和点()0,4是椭圆的两个焦点.因此可得椭圆标准方程()222210y x a b a b+=>>,其中210a =,所以5a =4c =,所以223b a c =-=,所以曲线方程的化简结果为221259y x+=.故选D 项.练习1.已知椭圆221259x y +=,1F 、2F 是其左右焦点,过1F 作一条斜率不为0的直线交椭圆于A 、B 两点,则2ABF ∆的周长为( ) A.5 B.10C.20D.40【答案】C【解析】由椭圆221259x y +=,得5a =,如图:由椭圆定义可得,12||||210AF AF a +==,12||||210BF BF a +==;2ABF ∴∆的周长为:2122C ||||||ABF AB AF BF ∆=++1212||||||||420AF AF BF BF a =+++==.故选:C .(二)焦点三角形的应用例2.设1F ,2F 分别为椭圆()222210x y a b a b+=>>的左、右焦点.椭圆上存在一点P 使得123PF PF b -=,1294PF PF ab ⋅=.则该椭圆的离心率为( ) A.23 B.223C.13D.24【答案】B【解析】椭圆定义可得122PF PF a +=,又123PF PF b -=, 解得11|(23)2|a b PF =+,21(23)2PF a b =-,1294PF PF ab ⋅=,可得()22194944a b ab -=,即为224990a ab b --=,化为(3)(34)0b a b a -+=,可得3a b =,2222922c a b b b b =-=-=,则该椭圆的离心率为22c e a ==. 故选:B .练习1.已知椭圆24x +23y =1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形【答案】B【解析】由题可知121214MF MF MF MF ⎧⎪⎨+⎪⎩-==,解得125232MF MF ⎧⎪⎪⎨⎪⎪⎩==,又因122F F =,2221221F F MF MF +=,所以△MF 1F 2为直角三角形 答案选B(三)椭圆的几何意义与离心率例3.设F 1,F 2分别是椭圆E :22221x y a b+=(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为( ) A.12 B.23 32 【答案】D 【解析】设|F 1B |=k (k >0),则|AF 1|=3k ,|AB |=4k ,∴|AF 2|=2a -3k ,|BF 2|=2a -k∵cos ∠AF 2B =35,在△ABF 2中,由余弦定理得,|AB |2=|AF 2|2+|BF 2|2-2|AF 2|•|BF 2|cos ∠AF 2B , ∴(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k ,∴|AF 2|=|AF 1|=3k ,|BF 2|=5k , ∴|BF 2|2=|AF 2|2+|AB |2,∴AF 1⊥AF 2,∴△AF 1F 2是等腰直角三角形, ∴c =22a ,∴椭圆的离心率e =22c a =,故选:D .练习1.设1F 、2F 是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30o 的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45【答案】C【解析】如下图所示,21F PF ∆是底角为30o 的等腰三角形,则有1221221,30F F PF PF F F PF =∠=∠=o所以2260,30PF A F PA ∠=∠=o o,所以22322322PF AF a c a c ⎛⎫==-=- ⎪⎝⎭又因为122F F c =,所以,232c a c =-,所以34c e a == 所以答案选C. (四)椭圆与圆的综合例4.已知椭圆()2222:10x y C a b a b+=>>的右焦点()(),0F c c b >,O 为坐标原点,以OF 为直径的圆交圆222x y b +=于P 、Q 两点,且PQ OF =,则椭圆C 的离心率为( )3B.122 6 【答案】D【解析】如下图所示,设点P 为两圆在第一象限的交点,设OF 的中点为点M ,由于两圆均关于x 轴对称,则两圆的交点P 、Q 也关于x 轴对称,又PQ OF c ==,则PQ 为圆M 的一条直径,由下图可知,PM x⊥轴,所以点P 的坐标为,22c c ⎛⎫⎪⎝⎭,将点P 的坐标代入圆222x y b +=得22222c c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,可得2222222c b a c ==-,所以,2223a c =,因此,椭圆的离心率为222633c c e a a ====,故选:D. 练习1. .如图,已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则椭圆C 的离心率为( )A .32B .53C .63D .255【答案】B【解析】如图:连接OQ ,1PF ,Q 点Q 为线段2PF 的中点,1//OQ PF ∴,112OQ PF =,122PF OQ b ∴==,由椭圆定义,122PF PF a +=,222PF a b ∴=-Q 线段2PF 与圆222x y b +=相切于点Q ,2OQ PF ∴⊥,12PF PF ∴⊥,且122F F c =,222(2)(22)(2)b a b c ∴+-=即32b a =,2259a c =,5c e a ∴==故选:B .(五)向量的几何意义与椭圆例5. 设F ,B 分别为椭圆22221(0)x y a b a b+=>>的右焦点和上顶点,O 为坐标原点,C 是直线b y x a =与椭圆在第一象限内的交点,若()FO FC BO BC λ+=+u u u r u u u r u u u r u u u r,则椭圆的离心率是( )A 221+B .2217C .213D 21【答案】A【解析】根据()FO FC BO BC λ+=+u u u r u u u r u u u r u u u r,由平面向量加法法则,则BF 与OC 交点为OC 的中点,故BFOBFC S S ∆∆= ,由22221x y a b b y x a ⎧+=⎪⎪⎨⎪=⎪⎩得22C ,BFO BFC S S ∆∆=Q ,则2BOFC BOF S S bc ∆==112222BOFC BOC OFC S S S b c bc ∆∆=+=+= 可得(221)a c = 2217221c e a ∴===- 故选:A .方法2,设BF 与OC 交于点M ,由条件知M 是OC 的中点,则)22,22(baM又B (0,b ),F (c ,0),B ,M ,F 三点共线,所以MF BF k k =,即c abcb-=-2222可得(221)a c =2217221c e a ∴===-练习1.设椭圆()2222:10x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0FA FB ⋅=u u u r u u u r,2FB FA FB ≤≤,则椭圆C 的离心率e 的取值范围是( ) A .25,23⎣⎦ B .)5⎣ C .2312⎤⎢⎥⎣⎦D .)31,1⎡⎣ 【答案】A【解析】设椭圆左焦点为F ',连接,AF BF ''由椭圆的对称性可知,四边形AFBF '为平行四边形0FA FB ⋅=u u u r u u u rQ FA FB ∴⊥ ∴四边形AFBF '为矩形设AF m =,AF n '=,则2m n a +=()222222424m n m n mn a mn c ∴+=+-=-=,解得:22mn b =22222m n m n c mn n m b+∴=+= ※(关键步骤)2FB FA FB ≤≤Q []1,2AF AF m FB AF n ∴==∈' 52,2m n n m ⎡⎤∴+∈⎢⎥⎣⎦即222522c b ≤≤ 2222522c a c ∴≤≤-,即2225212e e ≤≤-,解得:21529e ≤≤25e ∴∈⎣⎦本题正确选项:A方法2,设∠AF’F =α,直角∆F’AF 中,AF’=2ccosα,AF=2csin α,AF+AF’=2a 即2ccosα+2csin α=2a)4sin(21cos sin 1πααα+=+==a c e 直角∆F’AF 中tan α=AF AF' =AF BF ∈[1,2],则],4[0απα∈其中2tan 0=α,51cos ,52sin 00==αα )4sin(21cos sin 1πααα+=+==a c e 在],4[0απα∈上单调递增, 当4πα=是e 最小值为22当0αα=时,e 最大值为3551521=+(六)向量的数量积与椭圆综合例6. .设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=u u u u r u u u r ,222AF F B =u u u u v u u u u v,则椭圆E 的离心率为( )A .23B .34CD.4【答案】C【解析】222AF F B =u u u u r u u u u rQ 设2BF x =,则22AF x =由椭圆的定义,可以得到1122,2AF a x BF a x =-=-,120AF AF ⋅=u u u r u u u u rQ ,12AF AF ∴⊥ 在1Rt AF B V 中,有()()()2222232a x x a x -+=-,解得3ax =,2124,33a a AF AF ∴== 在12Rt AF F △中,有()22242233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理得225=9c a,c e a ∴==故选C 项.练习1. 已知椭圆C :2222x y 1(a b 0)a b+=>>的左右焦点分别为1F ,2F ,O 为坐标原点,A 为椭圆上一点,且12AF AF 0⋅=u u u r u u u r,直线2AF 交y 轴于点M ,若12FF 6OM =,则该椭圆的离心率为( ) A.13C.58【答案】D【解析】结合题意,可知122,3c F F c OM ==则,故21tan 3MF C ∠=,结合120AF AF ⋅=u u u v u u u u v ,可知01290F AF ∠= 故1213AF AF =,设12,3AF x AF x ==,所以234a x x x =+=,()22224310c x x x =+=,所以c e a ==D 。
专题25 椭圆(解答题)(新高考地区专用)(解析版)

专题25 椭 圆(解答题)1.已知椭圆Γ:()22211y x a a+=>与抛物线C :()220x py p =>有相同的焦点F ,抛物线C 的准线交椭圆于A ,B 两点,且1AB =. (1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,过焦点F 的直线l 交椭圆Γ于M ,N 两点,求OMN 面积的最大值.【试题来源】陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试(文)【答案】(1)Γ的方程为2214y x +=,C的方程为2x =;(2)最大值为1. 【解析】(1)因为1AB =,所以不妨设A 的坐标为1(,)22p --,B 的坐标为1(,)22p-, 所以有:2222114414p a p a ⎧+=⎪⎪⎨⎪-=⎪⎩,所以24a =,p = 所以椭圆Γ的方程为2214y x +=,抛物线C的方程为2x =;(2)由(1)可知F的坐标为,设直线l的方程为y kx =O 到MN 的距离为d ,则d ==,联立2214y kx y x ⎧=⎪⎨+=⎪⎩, 可得()22410k x ++-=,则()22414k k MN +==+,1OMNS==≤=,当且仅当22k =时取等号,故OMN 面积的最大值为1.2.在平面直角坐标系xOy 中,已知椭圆C 1: 22221(0)x y a b a b+=>>的左焦点为F 1(-2,0),且点P (0,2)在椭圆C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=8x 相切,求直线l 的方程 【试题来源】宁夏固原市隆德县2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2)y =+y x =- 【解析】(1)因为椭圆1C 的左焦点为1(2,0)F -,所以2c =, 点(0,2)P 代入椭圆22221x y a b+=,得241b =,即2b =,所以2228a b c =+=,所以椭圆1C 的方程为22184x y +=;(2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,由22184x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4280k x kmx m +++-=, 因为直线l 与椭圆1C 相切,所以△2222164(12)(28)0k m k m =-+-=整理得22840k m -+=①,由28y x y kx m⎧=⎨=+⎩,消去y 并整理得222(28)0k x km x m +-+=,因为直线l 与抛物线2C 相切,所以△222(28)40km k m =--=,整理得2km =②,综合①②,解得k m ⎧=⎪⎨⎪=⎩或k m ⎧=⎪⎨⎪=-⎩,所以直线l的方程为y =+y x =- 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.3.已知椭圆C :22221(0)x y a b a b +=>>左、右焦点分别为1F 、2F .设P是椭圆C 上一点,满足2PF ⊥x 轴,212PF =. (1)求椭圆C 的标准方程;(2)过1F 且倾斜角为45°的直线l 与椭圆C 相交于A ,B 两点,求AOB 的面积. 【试题来源】江西省贵溪市实验中学2021届高三上学期一模考试数学(三校生)试题【答案】(1)2214x y +=;(2【分析】(1)根据条件列出关于,,a b c 的方程求解;(2)设直线x y =,与椭圆方程联立,11212AOBSOF y y =⨯⨯-,代入根与系数的关系,求三角形的面积. 【解析】(1)由条件可知2222212c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =所以椭圆C 的标准方程是2214x y +=;(2)设直线:l x y =-()11,A x y ,()22,B x y ,直线l 与椭圆方程联立2214x y x y ⎧=-⎪⎨+=⎪⎩,得2510y --=,125y y +=,1215y y -=,11212AOBSOF y y =⨯⨯-==4.椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ≠)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【试题来源】四川省凉山州2020-2021学年高三第一次诊断性检测(理)【答案】(1)2213x y +=;(2)证明见解析,定值为1. 【解析】(1)由题意得1c b ==,则2223a b c =+=,∴椭圆方程为2213xy +=;(2)解法一(常规方法):设()()1122,,,A x y B x y ,联立222113y kx k x y =+-⎧⎪⎨+=⎪⎩ 化简可得()()()22316211210k x k k x k k ++-+-=,直线1)20(y kx k k =+-≠与椭圆C 交于A B 、两点,0,∴∆>即()()()221231214810k k k k ⎡⎤+-=-⎣⎦-->,解得01k <<, 由根与系数关系()121222621121,3()311k k k k x x x x k k --+=-=++, ()121221121211PA PB y y k k x y x y x x x x --∴+=+=+-+()()121212222kx x k x x x x +-+= ()()226621121211211212k k k k kk k k k-+--===--,∴直线PA PB 、得斜率和为定值1. 解法二(构造齐次式):由题直线1)20(y kx k k =+-≠恒过定点()2,1-- ①当直线AB 不过原点时,设直线AB 为()()11*mx n y +-=, 则221mx n --=,即12m n +=-有12m n =--,由2213x y +=有()()2231610y x y +-+-=,则()()()22316110x y y mx n y +-⎡⎤⎣-+-⎦+=,整理成关于,1x y -的齐次式: ()()()2236161 0n y mx y x +-+-+=,进而两边同时除以2x ,则()21366110y m x n y x -⎛⎫+-⎛⎫++= ⎪⎝⎭⎪⎝⎭,令1y k x -=, 则121216116213636PA PBn y y m k k x x n n⎛⎫-- ⎪--⎝⎭∴+=+=-==++,②当直线AB 过原点时,设直线AB 的方程为()()00001,,,,2y x A x y B x y =--, 0000001121212PA PB y y y k k x x x --∴+=+==⨯=, 综合①②直线PA 与直线PB 的斜率之和为定值1.