高中椭圆基础知识专题练习题(有答案!)

合集下载

高二数学--椭圆训练试卷(含答案)

高二数学--椭圆训练试卷(含答案)

高二数学椭圆一.选择题1.椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为,则的值为()A.B.C.D.2.已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(1,+∞)C.(1,2)D.3.椭圆x2+4y2=1的离心率为()A.B.C.D.4.椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.5.以两条坐标轴为对称轴的椭圆过点P(,﹣4)和Q(﹣,3),则此椭圆的方程是()A.+y2=1 B.x2+=1C.+y2=1或x2+=1D.以上均不对6.已知P为椭圆+=1上的点,F1、F2为其两焦点,则使∠F1PF2=90°的点P有()A.4个B.2个C.1个D.0个7.椭圆4x2+9y2=1的焦点坐标是()A.(±,0)B.(0,±)C.(±,0)D.(±,0)8.若椭圆2kx2+ky2=1的一个焦点坐标是(0,4),则实数k的值为()A.B.﹣C.D.﹣9.已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A.9B.7C.5D.3二.填空题(共6小题)10.(2009•湖北模拟)如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点,则这个椭圆的焦距长为_________.11.若P是椭圆+=1上任意一点,F1、F2是焦点,则∠F1PF2的最大值为_________.12.F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,则|PF1|•|PF2|有最_________值为_________.13.经过两点P1(),P2(0,)的椭圆的标准方程_________.14.已知焦距为8,离心率为0.8,则椭圆的标准方程为_________.15.点P在椭圆+=1上,F1,F2是椭圆的焦点,若PF1⊥PF2,则点P的坐标是_________.三.解答题(共5小题)16.已知椭圆的中心在坐标原点,焦点在x轴上,离心率为,且过点(1,2),求椭圆的标准方程.17.已知中心在原点,长轴在x轴上的椭圆的两焦点间的距离为,若椭圆被直线x+y+1=0截得的弦的中点的横坐标为﹣,求椭圆的方程.18.已知椭圆的焦点在x轴上,离心率为,且过点P(1,),求该椭圆的方程.19.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.20.已知椭圆两焦点的坐标分别是(﹣2,0),(2,0),并且经过点(2,),求椭圆方程.21.已知:△ABC的一边长BC=6,周长为16,求顶点A的轨迹方程.参考答案与试题解析一.选择题(共9小题)1.(2015•兴国县一模)椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为,则的值为()A.B.C.D.考点:椭圆的简单性质.专题:综合题.分析:联立椭圆方程与直线方程,得ax2+b(1﹣x)2=1,(a+b)x2﹣2bx+b﹣1=0,A(x1,y1),B(x2,y2),由韦达定理得AB中点坐标:(),AB中点与原点连线的斜率k===.解答:解:联立椭圆方程与直线方程,得ax2+b(1﹣x)2=1,(a+b)x2﹣2bx+b﹣1=0,A(x1,y1),B(x2,y2),,y1+y2=1﹣x1+1﹣x2=2﹣=,AB中点坐标:(),AB中点与原点连线的斜率k===.故选A.点评:本题考查直线和圆锥曲线的经综合运用,解题时要认真审题,仔细解答,注意合理地进行等价转化.2.(2012•香洲区模拟)已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(1,+∞)C.(1,2)D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得焦点在y轴上的椭圆方程中,x2、y2的分母均为正数,且y2的分母较大,由此建立关于k的不等式组,解之即得实数k的取值范围.解答:解:∵方程表示焦点在y轴上的椭圆,∴,解之得1<k<2实数k的取值范围是(1,2)故选:C点评:本题给出标准方程表示焦点在y轴上的椭圆,求参数k的取值范围,着重考查了椭圆的标准方程的概念,属于基础题.3.(2007•安徽)椭圆x2+4y2=1的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:综合题.分析:把椭圆的方程化为标准方程后,找出a与b的值,然后根据a2=b2+c2求出c的值,利用离心率公式e=,把a与c的值代入即可求出值.