【名师点睛】该题考查的是有关直线与椭圆的问题,解题方法如下:(1)根据题中所给的条件,确定出,b c 的值,进而求得2a 的值,得到椭圆方程; (2)将直线方程与椭圆方程联立,根与系数关系求得两根和与两根积,利用斜率公式证得结果.5.已知椭圆()2222:10x y C a b a b +=>>()2,1A .(1)求C 的方程;(2)点,M N 在C 上,且AM AN ⊥,证明:直线MN 过定点.【试题来源】河南省郑州市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22163x y +=;(2)证明见解析. 【解析】(1)由题意得222222411a b c c e a a b⎧=+⎪⎪⎪==⎨⎪⎪+=⎪⎩,解得2263a b ⎧=⎨=⎩,∴椭圆C 的方程为22163x y+=.(2)设点()11,M x y ,()22,N x y ,AM AN ⊥,()()()()121222110AM AN x x y y ∴⋅=--+--=,整理可得()()12121212124y y y y x x x x -++=-++-…①当直线MN 斜率k 不存在时,显然AM AN ⊥不成立,则可设:MN y kx m =+,联立2226y kx m x y =+⎧⎨+=⎩得()222124260k x kmx m +++-=, 由()()222216412260k m km∆=-+->得22630k m -+>,则122412km x x k +=-+,21222612m x x k -=+,()121222212m y y k x x m k ∴+=++=+, ()()22221212122612m k y y k x x km x x m k-=++++=+, 代入①式化简可得()()2481310k km m m ++-+=,即()()212310k m k m +-++=,12m k ∴=-或213k m +=- 则直线方程为()1221y kx k x k =+-=-+或2121333k y kx x k +⎛⎫=-=-- ⎪⎝⎭, ∴直线过定点()2,1或21,33⎛⎫- ⎪⎝⎭,又()2,1和A 点重合,故舍去,∴直线MN 过定点21,33⎛⎫- ⎪⎝⎭. 【名师点睛】本题考查直线与椭圆综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量之间的关系,同时得到根与系数关系的形式; ③利用根与系数关系表示出已知的等量关系,化简整理得到所求定点.6.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且过点(2,3)A ,右顶点为B .(1)求椭圆C 的标准方程;(2)过点A 作两条直线分别交椭圆于点M ,N 满足直线AM ,AN 的斜率之和为3-,求点B 到直线MN 距离的最大值.【试题来源】江苏省常州市四校联考2020-2021学年高三上学期期末【答案】(1)2211612x y +=;(2)最大值为2. 【解析】(1)由题2222212491b c a c e a a b ⎧⎪+=⎪⎪==⎨⎪⎪+=⎪⎩,解得42a b c =⎧⎪=⎨⎪=⎩C 的标准方程为2211612x y +=;(2)若直线MN 斜率不存在,设0000(,),(,)M x y N x y -,则220000001161233322x y y y x x ⎧+=⎪⎪⎨---⎪+=-⎪--⎩,解得0040x y =⎧⎨=⎩,此时,M N 重合,舍去.若直线MN 斜率存在,设直线1122(,),(,)MN y kx t M x y N x y =+:,,联立2211612x y y kx t ⎧+=⎪⎨⎪=+⎩,得222(43)84480k x ktx t +++-=,所以21212228448,4343kt t x x x x k k -+=-=++, 由题意121233322y y x x --+=---,即121233322kx t kx t x x +-+-+=--- 化简得1212(23)(29)()4240.k x x t k x x t ++--+-+=因此2224488(23)(29)()4240.4343t ktk t k t k k -++----+=++ 化简得2286860k kt t k t ++---=,即(23)(42)0k t k t +-++= 若230k t +-=,则23t k =-+,直线MN 过点(2,3)A ,舍去, 所以420k t ++=,即42t k =--,因此直线MN 过点(4,2)P -. 又点(4,0)B ,所以点B 到直线MN 距离最大值即2BP =,此时2MN y =-:,符合题意.所以点B 到直线MN 距离最大值为2【名师点睛】易错点为需讨论直线MN 斜率是否存在,解题的关键是联立直线与曲线方程,根据根与系数关系,求得1212,x x x x +⋅的表达式,再代入题干条件,化简整理,才能求得答案,考查分析理解,计算化简的能力,属中档题.7.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左顶点为A ,右焦点F ,3AF =.过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12k k λ=恒成立?若存在,请求出λ的值,若不存在,请说明理由.【试题来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试(理)【答案】(1)22143x y +=,(2)3λ= 【解析】(1)因为离心率为12,所以12c e a ==,又3AF =,所以3a c +=,解得2a =,1c =,又222c a b =-,所以23b =,所以椭圆方程为22143x y +=;(2)由(1)知()1,0F ,()2,0A -,设直线PN 的方程为1x my =+,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,M x y --,所以1112y x k =-,2222y k x =+,若存在λ,使得12k k λ=恒成立,所以121222y y x x λ=-+, 所以()()122122y x y x λ+=-,两边同乘1y 得()()21221122y x y y x λ+=-,因为()11,P x y 在椭圆上,所以2211143x y +=,所以()()2112113223144x x x y -+⎛⎫=-=⎪⎝⎭, 所以()()()()112211322224x x x y y x λ-++=-,当12x ≠时,则()()12213224x x y y λ-++=,所以()21212136124x x x x y y λ--+-=①;当12x =时,M 与A 重合,联立方程221143x my x y =+⎧⎪⎨+=⎪⎩,消元得()2234690m y my ++-=,所以212212934634y y m my y m -⎧=⎪⎪+⎨-⎪+=⎪+⎩,所以()212128234x x m y y m +=++=+, ()222121212412134m x x m y y m y y m -=+++=+, 代入①得22221236489124343434m m m m λ-+--+-=+++,整理得10836λ-=-,解得3λ=8.已知椭圆()2222:10x y E a b a b +=>>1F 、2F分别为椭圆E 的左、右焦点,M 为E 上任意一点,12F MF S △的最大值为1,椭圆右顶点为A . (1)求椭圆E 的方程;(2)若过A 的直线l 交椭圆于另一点B ,过B 作x 轴的垂线交椭圆于C (C 异于B 点),连接AC 交y 轴于点P .如果12PA PB ⋅=时,求直线l 的方程. 【试题来源】天津市滨海七校2020-2021学年高三上学期期末联考【答案】(1)2212x y +=;(2):22x l y =-或22x y =-+.【解析】(1)当M 为椭圆的短轴端点时,12F MF S △取得最大值即1212S c b =⨯⨯=,因为c a =,222a b c =+,解得a =1b =,1c =,所以椭圆方程为2212x y +=.(2))A,根据题意,直线l 斜率存在且不为0,设直线(:l y k x =,()00,B x y,联立(2212y k x x y ⎧=⎪⎨⎪+=⎩,得()222212420kxx k +-+-=,20212x k =+2204212k k -=+即)22221,1212k B k k ⎛⎫-- ⎪ ⎪++⎝⎭,由题意得)222112k C k ⎛- +⎝⎭,又直线(:AC y k x =-,故()P ,())22212,12k PA PB k ⎛⎫- ⎪⋅=⋅ ⎪+⎝⎭42241021122k k k +-==+, 即4281850k k +-=解得252k =-(舍)214k =,故12k =±,直线:2x l y =或2x y =-+. 9.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,且离心率为12.(1)求椭圆C 的方程;(2)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A B ,两点,线段AB 的垂直平分线交x 轴于点D ,判断AB DF是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.【试题来源】北京市昌平区2021届高三年级上学期期末质量抽测【答案】(1)22143x y +=;(2)是,4. 【解析】(1)依题意得22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =,故椭圆C 的方程为22143x y+=; (2)AB DF是定值.由已知得直线:(1)l y k x =-. 由22(1)34120y k x x y =-⎧⎨+-=⎩,消去y , 整理得()22224384120k x k x k +-+-=. 所以()()()2222284434121441440k k k k ∆=--+-=+>,设()()1122,,,A x y B x y ,则2122843k x x k +=+,212241243k x x k -=+, 所以()()()()222222121121214AB x x y y kx x x x ⎡⎤=-+-=++-⎣⎦()()()222222222441212181434343k k k k k k k ⎡⎤⎛⎫-+⎛⎫ ⎪⎢⎥=+-= ⎪ ⎪+++⎢⎥⎝⎭⎣⎦⎝⎭, 则()2212143k AB k +=+,因为()212122286224343k ky y k x x k k k ⎛⎫-+=+-=-= ⎪++⎝⎭,所以线段AB 的中点为22243,4343k k k k ⎛⎫- ⎪++⎝⎭. (1)当0k =时,AB 4=,1DF =.所以4AB DF=.(2)当0k ≠时,线段AB 的垂直平分线方程为2223144343k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2243k x k =+,即22,043k D k ⎛⎫ ⎪+⎝⎭,所以()22223114343k k DF k k +=-=++, 所以()()22221214343143k AB k DF k k ++==++,综上所述,AB DF 为定值4.【名师点睛】求解本题第二问的关键在于联立直线l 与椭圆方程,根据根与系数关系以及弦长公式表示出AB ,再由题中条件,求出DF ,即可得出AB DF的值.(求解时要注意讨论斜率k 的取值)10.已知椭圆C :22221x y a b+=(0a b >>)过点()2,0A -,()2,0B ,且离心率为12.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点G (E ,G 不重合),ET x ⊥轴,垂足为T ,求证:TA GA TBGB=.【试题来源】北京市东城区2021届高三上学期期末考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)由题意可得,222212a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,解得24a =,23b =,所以椭圆C 的方程为22143x y +=;(2)由题设知直线l 的斜率存在且不为零,设直线l 的方程为y kx m =+(0k ≠).由22143y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()()2223484120k x kmx m +++-=.依题意,有()()222264163430k m k m∆=-+-=,解得2234m k =+.设()1,0G x ,()00,E x y ,则1m x k =-,024434km kx k m-==-+. 因为ET x ⊥轴,所以4,0k T m ⎛⎫- ⎪⎝⎭,所以4242224242kTA k m m k m TB m k m k k m -+-+-===++⎛⎫-- ⎪⎝⎭, 因为2222mGA m k km GB m k k-+-==++,所以TA GA TB GB =.【名师点睛】求解直线与圆锥曲线相关问题时,一般需要联立直线与圆锥曲线方程,消元后得到关于x (或y )的一元二次方程,结合根与系数关系与判别式,以及题中条件,利用圆锥曲线的相关性质,即可求解.11.如图,在平面直角坐标系xoy 中,已知椭圆C :22221x ya b+=(0)a b >>的离心率1,2e =左顶点为(2,0)A -,过点A 作斜率为(0)k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的(0)k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(3)若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AEOM+的最小值.【试题来源】上海市高考压轴【答案】(1)22143x y +=;(2)存在,3(,0)2-;(3) 【解析】(1)因为椭圆C :22221x y a b+=0a b >>()的离心率1,2e =左顶点为(2,0)A -, 所以2a =,又12e =,所以1c =,可得2223b a c =-=, 所以椭圆C 的标准方程为22143x y +=;(2)直线l 的方程为(2)y k x =+,由22143(2)x y y k x ⎧+=⎪⎨⎪=+⎩,可得22(2)(43)860x k x k ⎡⎤+++-=⎣⎦,所以12x =-,2228643k x k -+=+,当 228643k x k -+=+时,2228612(2)4343k ky k k k -+=+=++, 所以2228612(,)4343k k D k k -+++,因为点P 为AD 的中点,所以P 点坐标为22286(,)4343k kk k -++, 则3(0)4OP k k k-=≠,直线l 的方程为(2)y k x =+,令0x =,得E 点坐标为(0,2)k , 假设存在定点(,)(0)Q m n m ≠使得OP EQ ⊥,则1OP EQ k k ⋅=-, 即3214n kk m -⎛⎫-⋅=- ⎪⎝⎭恒成立,所以(46)30m k n +-=, 所以46030m n +=⎧⎨-=⎩,即320m n ⎧=-⎪⎨⎪=⎩,所以定点Q 的坐标为3(,0)2-.(3)因为//OM l ,所以OM 的方程可设为y kx =,和22143x y +=联立可得M点的横坐标为x =, 由//OM l可得22D A E A D A M M x x x x x x AD AE OM x x -+--+===≥=,即2k=±时取等号,所以当2k=±时,AD AEOM+的最小值为.【名师点睛】解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y,,()22B x y,;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出根与系数关系;(4)将所求问题或题中关系转化为1212,x x x x+形式;(5)代入根与系数关系求解.12.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且椭圆C过点3,22⎛⎝⎭.(1)求椭圆C的标准方程;(2)过椭圆C右焦点的直线l与椭圆C交于,A B两点,且与圆22:2O x y+=交于E F、两点,求2||||AB EF⋅的取值范围.【试题来源】云南省曲靖市第二中学、大理新世纪中学2021届高三第一次模拟考试(理)【答案】(1)22132x y+=;(2)3⎡⎢⎣.【分析】(1)先利用离心率得到,a b的关系,再利用点在椭圆上得到,a b另一个关系,解方程即得椭圆方程;(2)先讨论斜率不存在时2||||AB EF⋅的值,再设斜率存在时的直线方程,联立椭圆方程,利用根与系数关系求弦长||AB,再利用几何法求圆中的弦||EF的长,最后计算2||||AB EF⋅的取值范围即可.【解析】(1)由已知可得ca=,所以2213c a=,故222223b ac a=-=,即2232a b=,所以椭圆的方程为2222132x ybb+=,将点32⎛⎝⎭带入方程得22b=,即23a=,所以椭圆C 的标准方程为22132x y +=;(2)由(1)知,21c =,故椭圆的右焦点为(1,0), ①若直线l 的斜率不存在,直线l 的方程为1x =,则,1,,(1,1),(1,1)A B E F ⎛⎛- ⎝⎭⎝⎭,所以22|||4,||||AB EF AB EF ==⋅=②若直线l 的斜率存在,设直线l 方程为(1)y k x =-,设()()1122,,,A x y B x y ,联立直线l 与椭圆方程()221321x y y k x ⎧+=⎪⎨⎪=-⎩,可得()2222236360k x k x k +-+-=, 则2122623k x x k+=+,21223623k x x k -=+, 所以)22123k AB k +===+, 因为圆心()0,0到直线l的距离d =所以在圆22:2O x y +=中由21||2EF ⎛⎫= ⎪⎝⎭()()222222242||44211k k EF r dk k +⎛⎫=-=-= ⎪++⎝⎭,所以)())2222222142223123k k k AB EF k k k +++⋅=⋅=+++2431233k ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭, 因为[)20k ∈+∞,,则222,33k ⎡⎫+∈+∞⎪⎢⎣⎭,230,2213k ⎛⎤∈ ⎥⎝⎦+,故(]20,22433k ∈+,(]24311,323k +∈+,故24312333k ⎫⎪⎛+∈ ⎪ ⎝ ⎪+⎝⎭,即2||3AB EF ⎛⋅∈ ⎝,综上,2||3AB EF ⎡⋅∈⎢⎣.13.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,右顶点、上顶点分别为A 、B ,原点O 到直线AB. (1)求椭圆C 的方程;(2)若P ,Q 为椭圆C 上两不同点,线段PQ 的中点为M . ①当M 的坐标为()1,1时,求直线PQ 的直线方程 ②当三角形OPQOM 的取值范围.【试题来源】江苏省连云港市新海高级中学2020-2021学年高三上学期期末【答案】(1)22142x y +=(2)①230x y +-=,②OM ⎡∈⎣. 【解析】(1)设直线:1x yAB a b+=,即0bx ay ab +-=, 所以O 到直线AB==,所以226a b +=,因为2222226c e a a b c a b ⎧==⎪⎪⎪=+⎨⎪+=⎪⎪⎩,所以2242a b ⎧=⎨=⎩,所以椭圆C 的方程为22142x y +=;(2)①因为PQ 的中点为()1,1M ,且PQ 的斜率存在,设()()1122,,,P x y Q x y ,所以221122222424x y x y ⎧+=⎨+=⎩,所以()()222212122x x y y -=--,所以121212122x x y y y y x x +-=-+-, 因为12122,2x x y y +=+=,所以121212PQ y y k x x -==--,所以PQ 的直线方程为()1112y x -=--,即230x y +-=; ②若直线PQ 垂直于x轴,则2221222222p p p p p x x y x x ⎛⎫⨯=-=⇒= ⎪ ⎪⎝⎭ 22M x ⇒=,0M y =,所以OM =若直线PQ 不垂直于x 轴,设直线PQ 方程:()0y kx m m =+≠,()()1122,,,P x y Q x y ,()22222124240142y kx mk x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 所以122412km x x k +=-+,21222412-⋅=+m x x k,()()()2224412240km k m∆=-+->,即2242k m +>,因为O 到PQ的距离为d =所以12OPQS===,()()()2222222222241212012m k m k k m k m ⎡⎤⇒+-=+⇒+-=⇒+=⎣⎦, 且此时2242k m +>,即0∆>满足,而12222212M x x km k x k m+-===-+, 1M M y kx m m =+=,所以OM ===,因为2212k m +=,所以21m ≥,所以21122m ≤-<,所以1OM ≤<综上可知OM ⎡∈⎣.14.已知椭圆2222:1(0)x y C a b a b +=>>的离心率2e =,且经过点(0,1)D .(1)求椭圆C 的方程;(2)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于,M N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由. 【试题来源】北京市石景山区2021届高三上学期数学期末试题【答案】(1)2214x y +=;(2)BAM ∠=OAN ∠,理由见解析. 【解析】(1)由已知1b =,c e a ==, 又222a b c =+,解得2,1a b ==. 所以椭圆C 的方程为2214x y +=.(2)依题意设直线l 的方程为(4)y k x =+,设1122(,),(,)M x y N x y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则216(112)0k ∆=->,解得k <<. (*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =k =±与(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为1212121212(4)(4)332111111AM AN y y k x k x k k k k k x x x x x x +++=+=+=++++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++22222222323(2)3(242)142206443236311414k k k k k k k k k k k k -+-++=+=+=---++++,所以AM AN k k =-.所以BAM ∠=OAN ∠.15.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(.(1)求椭圆C 的方程;(2)若直线y x m =+与椭圆C 交于不同的两点,A B ,且线段的中点M 在圆221x y +=上,求m 的值.【试题来源】宁夏平罗中学2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2). 【解析】(1)因为椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(,所以222421a b=⎨+=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩,因此椭圆C 的方程为22184x y +=; (2)设()11,A x y ,()22,B x y ,由22184y x m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得2234280x mx m ++-=,由()221612280m m ∆=-->解得212m <, 又1243mx x +=-,则1212422233m m y y x x m m +=++=-+=,所以AB 的中点坐标为2,33m m M ⎛⎫-⎪⎝⎭, 又点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得295m =满足212m <,所以m =. 【名师点睛】求解本题的关键在于用m 表示出点M 的坐标;利用题中条件,联立直线与椭圆方程,消去x (y )得到关于y (或x )的一元二次方程,根据根与系数关系及中点坐标公式,求出M 坐标,即可求解.16.已知椭圆22:142x y C +=.(1)求椭圆C 的离心率和长轴长;(2)已知直线2y kx =+与椭圆C 有两个不同的交点,A B ,P 为x 轴上一点. 是否存在实数k ,使得PAB △是以点P 为直角顶点的等腰直角三角形?若存在,求出k 的值及点P 的坐标;若不存在,说明理由.【试题来源】北京市西城区2021届高三上学期数学期末试题 【答案】(1)2,4;(2)存在,当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-.【解析】(1)由题意:24a =,22b =,所以2a =. 因为222a b c =+,所以22c =,c =c e a ==. 所以椭圆C,长轴长为4. (2)联立222,142y kx x y =+⎧⎪⎨+=⎪⎩ 消y 整理得22(21)840k x kx +++=. 因为直线与椭圆交于,A B 两点,故0>,解得212k >. 设()()1122,,,A x y B x y ,则122821k x x k -+=+,122421x x k =+. 设AB 中点00(,)G x y ,则12024221x x k x k +-==+,0022221y kx k =+=+,故2242(,)2121k G k k -++. 假设存在k 和点(,0)P m ,使得PAB △是以P 为直角顶点的等腰直角三角形,则PG AB ⊥,故1PG AB k k ⋅=-,所以222211421k k k m k +⨯=--+,解得2221k m k -=+,故22(0)2+1kP k -,.因为2APB π∠=,所以0PA PB ⋅=. 所以1122(,)(,)0x m y x m y -⋅-=,即1112()()0x m x m y y --+=.整理得 221212(1)(2)()40k x x k m x x m ++-+++=.所以222248(1)(2)402121k k k m m k k +⋅--⋅++=++, 代入2221km k -=+,整理得41k =,即21k =. 当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-. 此时,PAB △是以P 为直角顶点的等腰直角三角形. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.17.已知椭圆()2222:10x y C a b a b +=>>过点⎛ ⎝⎭,且C的离心率为2. (1)求椭圆C 的方程;(2)过点()1,0P 的直线l 交椭圆C 于A 、B 两点,求PA PB ⋅的取值范围. 【试题来源】北京市朝阳区2021届高三上学期期末数学质量检测试题【答案】(1)2214x y +=;(2)3,34⎡⎤⎢⎥⎣⎦. 【解析】(1)由题意得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得21a b =⎧⎨=⎩.所以椭圆C 的方程为2214xy +=;(2)分以下两种情况讨论:①若直线l 与x 轴重合,则()()21113PA PB a a a ⋅=-⋅+=-=;②若直线l 不与x 轴重合,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,联立22114x my x y =+⎧⎪⎨+=⎪⎩,消去x 可得()224230m y my ++-=,则()()22241241630m m m ∆=++=+>恒成立, 由根与系数关系可得12224m y y m +=-+,12234y y m =-+, 由弦长公式可得()()22121223114m PA PB y y m y y m +⋅==+⋅=+()2223499344m m m +-==-++,244m +≥,则299044m <≤+,所以,2393344m ≤-<+. 综上所述,PA PB ⋅的取值范围是3,34⎡⎤⎢⎥⎣⎦.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【试题来源】北京通州区2021届高三上学期数学摸底(期末)考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩ 消去y ,整理得()2223484120kx kx k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k -⋅=+. 所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+yy x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.【名师点睛】本题第二问解题的关键在于分类讨论直线斜率不存在和存在两种情况,当直线斜率存在时,设()11,M x y ,()22,N x y ,写出直线AM 的方程是()1122y y x x =++和直线BN 的方程是()2222y y x x =--,进而计算得4x =时的纵坐标相等即可.考查运算求解能力,是中档题.19.椭圆C :22221x y a b +=(0)a b >>的左、右焦点分别为F 1、2F ,过1F 向圆2F :22(2)1x y -+=引切线F 1T (T 为切点),切线F 1T23, (1)求椭圆C 的方程;(2)设(,)M x y 为圆2F 上的动点,O 为坐标原点,过F 2作OM 的平行线,交椭圆C 于G ,H 两点,求MGH 的面积的最大值.【试题来源】江西省新余市2021届高三上学期期末统考(理)【答案】(1)22195x y +=;(2)52. 【解析】(1)连接2F T ,则F 1T ⊥2F T,由题意得12||4F F =,所以c =2. 因为23c e a ==,则a =3,b ==C 的方程为22195x y+=;(2)设1122(,),,()G x y H x y ,直线GH 的方程为x =my +2,由222,1,95x my x y =+⎧⎪⎨+=⎪⎩可得22(902)5250m y my ++-=,222(20)4(59)(25)900(1)0m m m ∆=-+-=+>则1222059m y y m +=-+,1222559y y m =-+.所以12||y y -===所以12||GH y y ===-2223030(1)5959m m m +==++. 因为//GH OM ,所以点M 到直线GH 的距离等于原点O 到直线GH的距离,距离为△MGH的面积为22130(1)259m S m +==+ 因为//GH OM ,所以直线OM :x my =,即0x my -=, 因为点(,)M x y 为圆2F 上的动点,所以点2F 到直线OM的距离1d =≤,解得23m ≥t =,则221(2)m t t =-≥,所以2230303045(1)9545t t S t t t t===-+++,因为4()5f t t t=+在[2,)+∞上单调递增,所以当t =2时,()f t 取得最小值,其值为12,所以△MGH 的面积的最大值为52.20.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =直线10x +-=被以椭圆C(1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.【试题来源】吉林省长春外国语学校2021届高三上学期期末考试(文)【答案】(1)2214x y +=;(2)2]3.【解析】(1)因为原点到直线10x -=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =.又22222314c b e a a ==-=,得2a = 所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=, 所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >, 所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y +==+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<.综上可得2133λ<≤,即2(]133. 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.如图,点()0,1P -是椭圆1C :22221x y a b+=(0a b >>)的一个顶点,1C 的长轴是圆2C :224x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交椭圆1C 于另一点D ,2l 交圆2C 于A ,B 两点.(1)求椭圆1C 的方程;(2)当ABD △的面积取得最大值时,求直线1l 的方程.【试题来源】上学期江西省新余市2021届高三上学期期末质量检测(文)【答案】(1)2214x y +=;(2)1012y x =±- 【解析】(1)由题意可得1b =,24a =,即2a =.∴椭圆1C 的方程为2214xy +=;(2)设1(A x ,1)y ,2(B x ,2)y ,0(D x ,0)y .由题意可知直线1l 的斜率存在,设为k ,则直线1l 的方程为1y kx =-.又圆222:4C x y +=的圆心(0,0)O 到直线1l 的距离21d k =+.22243||2421k AB d k +∴=-+21l l ⊥,故直线2l 的方程为0x ky k ++=, 联立22044x ky k x y ++=⎧⎨+=⎩,消去y 得到22(4)80k x kx ++=,解得0284k x k =-+, 281||k PD +∴=.∴三角形ABD 的面积21843||||2ABDk S AB PD +==令244k t +=>,则24k t =-,224(4)34131244()13()131313t t f t t t -+-===--+,16S ∴=,当且仅132t =,即252k=,当k = 故所求直线1l 的方程为12y x =±-. 22.已知椭圆2222:1(0)x y C a b a b+=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为 (1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ 的交点为T ,求证:点T 横坐标为定值.【试题来源】陕西省西安市2020-2021学年高三上学期第一次质量检测(文)【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【解析】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩32a b c =⎧⎪=⎨⎪=⎩故C 的标准方程为22195x y +=.(2)由(1)知()30A -,,()3,0B ,()2,0F ,设00,,()T x y ,11(,)P x y ,()22,Q x y , 由010133TA PA y y k k x x =⇒=++'①,020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++,又2211195x y +=,故2211195x y -=-, 所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+. 所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点,所以设直线PQ 的方程为2x my =+,代入22195x y +=,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅,所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=,解得092x =. 所以点T 横坐标为定值92. 【名师点睛】解题的关键是根据A 、P 、T 和B 、Q 、T 共线得到TA PA k k =,TB QB k k =,化简整理,结合根与系数关系求解,直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率,考查分析理解,计算化简的能力,属中档题.23.已知椭圆2222:1(0)x y C a b a b+=>>倍,且过点.(1)求椭圆C 的标准方程;(2)点P 是圆心在原点OO 上的一个动点,过点P 作椭圆的两条切线,且分别交其圆O 于点E 、F ,求动弦EF 长的取值范围.【试题来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22184x y +=;(2). 【解析】(1)由22a c =得a =,把点代入椭圆方程得22421a b +=, 又222a b c =+,所以228,4a b ==,椭圆的标准方程为22184x y +=.(2)设过点P 作椭圆的两条切线分别为12,l l .①当12,l l 中有一条斜率不存在时,不妨设1l 斜率不存在,因为1l与椭圆只有一个公共点,则其方程为x =x =-, 当1l方程为x =1l 与圆O交于点和2)-,此时经过点,2)-且与椭圆只有一个公共点的直线是2y =或2y =-, 即2l 为2y =或122,y l l =-⊥,由题目知,圆O 的方程为2212x y +=, 所以线段EF 应为圆O的直径,所以||EF =.②当12,l l 斜率都存在时,设点()00,P x y ,其中220012x y +=,且22008,4x y ≠≠,设经过点()00,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+,则()0022184y t x x y x y ⎧=-+⎪⎨+=⎪⎩,消去y 得到()()()2220000124280t x t y tx x y tx ++-+--=, 所以()2220000648163280x t x y t y ∆=-++-=,()2200122200328123281648648x y t t x x ---===---, 所以121t t =-,满足条件的两直线12,l l 垂直. 所以线段EF 应为圆O的直径,所以||EF =,综合①②知因为12,l l 经过点()00,P x y ,又分别交圆于点E ,F ,且12,l l 垂直,所以线段EF 为圆220012x y +=的直径,所以||EF =为定值.故EF的取值范围.24.椭圆()2222:10x y C a b a b+=>>的右焦点为F ,离心率为12,过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =. (1)求C 的方程;(2)若直线:4m x =与x 轴交于M 点,AD ⊥直线m ,垂足为D (不与M 重合),求证:直线BD 平分线段FM .【试题来源】贵州省贵阳市普通中学2021届高三上学期期末监测考试(文)【答案】(1)22143x y +=;(2)证明见详解. 【解析】(1)记椭圆()2222:10x y C a b a b+=>>的右焦点为(),0F c ,因为椭圆的离心率为12,即12caa ==,所以2234b a =;又过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =,将x c =代入22221x y a b +=可得2422221c b y b a a ⎛⎫=-= ⎪⎝⎭,则2b y a =±,所以223b a =,由2223423b a b a==解得2243a b ⎧=⎨=⎩,即椭圆C 的方程为22143x y +=;(2)因为直线:4m x =与x 轴交于M 点,则()4,0M ;又AD ⊥直线m ,垂足为D (不与M 重合),所以直线AB 斜率不为0, 不妨设直线AB 的方程为1x my =+,设()11,A x y ,()22,B x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩消去x 可得()22314120my y ++-=,整理得()2234690m y my ++-=,则122122634934m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩,2334234m y m m -±==++, 不妨令1y=,2y =, 因为AD ⊥直线m ,垂足为D ,所以()14,D y , 因此直线BD 的方程为()211244y y y x y x -=-+-, 令0y =,则()()1212121212121433444y x y my my y y x y y y y y y ---=-=-=----293544422m-===-=;即直线BD与x轴的交点为5,02⎛⎫⎪⎝⎭,因为()1,0F,()4,0M,所以5,02⎛⎫⎪⎝⎭是FM中点,即直线BD平分线段FM.【名师点睛】求解本题第二问的关键在于求出直线BD与x轴交点的横坐标;解题时,需要先设AB的方程,联立直线与椭圆方程,结合根与系数关系,以及题中条件,表示出直线BD 的方程,即可求出与x轴交点的横坐标.25.椭圆()2222:10x yC a ba b+=>>过点()2,3M,其上、下顶点分别为点A,B,且直线AM,MB的斜率之积为34AM BMk k⋅=-.(1)求椭圆C的方程;(2)过椭圆C的左顶点(),0Q a-作两条直线,分别交椭圆C于另一点S,T.若2QS QTk k+=,求证:直线ST过定点.【试题来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考(理)【答案】(1)2211612x y+=;(2)证明见解析.【解析】(1)因为()0,A b,()0,B b-,所以333224MA MBb bk k-+⋅=⋅=-,解得212b=,将212b=,()2,3M都代入椭圆方程,得216a=,所以椭圆方程为2211612x y+=;(2)证明:设()11,S x y,()22,T x y,直线ST的方程为y kx t=+.将y kx t=+代入椭圆方程,整理得()2223484480k x ktx t+++-=,122843ktx xk+=-+,212244843tx xk-=+,由1212244y yx x+=++,得1212244kx t kx tx x+++=++.。
新高考数学一轮复习考点知识专题讲解与练习 41 椭圆

新高考数学一轮复习考点知识专题讲解与练习考点知识总结41 椭圆高考 概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度 考纲 研读1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率) 2.了解椭圆的简单应用 3.理解数形结合的思想一、基础小题1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( ) A.x 23+y 24=1 B .x 24+y 23=1C.x 24+y 23=1 D .x 24+y 2=1 答案 C解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12,所以a =2,b 2=a 2-c 2=3,因此其方程是x 24+y 23=1.故选C.2.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( ) A.12 B .2 C.4 D .14 答案 D解析 由x 2+y 21m=1及题意知,21m =2×2×1,得m =14.故选D.3.已知动点M (x ,y )满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( )A .椭圆B .直线 C.圆 D .线段 答案 D解析 设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|,故动点M 的轨迹是线段F 1F 2.故选D.4.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y轴上,则|PF 2||PF 1|的值为( )A.514 B .513 C.49 D .59 答案 B解析 由题意知a =3,b = 5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线的性质可推得PF 2⊥x 轴,所以由x =c 时可得|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513.故选B.5.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A.圆B.椭圆 C.双曲线D.抛物线答案B解析点P在线段AN的垂直平分线上,故|P A|=|PN|,又AM是圆的半径,所以|PM|+|PN|=|PM|+|P A|=|AM|=6>|MN|,由椭圆定义知,动点P的轨迹是椭圆.故选B.6.(多选)已知P是椭圆C:x26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为5B.C的离心率为30 6C.圆D在C的内部D.|PQ|的最小值为25 5答案BC解析∵x26+y2=1,∴a=6,b=1,∴c=a2-b2=6-1=5,则C的焦距为25,离心率e=ca=56=306.设P(x,y)()-6≤x≤6,则|PD|2=(x+1)2+y2=(x+1)2+1-x26=56⎝⎛⎭⎪⎫x+652+45≥45>15,∴圆D在C的内部,且|PQ|的最小值为45-15=55.故选BC.7.(多选)椭圆C:x24+y2=1的左、右焦点分别为F1,F2,O为坐标原点,以下说法正确的是()A .过点F 2的直线与椭圆C 交于A ,B 两点,则△ABF 1的周长为8 B .椭圆C 上存在点P ,使得PF 1→·PF 2→=0 C .椭圆C 的离心率为12D .P 为椭圆x 24+y 2=1上一点,Q 为圆x 2+y 2=1上一点,则点P ,Q 间的最大距离为3答案 ABD解析 对于A ,因为F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,过点F 2的直线与椭圆C 交于A ,B 两点,由椭圆定义可得,|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a =4,因此△ABF 1的周长为|AF 1|+|BF 1|+|AB |=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a =8,故A 正确;对于B ,设点P (x ,y )为椭圆C :x 24+y 2=1上任意一点,则点P 坐标满足x 24+y 2=1,且-2≤x ≤2,又F 1(-3,0),F 2(3,0),所以PF 1→=(-3-x ,-y ),PF 2→=(3-x ,-y ),因此PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2-3+1-x 24=3x 24-2,由PF 1→·PF 2→=3x 24-2=0,可得x =±263∈[-2,2],故B 正确;对于C ,因为a 2=4,b 2=1,所以c 2=4-1=3,即c =3,所以离心率为e =c a =32,故C 错误;对于D ,设点P (x ,y )为椭圆C :x 24+y 2=1上任意一点,由题意可得,点P (x ,y )到圆x 2+y 2=1的圆心的距离为|PO |=x 2+y 2=4-4y 2+y 2=4-3y 2,因为-1≤y ≤1,所以|PQ |max =|PO |max +1=4-0+1=3,故D 正确.故选ABD.8.已知A (3,0),B (-2,1)是椭圆x 225+y 216=1内的点,M 是椭圆上的一动点,则|MA |+|MB |的最大值为________,最小值为________.答案 10+2 10-2解析 由题意知A 为椭圆的右焦点,设左焦点为F 1,由椭圆的定义知|MF 1|+|MA |=10,所以|MA |+|MB |=10+|MB |-|MF 1|.又||MB |-|MF 1||≤|BF 1|,所以-|BF 1|≤|MB |-|MF 1|≤|BF 1|,如图,设直线BF 1交椭圆于M 1,M 2两点.当M 为点M 1时,|MB |-|MF 1|最小,当M 为点M 2时,|MB |-|MF 1|最大.所以|MA |+|MB |的最大值为10+2,最小值为10- 2.二、高考小题9.(2022·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A .13B .12 C.9 D .6 答案C 解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=⎝ ⎛⎭⎪⎫622=9,当且仅当 |MF 1|=|MF 2|=3时等号成立.故选C.10.(2022·全国乙卷)设B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点,若C 上的任意一点P 都满足|PB |≤2b ,则C 的离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫22,1 B .⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎦⎥⎤0,22 D .⎝ ⎛⎦⎥⎤0,12答案 C解析 依题意,B (0,b ),设椭圆上一点P (x 0,y 0),则|y 0|≤b ,x 20a 2+y 20b 2=1,可得x 20=a 2-a 2b 2y 20,则|PB |2=x 20+(y 0-b )2=x 20+y 20-2by 0+b 2=-c 2b 2y 20-2by 0+a 2+b 2≤4b 2.因为当y 0=-b 时,|PB |2=4b 2,所以-b 3c 2≤-b ,得2c 2≤a 2,所以离心率e =c a ∈⎝⎛⎦⎥⎤0,22.故选C.11.(2022·全国Ⅰ卷)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B .x 23+y 22=1 C.x 24+y 23=1 D .x 25+y 24=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,|AF 2|=2|F 2B |,∴|AB |=|BF 1|=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 1|=|AF 2|=a ,∴点A 是椭圆的短轴端点,如图.不妨设A (0,-b ),由F 2(1,0),AF 2→=2F 2B →,得B ⎝ ⎛⎭⎪⎫32,b 2.由点B 在椭圆上,得94a 2+b 24b 2=1,得a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.12.(2022·浙江高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c,0),F 2(c,0)(c >0).若过F 1的直线和圆⎝ ⎛⎭⎪⎫x -12c 2+y 2=c 2相切,与椭圆在第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________,椭圆的离心率是________.答案25555解析 设过F 1的直线与圆的切点为M ,圆心A ⎝ ⎛⎭⎪⎫12c ,0,则|AM |=c ,|AF 1|=32c ,所以|MF 1|=52c ,所以该直线的斜率k =|AM ||MF 1|=c 52c =255.因为PF 2⊥x 轴,所以|PF 2|=b 2a ,又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e ,解得e =55(负值舍去).13.(2022·全国甲卷)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________.答案 8解析 解法一:由|PQ |=|F 1F 2|,得|OP |=12|F 1F 2|(O 为坐标原点),所以PF 1⊥PF 2,又由椭圆的对称性,知四边形PF 1QF 2为平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|·|PF 2|=m (8-m )=8.解法二:由椭圆C :x 216+y 24=1可知|F 1F 2|=4 3.由P ,Q 为C 上关于坐标原点对称的两个点,且|PQ |=|F 1F 2|,得|PO |=|QO |=23(O 为坐标原点),所以P ,Q 既在椭圆x 216+y 24=1上,又在圆x 2+y 2=12上.不妨设点P 在第一象限,则由⎩⎪⎨⎪⎧x 216+y 24=1,x 2+y 2=12,可得P ⎝ ⎛⎭⎪⎫463,233,所以由对称性,可得四边形PF 1QF 2的面积S 四边形PF 1QF 2=2S △PF 1F 2=2×12×|F 1F 2|×y P =2×12×43×233=8.解法三:由椭圆方程知,a =4,b =2,则c =a 2-b 2=2 3.由点P 在椭圆上,得|PF 1|+|PF 2|=8,所以|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=64 ①.由椭圆的对称性及|PQ |=|F 1F 2|知,四边形PF 1QF 2是矩形,在Rt △PF 1F 2中,由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2,所以|PF 1|2+|PF 2|2=48 ②.由①-②得|PF 1|·|PF 2|=8,所以S 四边形PF 1QF 2=|PF 1|·|PF 2|=8.14.(2022·全国Ⅲ卷)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,则|MF 1|>|MF 2|,|F 1F 2|=2c =236-20=8,因为△MF 1F 2为等腰三角形,|MF 1|>|MF 2|,且|MF 1|+|MF 2|=2a =12,所以|MF 1|>6,|MF 2|<6,所以|MF 1|=|F 1F 2|=8,设M (x ,y ),x >0,y >0,则⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =15.所以点M 的坐标为(3,15).15.(2022·浙江高考)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此|OM |=2.在△FF ′P 中,OM 綊12PF ′,所以|PF ′|=4.根据椭圆的定义,得|PF |+|PF ′|=6,所以|PF |=2.所以|MF |=1.又因为|FF ′|=4,所以在Rt △MFF ′中,tan ∠PFF ′=|MF ′||MF |=|FF ′|2-|MF |2|MF |=15,即直线PF 的斜率是15.三、模拟小题16.(2022·广东珠海高三摸底)已知点A (1,1),且F 是椭圆x 24+y 23=1的左焦点,P 是椭圆上任意一点,则|PF |+|P A |的最小值是( )A.6 B.5 C.4 D.3答案D解析a=2,c=a2-b2=1,设椭圆的右焦点为F1(1,0),|AF1|=1,|PF|+|P A|=2a -|PF1|+|P A|=4+|P A|-|PF1|≥4-|AF1|=4-1=3,当P在F1的正上方时,等号成立.故选D.17.(2022·新高考八省联考)椭圆x2m2+1+y2m2=1(m>0)的焦点为F1,F2,上顶点为A,若∠F1AF2=π3,则m=()A.1 B. 2 C.3D.2 答案C解析在椭圆x2m2+1+y2m2=1(m>0)中,a=m2+1,b=m,c=a2-b2=1,如图所示,因为椭圆x2m2+1+y2m2=1(m>0)的上顶点为点A,焦点为F1,F2,所以|AF1|=|AF2|=a,因为∠F1AF2=π3,所以△F1AF2为等边三角形,则|AF1|=|F1F2|,即m2+1=a=2c=2,因此,m= 3.故选C.18.(2022·湖南长沙长郡中学高三上开学考试)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F ,点P 在椭圆C 上,点Q 在圆E :(x +3)2+(y -4)2=4上,且圆E 上的所有点均在椭圆C 外,若|PQ |-|PF |的最小值为25-6,且椭圆C 的长轴长恰与圆E 的直径长相等,则椭圆C 的标准方程为( )A.x 22+y 2=1 B .x 24+y 2=1 C.x 24+y 23=1 D .x 24+y 22=1 答案 C解析 因为圆E :(x +3)2+(y -4)2=4的半径为2,所以a =2,设椭圆的左焦点为F 1(-c,0),由椭圆的定义可得|PF 1|+|PF |=2a =4,所以|PF |=4-|PF 1|,所以|PQ |-|PF |=|PQ |+|PF 1|-4≥|QF 1|-4=|QF 1|+|EQ |-6≥|EF 1|-6,当且仅当P ,Q 位于线段EF 1上时,等号成立,又|PQ |-|PF |的最小值为25-6,所以|EF 1|-6=25-6,即|EF 1|=25,所以(-3+c )2+(4-0)2=25,解得c =1或c =5>a =2(舍).所以b 2=a 2-c 2=4-1=3,所以椭圆C 的标准方程为x 24+y 23=1.故选C.19.(多选)(2022·广东韶关第一次综合测试)设P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是椭圆的左、右焦点,焦距为2c (c >0),若∠F 1PF 2是直角,则( )A .|OP |=c (O 为原点)B .S △F 1PF 2=b 2C .△F 1PF 2的内切圆半径r =a -cD .|PF 1|max =a +c 答案 ABC解析 在Rt △F 1PF 2中,O 为斜边F 1F 2的中点,所以|OP |=12|F 1F 2|=c ,故A 正确;设|PF 1|=m ,|PF 2|=n ,则有m 2+n 2=(2c )2,m +n =2a ,所以mn =12[(m +n )2-(m 2+n 2)]=2b 2,所以S △F 1PF 2=12mn =b 2,故B 正确;因为S △F 1PF 2=12(m +n +2c )·r =b 2,所以r =2S △F 1PF 2m +n +2c =2b 22a +2c =2(a 2-c 2)2(a +c )=a -c ,故C 正确;|PF 1|=a +c ,当且仅当P 为椭圆右顶点,此时P ,F 1,F 2不构成三角形,故D 错误.20.(多选)(2022·山东潍坊6月模拟)已知椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆的内部,点Q 在椭圆上,则以下说法正确的是( )A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆C 的离心率的取值范围为⎝ ⎛⎭⎪⎫0,5-12 D .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17 答案 ACD解析 因为|F 1F 2|=2,所以F 2(1,0),|PF 2|=1,所以|QF 1|+|QP |=2a -|QF 2|+|QP |≥2a -|PF 2|=2a -1,当Q ,F 2,P 三点共线且点Q 在第一象限时,取等号,故A 正确;若椭圆C 的短轴长为2,则b =1,a =2,所以椭圆C 的方程为x 22+y 21=1,又12+11>1,则点P 在椭圆外,故B 错误;因为点P (1,1)在椭圆内部,所以1a +1b <1,又a -b =1,所以b =a -1,所以1a +1a -1<1,即a 2-3a +1>0,解得a >3+52=6+254=(1+5)24,所以a >1+52,所以e =1a <5-12,所以椭圆C 的离心率的取值范围为⎝⎛⎭⎪⎫0,5-12,故C 正确;若PF 1→=F 1Q →,则F 1为线段PQ 的中点,所以Q (-3,-1),所以2a =|QF 1|+|QF 2|=5+17,故D 正确.故选ACD.21.(2022·广东广州荔湾区高三上调研考试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过点F 且倾斜角为45°的直线l 与椭圆交于A ,B 两点(点B 在x 轴上方),且FB →=2AF →,则椭圆的离心率为________.答案23解析 设F (-c,0),c >0,由题意知,l 的斜率为tan45°=1,则直线方程为y =x +c ,设A (x 1,y 1),B (x 2,y 2)联立直线和椭圆的方程得⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,整理得(a 2+b 2)y 2-2cb 2y +c 2b 2-a 2b 2=0,则y 1+y 2=2cb 2a 2+b 2,y 1y 2=c 2b 2-a 2b 2a 2+b 2,且F 1B →=2AF 1→,可得y 2=-2y 1,则-y 1=2cb 2a 2+b 2,-2y 21=c 2b 2-a 2b 2a 2+b 2,所以-2⎝ ⎛⎭⎪⎫2cb 2a 2+b 22=c 2b 2-a 2b 2a 2+b 2,可得9c 2=2a 2,所以e =c a =23.22.(2022·湖北恩施州高三上第一次教学质量监测)设点P 是椭圆x 29+y 25=1上的点,F 1,F 2是该椭圆的两个焦点,若△PF 1F 2的面积为52,则sin ∠F 1PF 2________.答案 45解析 在椭圆x 29+y 25=1中,长半轴长a =3,半焦距c =2,由椭圆定义得|PF 1|+|PF 2|=2a =6,在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即(2c )2=(2a )2-2|PF 1|·|PF 2|·(1+cos ∠F 1PF 2),则|PF 1|·|PF 2|·(1+cos ∠F 1PF 2)=10,又△PF 1F 2的面积为52,则12|PF 1|·|PF 2|sin ∠F 1PF 2=52,即|PF 1|·|PF 2|sin ∠F 1PF 2=5,于是得2sin ∠F 1PF 2=1+cos ∠F 1PF 2,两边平方得(1+cos ∠F 1PF 2)2=4sin 2∠F 1PF 2=4(1-cos ∠F 1PF 2)(1+cos ∠F 1PF 2),解得cos ∠F 1PF 2=35,则sin ∠F 1PF 2=45,所以sin ∠F 1PF 2=45.一、高考大题1.(2022·北京高考)已知椭圆E:x2a2+y2b2=1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4 5.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC 分别交直线y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.解(1)因为椭圆过A(0,-2),所以b=2,因为四个顶点围成的四边形的面积为45,所以12×2a×2b=45,即a=5,故椭圆E的标准方程为x25+y24=1.(2)设B(x1,y1),C(x2,y2),因为直线BC的斜率存在,所以x1x2≠0,故直线AB的方程为y=y1+2x1x-2,令y=-3,则x M=-x1y1+2,同理x N=-x2y2+2.设直线BC 的方程为y =kx -3, 由⎩⎨⎧y =kx -3,4x 2+5y 2=20, 可得(4+5k 2)x 2-30kx +25=0,故Δ=900k 2-100(4+5k 2)>0,解得k <-1或k >1. 又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2, 故x 1x 2>0, 所以x M x N >0.又|PM |+|PN |=|x M +x N | =⎪⎪⎪⎪⎪⎪x 1y 1+2+x 2y 2+2 =⎪⎪⎪⎪⎪⎪x 1kx 1-1+x 2kx 2-1=⎪⎪⎪⎪⎪⎪2kx 1x 2-(x 1+x 2)k 2x 1x 2-k (x 1+x 2)+1 =⎪⎪⎪⎪⎪⎪⎪⎪50k 4+5k 2-30k 4+5k 225k 24+5k 2-30k 24+5k 2+1=5|k |, 故5|k |≤15,即|k |≤3,综上,k 的取值范围是[-3,-1)∪(1,3].2.(2022·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为255,且|BF |= 5.(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程.解 (1)易知点F (c,0),B (0,b ), 故|BF |=c 2+b 2=a =5, 因为椭圆的离心率为e =c a =255, 故c =2,b =a 2-c 2=1, 因此,椭圆的方程为x 25+y 2=1.(2)设点M (x 0,y 0)(y 0>0)为椭圆x 25+y 2=1上一点, 先证明直线MN 的方程为x 0x5+y 0y =1, 联立⎩⎪⎨⎪⎧x 0x 5+y 0y =1,x 25+y 2=1,消去y 并整理得x 2-2x 0x +x 20=0,Δ=4x 20-4x 20=0,因此,椭圆x 25+y 2=1在点M (x 0,y 0)处的切线方程为x 0x5+y 0y =1.在直线MN 的方程中,令x =0,可得y =1y 0,由题意可知y 0>0,即点N ⎝ ⎛⎭⎪⎫0,1y 0, 直线BF 的斜率为k BF =-b c =-12, 所以直线PN 的方程为y =2x +1y 0,在直线PN 的方程中,令y =0,可得x =-12y 0,即点P ⎝ ⎛⎭⎪⎫-12y 0,0,因为MP ∥BF ,所以k MP =k BF , 即y 0x 0+12y=2y 202x 0y 0+1=-12, 整理可得(x 0+5y 0)2=0,所以x 0=-5y 0,所以x 205+y 20=6y 20=1, 又y 0>0,故y 0=66,x 0=-566,所以直线l 的方程为-66x +66y =1,即x -y +6=0.3.(2022·新高考Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.解 (1)由题意,知椭圆的半焦距c =2且e =c a =63,所以a =3, 又b 2=a 2-c 2=1,所以椭圆C 的方程为x 23+y 2=1.(2)证明:由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意; 当直线MN 的斜率存在时, 设M (x 1,y 1),N (x 2,y 2). 必要性:若M ,N ,F 三点共线, 可设直线MN :y =k (x -2), 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|-2k |k 2+1=1,解得k =±1,联立⎩⎨⎧y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1x 2=34,所以|MN |=1+1·(x 1+x 2)2-4x 1x 2=3,所以必要性成立; 充分性:设直线MN :y =kx +m (km <0),即kx -y +m =0, 由直线MN 与曲线x 2+y 2=1(x >0)相切可得|m |k 2+1=1,所以m 2=k 2+1,联立⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,可得(1+3k 2)x 2+6kmx +3m 2-3=0, 所以x 1+x 2=-6km1+3k 2,x 1x 2=3m 2-31+3k 2,所以|MN |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-4·3m 2-31+3k 2=1+k 2·24k 21+3k 2=3,化简得3(k 2-1)2=0,所以k =±1, 所以⎩⎨⎧ k =1,m =-2或⎩⎨⎧k =-1,m =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),即M ,N ,F 三点共线,充分性成立. 所以M ,N ,F 三点共线的充要条件是|MN |= 3. 二、模拟大题4.(2022·广东高三综合能力测试)已知椭圆C 的中心为坐标原点,焦点在x 轴上,焦距为2,椭圆C 上的点到焦点的距离的最大值为3.(1)求椭圆C 的标准方程;(2)设点A ,F 分别为椭圆C 的左顶点、右焦点,过点F 的直线交椭圆C 于P ,Q 两点,直线AP ,AQ 分别与直线l :x =3交于点M ,N ,求证:直线FM 和直线FN 的斜率之积为定值.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,依题意,可得⎩⎨⎧ 2c =2,a +c =3,解得a =2,c =1, 又a 2=b 2+c 2,则b =3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:由(1)得A (-2,0),F (1,0),设直线PQ :x =my +1,P (x 1,y 1),Q (x 2,y 2),联立⎩⎪⎨⎪⎧ x =my +1,x 24+y 23=1,消去x ,整理,得(3m 2+4)y 2+6my -9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 依题意,可设M (3,y M ),N (3,y N ),则由y M 3+2=y 1x 1+2,可得y M =5y 1x 1+2=5y 1my 1+3, 同理,可得y N =5y 2my 2+3, 所以直线FM 和直线FN 的斜率之积k FM ·k FN =y M -03-1·y N -03-1=14·25y 1y 2(my 1+3)(my 2+3)=14·25y 1y 2m 2y 1y 2+3m (y 1+y 2)+9=14·25⎝ ⎛⎭⎪⎫-93m 2+4m 2⎝ ⎛⎭⎪⎫-93m 2+4+3m ⎝ ⎛⎭⎪⎫-6m 3m 2+4+9 =14·-25×9-9m 2-18m 2+27m 2+36=-25×94×36=-2516.所以直线FM 和直线FN 的斜率之积为定值-2516.5.(2022·长春四校联考)已知平面上一动点P 到定点F (3,0)的距离与它到直线x =433的距离之比为32,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设直线l :y =kx +m 与曲线C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求△MON 面积的最大值.解 (1)设P (x ,y ),则(x -3)2+y 2⎪⎪⎪⎪⎪⎪x -433=32, 化简,得x 24+y 2=1.即曲线C 的方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,得Δ=(8km )2-4(4k 2+1)·(4m 2-4)>0, 化简,得m 2<4k 2+1,①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1, y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2, ∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简,得m 2+k 2=54,②|MN |=1+k 2|x 1-x 2| =1+k 2·64k 2m 2(4k 2+1)2-4·4m 2-44k 2+1=1+k 2·-16m 2+64k 2+16(4k 2+1)2 =1+k 2·4(20k 2-1)(4k 2+1)2,∵原点O 到直线l 的距离d =|m |1+k 2, ∴S △MON =12|MN |·d =12(5-4k 2)(20k 2-1)(4k 2+1)2. 设4k 2+1=t ,由①②得0≤m 2<65,120<k 2≤54,∴65<t ≤6,16≤1t <56,S △MON =12(6-t )(5t -6)t 2 =12-36+36t -5t 2t 2 =3 -⎝ ⎛⎭⎪⎫1t -122+19, ∴当1t =12,即k =±12时,△MON 的面积取得最大值,为1.6.(2022·江苏省南通市高三月考)已知椭圆O :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆O 上运动,若△P AB 面积的最大值为23,椭圆O 的离心率为12.(1)求椭圆O 的标准方程;(2)过B 点作圆E :x 2+(y -2)2=r 2(0<r <2)的两条切线,分别与椭圆O 交于C ,D 两点(异于点B ),当r 变化时,直线CD 是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.解 (1)由题可知当点P 在椭圆O 的上顶点(或下顶点)时,S △P AB 最大,此时S △P AB=12×2ab =ab =23,∴⎩⎪⎨⎪⎧ ab =23,c a =12,a 2-b 2=c 2,∴⎩⎪⎨⎪⎧ a =2,b =3,c =1,∴椭圆O 的标准方程为x 24+y 23=1.(2)设过点B (2,0)与圆E 相切的直线方程为y =k (x -2),即kx -y -2k =0, ∵直线与圆E :x 2+(y -2)2=r 2相切,∴d =|-2-2k |k 2+1=r ,即(4-r 2)k 2+8k +4-r 2=0.设两切线的斜率分别为k 1,k 2(k 1≠k 2), 则k 1k 2=1,设C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ y =k 1(x -2),x 24+y 23=1⇒(3+4k 21)x 2-16k 21x +16k 21-12=0, ∴2x 1=16k 21-123+4k 21,即x 1=8k 21-63+4k 21, ∴y 1=-12k 13+4k 21; 同理,x 2=8k 22-63+4k 22=8-6k 214+3k 21,y 2=-12k 23+4k 22=-12k 14+3k 21;∴k CD =y 2-y 1x 2-x 1=-12k 14+3k 21--12k 13+4k 218-6k 214+3k 21-8k 21-63+4k 21=k 14(k 21+1). ∴直线CD 的方程为y +12k 13+4k 21=k 14(k 21+1)⎝ ⎛⎭⎪⎫x -8k 21-63+4k 21, 整理得y =k 14(k 21+1)x -7k 12(k 21+1)=k 14(k 21+1)·(x -14). ∴直线CD 恒过定点(14,0).。
(完整word版)高考数学椭圆填空题题集(附答案)

椭圆填空题11、(1)离心率一条准线方程为x=的椭圆的标准方程为________________;(2)短轴端点与焦点间的距离等于5,一条准线的方程是椭圆的方程为___________________。
2、(1)上有一点P到右焦点的距离为1,则P的坐标为_______;(2)AB A、B的横坐标之和为-7,。
3、椭圆的中心在原点,一个焦点为F(0,6),中心到准线的距离为10,则椭圆方程为___。
4、椭圆的中心在原点,短轴端点到焦点的距离是6,一条准线方程是y=9,则椭圆方程为_____________.5、b= 。
6、(1)y2=1上点P到右焦点F P到左准线的距离为______;(2)1:3,则这点到左、右准线的距离分别为_______________。
7、(1)中心在原点,长半轴长与短半轴长的和为0.6的椭圆的方程为________;(2)对称轴是坐标轴,(2,0)的椭圆的方程是_______。
8、(1)短轴长为6,且过点(1,4)的椭圆标准方程是__________;(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是__________。
9、的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____。
10、m= 。
11、一个椭圆的中心在原点,焦点在x 轴上,离心率为36,一条准线为x=3,则该椭圆的方程是____.12、椭圆的一个焦点和短轴两端点连成三角形,这个三角形有一个角为120°,则该椭圆的离心率为____.13、椭圆的准线间的距离是焦距的2倍,则它的离心率为____。
14、椭圆的长、短轴都在坐标轴上,长、短轴的长度之和为36,离心率为53,则椭圆方程为_____。
15、椭圆的中心在原点,一个顶点为(2,0)且短轴长等于焦距则椭圆的方程为___。
16、椭圆13610022=+y x 上一点M 到左、右焦点的距离之比为1:3,则点M 到左准线的距离为___。
2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。
2023年高考数学微专题练习专练51椭圆含解析理

专练51 椭圆命题范围:椭圆的定义、标准方程与简单的几何性质.[基础强化]一、选择题1.椭圆x 216+y 26=1上一点M 到其中一个焦点的距离为3,则点M 到另一个焦点的距离为( )A .2B .3C .4D .52.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点在BC 边上,则△ABC 的周长为( )A .23B .43C .6D .123.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b4.动点P 到两定点F 1(-4,0),F 2(4,0)的距离之和为10,则动点P 的轨迹方程是( ) A .x 216+y 29=1B .x 225+y 29=1C .x 225+y 216=1D .x 2100+y 236=1 5.已知椭圆的长轴长为8,离心率为34,则此椭圆的标准方程是( )A .x 216+y 29=1 B .x 216+y 27=1或x 27+y 216=1 C .x 216+y 225=1 D .x 216+y 225=1或x 225+y 216=1 6.曲线x 225+y 29=1与x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等7.[2021·全国乙卷]设B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点,若C 上的任意一点P 都满足|PB |≤2b ,则C 的离心率的取值范围是( )A .[22,1) B .[12,1) C .(0,22] D .(0,12] 8.[2022·西宁一中高三测试]设椭圆x 24+y 23=1的焦点为F 1,F 2,点P 在椭圆上,若△PF 1F 2为直角三角形,则△PF 1F 2的面积为( )A .3B .3或32C .32D .6或3 9.[2022·陕西省高三三模]我们把由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c2=1(x <0)合成的曲线称作“果圆”(其中a 2=b 2+c 2,a >b >c >0).如图所示,设点F 0、F 1、F 2是相应椭圆的焦点,A 1、A 2和B 1、B 2是“果圆”与x 轴和y 轴的交点,若△F 0F 1F 2是边长为1的等边三角形,则a ,b 的值分别为( )A .72,1B .3,1C .5,3D .5,4 二、填空题10.[2021·全国甲卷]已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________.11.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率为________.12.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.[能力提升]13.[2022·全国甲卷(理),10]椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( )A.32B.22C.12D.1314.[2022·江西省南昌市高三模拟]已知F 1,F 2,B 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点、右焦点、上顶点,连接BF 2并延长交C 于点P ,若△PF 1B 为等腰三角形,则C 的离心率为( )A .13B .12C .33D .2215.F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆上存在一点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.16.[2022·安徽省蚌埠质检]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,直线l 与椭圆交于A ,B 两点,当AB 的中点为M (1,1)时,直线l 的方程为________. 专练51 椭圆1.D ∵a =4,由椭圆的定义知,M 到另一个焦点的距离为2a -3=2×4-3=5. 2.B 由椭圆的方程得a = 3.设椭圆的另一个焦点为F ,则由椭圆的定义得|BA |+|BF |=|CA |+|CF |=2a ,所以△ABC 的周长为|BA |+|BC |+|CA |=|BA |+|BF |+|CF |+|CA |=(|BA |+|BF |)+(|CF |+|CA |)=2a +2a =4a =4 3.3.B 由题意得,c a =12,∴c 2a 2=14,又a 2=b 2+c 2,∴a 2-b 2a 2=14,b 2a 2=34,∴4b 2=3a 2.故选B.4.B 依题意,动点P 的轨迹是椭圆,且焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0),由c =4,2a =10,即a =5,得b =a 2-c 2=3,则椭圆方程为x 225+y 29=1. 5.B ∵2a =8,∴a =4,e =c a,∴c =3,∴b 2=a 2-c 2=16-9=7,∴椭圆的标准方程为x 216+y 27=1或y 216+x 27=1. 6.D ∵c 2=25-k -(9-k )=16,∴c =4, ∴两曲线的焦距相等.7.C 解法一 依题意,B (0,b ),设P (a cos θ,b sin θ,θ∈[0,2π),因为|PB |≤2b ,所以对任意θ∈[0,2π),(a cos θ)2+(b sin θ-b )2≤4b 2恒成立,即( a 2-b 2)sin 2θ+2b 2sin θ+3b 2-a 2≥0对任意θ∈[0,2π)恒成立.令sin θ=t ,t ∈[-1,1],f (t )=(a2-b 2)t 2+2b 2t +3b 2-a 2,则原问题转化为对任意t ∈[-1,1],恒有f (t )≥0成立.因为f (-1)=0,所以只需-2b 22(a 2-b 2)≤-1即可,所以2b 2≥a 2,则离心率e =1-b 2a 2≤22,所以选C.解法二 依题意,B (0,b ),设椭圆上一点P (x 0,y 0),则|y 0|≤b ,x 20 a 2+y 2b 2=1,可得x 2=a 2-a 2b 2y 20 ,则|PB |2=x 20 +(y 0-b )2=x 20 +y 20 -2by 0+b 2=-c 2b2y 20 -2by 0+a 2+b 2≤4b 2.因为当y 0=-b 时,|PB |2=4b 2,所以-b 3c 2≤-b ,得2c 2≤a 2,所以离心率e =c a ≤22,故选C.8.C 由已知a =2,b =3,c =1,若P 为短轴的顶点(0,3)时,∠F 1PF 2=60°,△PF 1F 2为等边三角形, ∴∠P 不可能为直角,若∠F 1=90°,则|PF 1|=b 2a =32,S △PF 1F 2=12·b 2a ·2c =32.同理∠F 2=90°时,S △PF 1F 2=32,故选C.9.A 由题意知,a 2-b 2=(32)2=34,b 2-c 2=(12)2=14,∴a 2-c 2=1.又a 2=b 2+c 2,∴b 2=1,b =1.∴a 2=74,a =72.10.8解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.11.35解析:由题意知,2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b ,整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,解得e =35或e =-1(舍去).12.3解析:∵PF 1⊥PF 2,∴∠F 1PF 2=90°,又S △PF 1F 2=b 2tan45°=9,∴b =3.13.A 设P (x 1,y 1),则点Q 的坐标为(-x 1,y 1).由题意,得点A (-a ,0).又直线AP ,AQ 的斜率之积为14,所以y 1x 1+a ·y 1-x 1+a =14,即y 21 a 2-x 21 =14①.又点P 在椭圆C 上,所以x 21 a 2+y 21 b 2=1②.由①②,得b 2a 2=14,所以a 2=4b 2,所以a 2=4(a 2-c 2),所以椭圆C 的离心率e =c a=32.故选A. 14.C 由椭圆的定义,得|BF 1|+|BF 2|=2a , 由椭圆的对称性,得|BF 1|=|BF 2|=a , 设|PF 2|=m ,则|BP |=a +m ,又|PF 1|+|PF 2|=2a ,所以|PF 1|=2a -m , 因为△PF 1B 为等腰三角形,所以|BP |=|PF 1|, 即a +m =2a -m ,得m =a2,所以|PF 2|=a 2,|BP |=|PF 1|=3a2,在△BF 1F 2中,由余弦定理,得cos∠BF 2F 1=a 2+4c 2-a 22a ·2c =ca,在△PF 1F 2中,由余弦定理,得cos∠BF 2F 1=(a 2)2+4c 2-(3a 2)22·2c ·a 2=2c 2-a2ac,又∠BF 2F 1+∠PF 2F 1=π,所以cos∠BF 2F 1+cos∠PF 2F 1=0,即c a +2c 2-a 2ac=0,整理,得3c 2=a 2, 所以e 2=13,由e ∈(0,1),得e =33.15.[22,1) 解析:设P 0为椭圆x 2a 2+y 2b2=1的上顶点,由题意得∠F 1P 0F 2≥90°,∴∠OP 0F 2≥45°,∴c a ≥sin45°,∴e ≥22, 又0<e <1,∴22≤e <1. 16.x +2y -3=0解析:由题可知直线AB 的斜率存在;设A (x 1,y 1),B (x 2,y 2),由于点A ,B 都在椭圆上,所以x 21 a 2+y 21 b 2=1 ①,x 22 a 2+y 22b 2=1(a >b >0) ②,①-②,化简得-b 2a 2=y 21 -y 22 x 21 -x 22;又因为离心率为22,所以1-b 2a 2=22, 所以b 2a 2=12,即y 21 -y 22 x 21 -x 22 =(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-12; 又线段AB 的中点为M (1,1),所以(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2)2(x 1-x 2)(x 1+x 2)2=y 1-y 2x 1-x 2=-12,所以直线AB 的斜率为-12,故所求直线l 的方程为y =-12(x -1)+1,即x +2y -3=0.。
高考数学真题专题(理数) 椭圆

专题九 解析几何第二十六讲 椭圆2019年1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )2 2.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2010-2018年一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为6的直线上,12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .B C .23 D .594.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值. 24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(2P =-,4(1,2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程. 28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为,焦距为2. (Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k,且12k k ,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求S O T ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y ab a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a ba b+=>>的离心率为,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,左、右焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率.38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>,直线y x =被椭圆C 截得的线段长为5. (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点. (ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .12短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x(Ⅰ) 求椭圆的方程;第20题图(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点. 若··8AC DB AD CB +=, 求k 的值.44.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.45.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMNk 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.48.(2011陕西)设椭圆C: ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =. (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果|AB |=154,求椭圆C 的方程.。
高中数学高考总复习椭圆习题及详解

高中数学高考总复习椭圆习题及详解一、选择题1.设0≤α<2π,假设方程x 2sin α-y 2cos α=1表示焦点在y 轴上椭圆,那么α取值范围是( )A.⎝ ⎛⎭⎪⎪⎫0,3π4∪⎝ ⎛⎭⎪⎪⎫7π4,2πB.⎣⎢⎢⎡⎭⎪⎪⎫π2,3π4 C.⎝ ⎛⎭⎪⎪⎫π2,3π4D.⎝ ⎛⎭⎪⎪⎫3π4,3π2 [答案] C[解析] 化为x21sin α+y2-1cos α=1,∴-1cos α>1sin α>0,应选C.2.(文)(2021·瑞安中学)双曲线C 焦点、顶点分别恰好是椭圆x225+y216=1长轴端点、焦点,那么双曲线C 渐近线方程为( )A .4x ±3y =0B .3x ±4y =0C .4x ±5y =0D .5x ±4y =0 [答案] A[解析] 由题意知双曲线C 焦点(±5,0),顶点(±3,0),∴a =3,c =5,∴b =c2-a2=4,∴渐近线方程为y =±43x ,即4x ±3y =0.(理)(2021·广东中山)假设椭圆x2a2+y2b2=1过抛物线y 2=8x焦点,且与双曲线x 2-y 2=1,有一样焦点,那么该椭圆方程是( )A.x24+y22=1B.x23+y 2=1C.x22+y24=1 D .x 2+y23=1[答案] A[解析] 抛物线y 2=8x 焦点坐标为(2,0),那么依题意知椭圆右顶点坐标为(2,0),又椭圆与双曲线x 2-y 2=1有一样焦点,∴a =2,c =2,∵c 2=a 2-b 2,∴b 2=2,∴椭圆方程为x24+y22=1.3.分别过椭圆x2a2+y2b2=1(a >b >0)左、右焦点F 1、F 2作两条互相垂直直线l 1、l 2,它们交点在椭圆内部,那么椭圆离心率取值范围是( )A .(0,1)B.⎝⎛⎭⎪⎪⎫0,22 C.⎝⎛⎭⎪⎪⎫22,1 D.⎝⎛⎦⎥⎥⎤0,22 [答案] B[解析] 依题意,结合图形可知以F 1F 2为直径圆在椭圆内部,∴c <b ,从而c 2<b 2=a 2-c 2,a 2>2c 2,即e 2=c2a2<12,又∵e >0,∴0<e <22,应选B.4.椭圆x2100+y264=1焦点为F 1、F 2,椭圆上点P 满足∠F 1PF 2=60°,那么△F 1PF 2面积是( )A.6433B.9133C.1633D.643[答案] A [解析]由余弦定理:|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=|F 1F 2|2.又|PF 1|+|PF 2|=20,代入化简得|PF 1|·|PF 2|=2563,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin60°=6433.5.(2021·济南市模拟)假设椭圆x2a2+y2b2=1(a >b >0)离心率为32,那么双曲线x2a2-y2b2=1渐近线方程为( )A .y =±12x B .y =±2xC .y =±4xD .y =±14x[答案] A[解析] ∵由椭圆离心率e =c a =32,∴c2a2=a2-b2a2=34,∴b a =12,故双曲线渐近线方程为y =±12x ,选A.6.(文)(2021·南昌市模考)椭圆E 短轴长为6,焦点F 到长轴一个端点距离等于9,那么椭圆E 离心率等于( )A.513B.1213C.35D.45 [答案] A[解析] 设椭圆长半轴长,短半轴长,半焦距分别为a 、b 、c ,那么由条件知,b =6,a +c =9或a -c =9,又b 2=a 2-c 2=(a +c )(a -c )=36,故⎩⎪⎨⎪⎧a +c =9a -c =4,∴⎩⎪⎨⎪⎧a =132c =52,∴e =c a =513.(理)(2021·北京崇文区)点F ,A 分别是椭圆x2a2+y2b2=1(a >b >0)左焦点、右顶点,B (0,b )满足FB →·AB →=0,那么椭圆离心率等于( )A.3+12B.5-12C.3-12D.5+12[答案] B[解析] ∵FB →=(c ,b ),AB →=(-a ,b ),FB →·AB →=0, ∴-ac +b 2=0,∵b 2=a 2-c 2, ∴a 2-ac -c 2=0,∴e 2+e -1=0, ∵e >0,∴e =5-12.7.(2021·浙江金华)假设点P 为共焦点椭圆C 1与双曲线C 2一个交点,F 1、F 2分别是它们左、右焦点.设椭圆离心率为e 1,双曲线离心率为e 2,假设PF1→·PF2→=0,那么1e12+1e22=( ) A .2 B. 2 C. 3 D .3 [答案] A[解析] 设椭圆长半轴长为a ,双曲线实半轴长为a ′,焦距为2c ,那么由条件知||PF 1|-|PF 2||=2a ′,|PF 1|+|PF 2|=2a ,将两式两边平方相加得:|PF 1|2+|PF 2|2=2(a 2+a ′2),又|PF 1|2+|PF 2|2=4c 2,∴a 2+a ′2=2c 2, ∴1e12+1e22=1⎝ ⎛⎭⎪⎪⎫c a 2+1⎝ ⎛⎭⎪⎪⎫c a ′2=a2+a ′2c2=2. 8.(2021·重庆南开中学)椭圆x24+y22=1左右焦点分别为F 1、F 2,过F 2且倾角为45°直线l 交椭圆于A 、B 两点,以下结论中:①△ABF 1周长为8;②原点到l 距离为1;③|AB |=83;正确结论个数为( )A .3B .2C .1D .0 [答案] A[解析] ∵a =2,∴△ABF 1周长为|AB |+|AF 1|+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8,故①正确;∵F 2(2,0),∴l :y =x -2,原点到l 距离d =|-0-2|2=1,故②正确;将y =x -2代入x24+y22=1中得3x 2-42x =0,∴x 1=0,x 2=423,∴|AB |=1+12⎪⎪⎪⎪⎪⎪⎪⎪423-0=83,故③正确. 9.(文)(2021·北京西城区)圆(x +2)2+y 2=36圆心为M ,设A 为圆上任一点,N (2,0),线段AN 垂直平分线交MA 于点P ,那么动点P 轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 [答案] B[解析] 点P 在线段AN 垂直平分线上,故|PA |=|PN |,又AM 是圆半径,∴|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,P 轨迹是椭圆.(理)F 1、F 2是椭圆x2a2+y2b2=1(a >b >0)两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2外角平分线垂线,那么垂足Q 轨迹为( )A .圆B .椭圆C .双曲线D .抛物线 [答案] A[解析] ∵PQ 平分∠F 1PA ,且PQ ⊥AF 1, ∴Q 为AF 1中点,且|PF 1|=|PA |, ∴|OQ |=12|AF 2|=12(|PA |+|PF 2|)=a ,∴Q 点轨迹是以O 为圆心,a 为半径圆.10.(文)(2021·辽宁沈阳)过椭圆C :x2a2+y2b2=1(a >b >0)左顶点A 斜率为k 直线交椭圆C 于另一个点B ,且点B 在x 轴上射影恰好为右焦点F ,假设13<k <12,那么椭圆离心率取值范围是( )A.⎝ ⎛⎭⎪⎪⎫14,49 B.⎝⎛⎭⎪⎪⎫23,1 C.⎝ ⎛⎭⎪⎪⎫12,23D.⎝⎛⎭⎪⎪⎫0,12 [答案] C[解析] 点B 横坐标是c ,故B坐标⎝ ⎛⎭⎪⎪⎫c ,±b2a ,k ∈⎝ ⎛⎭⎪⎪⎫13,12,∴B ⎝⎛⎭⎪⎪⎫c ,b2a . 斜率k =b2a c +a =b2ac +a2=a2-c2ac +a2=1-e2e +1.由13<k <12,解得12<e <23. (理)(2021·宁波余姚)如果AB 是椭圆x2a2+y2b2=1任意一条与x 轴不垂直弦,O 为椭圆中心,e 为椭圆离心率,M 为AB 中点,那么k AB ·k OM 值为( )A .e -1B .1-eC .e 2-1 D .1-e 2[答案] C[解析] 设A (x 1,y 1),B (x 2,y 2),中点M (x 0,y 0),由点差法,x12a2+y12b2=1,x22a2+y22b2=1,作差得x1-x2x1+x2a2=y2-y1y2+y1b2,∴k AB ·k OM =y2-y1x2-x1·y1+y2x1+x2=-b2a2=c2-a2a2=e 2-1.应选C.二、填空题11.(文)过椭圆C :x2a2+y2b2=1(a >b >0)一个顶点作圆x 2+y2=b 2两条切线,切点分别为A ,B ,假设∠AOB =90°(O 为坐标原点),那么椭圆C 离心率为________.[答案] 22[解析] 因为∠AOB =90°,所以∠AOF =45°,所以ba =22,所以e 2=c2a2=a2-b2a2=1-b2a2=12,即e =22. (理)(2021·揭阳市模拟)假设椭圆x2a2+y2b2=1(a >b >0)与曲线x 2+y 2=a 2-b 2无公共点,那么椭圆离心率e 取值范围是________.[答案]⎝⎛⎭⎪⎪⎫0,22 [解析] 易知以半焦距c 为半径圆在椭圆内部,故b >c ,∴b 2>c 2,即a 2>2c 2,∴c a <22. 12.(2021·南充市)△ABC 顶点A (-4,0)与C (4,0),顶点B 在椭圆x225+y29=1上,那么sinA +sinC sinB =________.[答案] 54[解析] 易知A ,C 为椭圆焦点,故|BA |+|BC |=2×5=10,又AC =8,由正弦定理知,sinA +sinC sinB =|BA|+|BC||AC|=54.13.(文)假设右顶点为A 椭圆x2a2+y2b2=1(a >b >0)上存在点P (x ,y ),使得OP →·PA →=0,那么椭圆离心率范围是________.[答案] 22<e <1[解析] 在椭圆x2a2+y2a2=1上存在点P ,使OP →·PA →=0,即以OA 为直径圆与椭圆有异于A 公共点.以OA 为直径圆方程为x 2-ax +y 2=0与椭圆方程b 2x 2+a 2y 2=a 2b 2联立消去y 得(a 2-b 2)x 2-a 3x +a 2b 2=0,将a 2-b 2=c 2代入化为(x -a )(c 2x -ab 2)=0, ∵x ≠a ,∴x =ab2c2,由题设ab2c2<a ,∴a2-c2c2<1.即e >22,∵0<e <1,∴22<e <1.(理)A (4,0),B (2,2)是椭圆x225+y29=1内点,M 是椭圆上动点,那么|MA |+|MB |最大值是________.[答案] 10+210[解析] 如图,直线BF 与椭圆交于M 1、M 2.任取椭圆上一点M ,那么|MB |+|BF |+|MA |≥|MF |+|MA |=2a=|M 1A |+|M 1F |=|M 1A |+|M 1B |+|BF | ∴|MB |+|MA |≥|M 1B |+|M 1A |=2a -|BF |.同理可证|MB |+|MA |≤|M 2B |+|M 2A |=2a +|BF |, 10-210≤|MB |+|MA |≤10+210.14.(文)实数k 使函数y =cos kx 周期不小于2,那么方程x23+y2k =1表示椭圆概率为________.[答案] 12[解析] 由条件2π|k|≥2,∴-π≤k ≤π,当0<k ≤π且k ≠3时,方程x23+y2k =1表示椭圆,∴概率P =12.(理)(2021·深圳市调研)椭圆M :x2a2+y2b2=1(a >0,b >0)面积为πab ,M包含于平面区域Ω:⎩⎪⎨⎪⎧|x|≤2|y|≤3内,向Ω内随机投一点Q ,点Q 落在椭圆M 内概率为π4,那么椭圆M 方程为________.[答案] x24+y23=1[解析] 平面区域Ω:⎩⎪⎨⎪⎧|x|≤2|y|≤3是一个矩形区域,如下图,依题意及几何概型,可得πab 83=π4,即ab =2 3.因为0<a ≤2,0<b ≤3, 所以a =2,b = 3.所以,椭圆M 方程为x24+y23=1.三、解答题15.(文)(2021·山东济南市模拟)椭圆C :x2a2+y2b2=1(a >b >0)长轴长为4.(1)假设以原点为圆心、椭圆短半轴为半径圆与直线y =x +2相切,求椭圆C 焦点坐标;(2)假设点P 是椭圆C 上任意一点,过焦点直线l 与椭圆相交于M ,N 两点,记直线PM ,PN 斜率分别为k PM 、k PN ,当k PM ·k PN =-14时,求椭圆方程. [解析] (1)∵圆x 2+y 2=b 2与直线y =x +2相切, ∴b =21+1,得b = 2.又2a =4,∴a =2,a 2=4,b 2=2,c 2=a 2-b 2=2,∴两个焦点坐标为(2,0),(-2,0).(2)由于过原点直线l 与椭圆相交两点M ,N 关于坐标原点对称,不妨设:M (x 0,y 0),N (-x 0,-y 0),P (x ,y ),由于M ,N ,P 在椭圆上,那么它们满足椭圆方程, 即有x02a2+y02b2=1,x2a2+y2b2=1.两式相减得:y2-y02x2-x02=-b2a2.由题意可知直线PM 、PN 斜率存在,那么 k PM =y -y0x -x0,k PN =y +y0x +x0,k PM ·k PN =y -y0x -x0·y +y0x +x0=y2-y02x2-x02=-b2a2,那么-b2a2=-14,由a =2得b =1,故所求椭圆方程为x24+y 2=1.(理)(2021·北京东城区)椭圆C 中心在原点,一个焦点F (-2,0),且长轴长与短轴长比是2 3.(1)求椭圆C 方程;(2)设点M (m,0)在椭圆C 长轴上,点P 是椭圆上任意一点.当|MP→|最小时,点P 恰好落在椭圆右顶点,求实数m 取值范围. [解析] (1)设椭圆C 方程为x2a2+y2b2=1(a >b >0)由题意⎩⎪⎨⎪⎧a2=b2+c2a b =23c =2,解得a 2=16,b 2=12.所以椭圆C 方程为x216+y212=1.(2)设P (x ,y )为椭圆上动点,由于椭圆方程为x216+y212=1,故-4≤x ≤4.因为MP →=(x -m ,y ), 所以|MP →|2=(x -m )2+y 2 =(x -m )2+12×⎝⎛⎭⎪⎪⎫1-x216. =14x 2-2mx +m 2+12=14(x -4m )2+12-3m 2. 因为当|MP→|最小时,点P 恰好落在椭圆右顶点, 即当x =4时,|MP →|2取得最小值.而x ∈[-4,4],故有4m ≥4,解得m ≥1.又点M 在椭圆长轴上,即-4≤m ≤4. 故实数m 取值范围是m ∈[1,4].16.(2021·辽宁文,20)设F 1,F 2分别为椭圆C :x2a2+y2b2=1(a >b >0)左、右焦点,过F 2直线l 与椭圆C 相交于A ,B 两点,直线l 倾斜角为60°,F 1到直线l 距离为2 3.(1)求椭圆C 焦距;(2)如果AF2→=2F2B →,求椭圆C 方程.[解析] (1)设焦距为2c ,那么F 1(-c,0),F 2(c,0) ∵k l =tan60°=3∴l 方程为y =3(x -c ) 即:3x -y -3c =0 ∵F 1到直线l 距离为23 ∴|-3c -3c|32+-12=3c =23∴c =2∴椭圆C 焦距为4(2)设A (x 1,y 1),B (x 2,y 2)由题可知y 1<0,y 2>0 直线l 方程为y =3(x -2) 由⎩⎪⎨⎪⎧y =3x -2x2a2+y2b2=1消去x 得,(3a 2+b 2)y 2+43b 2y -3b 2(a 2-4)=0 由韦达定理可得⎩⎪⎨⎪⎧y1+y2=-43b23a2+b2 ①y1·y2=-3b2a2-43a2+b2②∵AF2→=2F2B →,∴-y 1=2y 2,代入①②得⎩⎪⎨⎪⎧-y2=-43b23a2+b2 ③-2y22=-3b2a2-43a2+b2④③2④得12=48b43a2+b22·3a2+b23b2a2-4=16b23a2+b2a2-4⑤又a2=b2+4 ⑥由⑤⑥解得a2=9 b2=5∴椭圆C方程为x29+y25=1.17.(文)(2021·安徽文)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=12.(1)求椭圆E方程;(2)求∠F1AF2角平分线所在直线方程.[解析] (1)由题意可设椭圆方程为x2a2+y2b2=1(a>b>0)∵e=12,即ca=12,∴a=2c又b2=a2-c2=3c2∴椭圆方程为x24c2+y23c2∵椭圆过点A(2,3)∴44c2+93c2=1,解得c2=4,∴椭圆方程为x216+y212=1.(2)法一:由(1)知F1(-2,0),F2(2,0),∴直线AF1方程y=34(x+2),即3x-4y+6=0,直线AF2方程为x=2.设P (x ,y )为角平分线上任意一点,那么点P 到两直线距离相等.即|3x -4y +6|5=|x -2|∴3x -4y +6=5(x -2)或3x -4y +6=5(2-x ) 即x +2y -8=0或2x -y -1=0.由图形知,角平分线斜率为正数,故所求∠F 1AF 2平分线所在直线方程为2x -y -1=0.法二:设AM 平分∠F 1AF 2,那么直线AF 1与直线AF 2关于直线AM 对称.由题意知直线AM 斜率存在且不为0,设为k . 那么直线AM 方程y -3=k (x -2). 由(1)知F 1(-2,0),F 2(2,0),∴直线AF 1方程为y =34(x +2),即3x -4y +6=0设点F 2(2,0)关于直线AM 对称点F 2′(x 0,y 0),那么⎩⎪⎨⎪⎧y0x0-2=-1ky02-3=kx0+22-2解之得F 2′(-6k +2k2+21+k2,61+k2).∵直线AF 1与直线AF 2关于直线AM 对称, ∴点F 2′在直线AF 1上.即3×-6k +2k2+21+k2-4×61+k2+6=0.解得k =-12或k =2.由图形知,角平分线所在直线方程斜率为正, ∴k =-12(舍去).故∠F 1AF 2角平分线所在直线方程为2x -y -1=0. 法三:∵A (2,3),F 1(-2,0),F 2(2,0), ∴AF1→=(-4,-3),AF2→=(0,-3), ∴AF1→|AF2→|+AF2→|AF2→|=15(-4,-3)+13(0,-3)=-45(1,2),∴k l =2,∴l :y -3=2(x -2),即2x -y -1=0.[点评] 因为l 为∠F 1AF 2平分线,∴AF1→与AF2→单位向量与与l 共线.从而可由AF1→、AF2→单位向量求得直线l 一个方向向量,进而求出其斜率.(理)(2021·湖北黄冈)点A (1,1)是椭圆x2a2+y2b2=1(a >b >0)上一点,F 1,F 2是椭圆两焦点,且满足|AF 1|+|AF 2|=4.(1)求椭圆两焦点坐标;(2)设点B 是椭圆上任意一点,如果|AB |最大时,求证A 、B 两点关于原点O 不对称;(3)设点C 、D 是椭圆上两点,直线AC 、AD 倾斜角互补,试判断直线CD 斜率是否为定值?假设是定值,求出定值;假设不是定值,说明理由.[解析] (1)由椭圆定义知:2a =4, ∴a =2,∴x24+y2b2=1把(1,1)代入得14+1b2=1∴b 2=43,那么椭圆方程为x24+y243=1∴c 2=a 2-b 2=4-43=83,∴c =263故两焦点坐标为⎝ ⎛⎭⎪⎪⎫263,0,⎝⎛⎭⎪⎪⎫-263,0.(2)用反证法:假设A 、B 两点关于原点O 对称,那么B 点坐标为(-1,-1),此时|AB |=22,取椭圆上一点M (-2,0),那么|AM |=10∴|AM |>|AB |.从而此时|AB |不是最大,这与|AB |最大矛盾,所以命题成立.(3)设AC 方程为:y =k (x -1)+1 联立⎩⎪⎨⎪⎧y =k x -1+1x24+3y24=1消去y 得(1+3k 2)x 2-6k (k -1)x +3k 2-6k -1=0∵点A (1,1)在椭圆上 ∴x C =3k2-6k -13k2+1∵直线AC 、AD 倾斜角互补 ∴AD 方程为y =-k (x -1)+1 同理x D =3k2+6k -13k2+1又y C =k (x C -1)+1,y D =-k (x D -1)+1y C -y D =k (x C +x D )-2k所以k CD =yC -yD xC -xD =13即直线CD 斜率为定值13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题9.3 椭圆
1.(浙江高考真题)椭圆的离心率是( ) A B C .
D .
2.(2019·北京高考真题)已知椭圆22
22 1x y a b
+=(a >b >0)的离心率为12,则( )
A .a 2=2b 2
B .3a 2=4b 2
C .a =2b
D .3a =4b
3.(上海高考真题)设p 是椭圆22
12516
x y
+
=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )
A.4
B.5
C.8
D.10
4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),
且C 的离心率为
1
2
,则C 的方程是( ) A .22143x y +=
B .22
186
x y +
C .22
142
x y +=
D .22
184
x y +=
5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()22
2210x y a b a b
+=>>,焦
距为2c ,直线:4
l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) A .
2
B .
34
C .
12
D .
14
6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆
22
11615
y x +=的上、下焦点,在椭圆上是否存在点P ,使11PF ,12
1F F ,21
PF 成等差数列?若存在求出1PF 和2PF 的值;若不存
在,请说明理由.
22
194
x y +=23
59
练基础
7.(2021·全国高三专题练习)设F 是椭圆22
176x y +=的右焦点,且椭圆上至少有21个不同
的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.
8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆22
12516
x y +=的右焦点,点M 在
椭圆上移动时,求2AM MF +的最大值;
9.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>
点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;
(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.
10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()
22
2210x y a b a b +=>>两个焦点,且2259a b =. (1)求此椭圆的方程;
(2)设点P 在椭圆上,且123
F PF π
∠=
,求12F PF △的面积.
1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆222
2:C x y b +=,若在
椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭
B .⎣⎦
C .⎫
⎪⎪⎣⎭ D .⎫
⎪⎣⎭
2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22
221x y a b
+=(0a b >>)的
左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.
3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆22
22:1(0)x y C a b a b
+=>>的左、右焦
点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B
=,则k =___. 练提升
4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆
()2
22
11x y a a
+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.
5.(2020·浙江高三月考)已知P 是椭圆22
2211
1x y a b +=(110>>a b )和双曲线2222221
x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123
F PF π
∠=
,则12e e ⋅的最小值为________.
6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离
心率时,该直线便是椭圆的准线.过椭圆2
214
x y +=上任意一点P ,做椭圆的右准线的垂线
PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.
7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =
知点30,2P ⎛⎫
⎪⎝⎭
,求椭圆方程,并求椭圆上到点O 的距离
的点的坐标.
8.(2021·全国高三专题练习)椭圆22
194x y +=的焦点为1F 、2F ,点P 为其上动点,当12
F PF ∠为钝角时,求点P 横坐标的取值范围.
9.(2021·全国)(1)已知1F ,2F 是椭圆22
110064x y +=的两个焦点,P 是椭圆上一点,
求12PF PF ⋅的最大值;
(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.
10.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l
经过椭圆C 的右焦点F 与上顶点,原点O 到直线l 的距离为2
. (1)求椭圆C 的方程;
(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足
26
3
MN OP =
,求直线n 的斜率.
1.(2021·全国高考真题(理))设B 是椭圆22
22:1(0)x y C a b a b +=>>的上顶点,若C 上的任意
一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( ) A .⎫
⎪⎪⎣⎭
B .1,12⎡⎫
⎪⎢⎣⎭
C .⎛ ⎝⎦
D .10,2⎛⎤
⎥⎝⎦
2.(2018·全国高考真题(理))已知,是椭圆的左,右焦
点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为( )
A .
B .
C .
D .
3.(2019·全国高考真题(文))已知椭圆C 的焦点为,过F 2的直线与
C 交于A ,B 两点.若,,则C 的方程为( )
A. B. C.
D. 4.(2019·全国高考真题(文))设为椭圆的两个焦点,为上
一点且在第一象限.若为等腰三角形,则的坐标为___________.
5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3a
b ;
(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.
6. (2020·天津高考真题)已知椭圆22
221(0)x y a b a b
+=>>的一个顶点为(0,3)A -,右焦
点为F ,且||||OA OF =,其中O 为原点.
1F 2F 22
221(0)x y C a b a b
+=>>:A C P A 6
12PF F △12120F F P ∠=︒C 23
12
13
14
121,01,0F F -(),()222AF F B =││││1AB BF =││││22
12
x y +=22132x y +=22
143x y +=22
154
x y +=12F F ,22
:+13620
x y C =M C 12MF F △M 练真题
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点C满足3OC OF
,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆心的圆相切于点P,且P为线段AB的中点.求直线AB的方程.。