解答:解:把椭圆方程化为标准方程得:x2+=1,得到a=1,b=,则c==,所以椭圆的离心率e==.故选A点评:此题考查学生掌握椭圆的离心率的求法,灵活运用椭圆的简单性质化简求值,是一道综合题.4.(2006•东城区二模)椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.考点:椭圆的简单性质;点到直线的距离公式.专题:计算题.分析:根据题意,可得右焦点F(1,0),由点到直线的距离公式,计算可得答案.解答:解:根据题意,可得右焦点F(1,0),y=x可化为y﹣x=0,则d==,故选B.点评:本题考查椭圆的性质以及点到直线的距离的计算,注意公式的准确记忆.5.以两条坐标轴为对称轴的椭圆过点P(,﹣4)和Q(﹣,3),则此椭圆的方程是()A.+y2=1 B.x2+=1C.+y2=1或x2+=1D.以上均不对考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设经过两点P(,﹣4)和Q(﹣,3),的椭圆标准方程为mx2+ny2=1(m>0,n>0,m≠n),利用待定系数法能求出椭圆方程.解答:解:设经过两点P(,﹣4)和Q(﹣,3),的椭圆标准方程为mx2+ny2=1(m>0,n>0,m≠n),代入A、B得,,解得m=1,n=,∴所求椭圆方程为x2+=1.故选:B.点评:本题考查椭圆标准方程的求法,是中档题,解题时要认真审题,注意椭圆简单性质的合理运用.6.已知P为椭圆+=1上的点,F1、F2为其两焦点,则使∠F1PF2=90°的点P有()A.4个B.2个C.1个D.0个考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得出a、b、c的值,由∠F1PF2=90°得出点P在以F1F2为直径的圆(除F1、F2),且r<b,得出圆在椭圆内,点P不存在.解答:解:∵椭圆+=1中,a=4,b=2,∴c==2;∴焦点F1(﹣2,0),F2(2,0);又∵∠F1PF2=90°,∴点P在以F1F2为直径的圆x2+y2=4上(除F1、F2),又∵r=2<2=b,∴圆被椭圆内含,点P不存在.点评:本题考查了椭圆的标准方程与圆的标准方程的应用问题,解题时应灵活利用∠F1PF2=90°,是基础题.7.椭圆4x2+9y2=1的焦点坐标是()A.(±,0)B.(0,±)C.(±,0)D.(±,0)考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:把椭圆方程化为标准方程,再利用c=即可得出.解答:解:椭圆4x2+9y2=1化为,∴a2=,b2=,∴c==∴椭圆的焦点坐标为(±,0).故选:C.点评:熟练掌握椭圆的标准方程及其性质是解题的关键.8.若椭圆2kx2+ky2=1的一个焦点坐标是(0,4),则实数k的值为()A.B.﹣C.D.﹣考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦点坐标为(0,4)可得k>0,化椭圆方程为标准式,求出c,再由c=4得答案.解答:解:由2kx2+ky2=1,得,∵椭圆2kx2+ky2=1的一个焦点坐标是(0,4),∴,,则,.∴,解得.故选:C.点评:本题考查了椭圆的简单几何性质,考查了椭圆的标准方程,是基础题.9.已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A.9B.7C.5D.3考点:椭圆的简单性质;椭圆的定义.专题:综合题.分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为3,求出P到另一焦点的距离即可.解答:解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为3,由定义得点P到另一焦点的距离为2a﹣3=10﹣3=7.故选B点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.二.填空题(共6小题)10.(2009•湖北模拟)如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点,则这个椭圆的焦距长为.考点:椭圆的简单性质.专题:计算题.分析:设另一焦点为D,则可再Rt△ABC中,根据勾股定理求得BC,进而根据椭圆的定义知AC+AB+BC=4a求得a.再利用AC+AD=2a求得AD最后在Rt△ACD中根据勾股定理求得CD,得到答案.解答:解析:设另一焦点为D,∵Rt△ABC中,AB=AC=1,∴BC=∵AC+AD=2a,AC+AB+BC=1+1+=4a,∴a=又∵AC=1,∴AD=.在Rt△ACD中焦距CD==.故答案为:.点评:本题主要考查了椭圆的简单性质和解三角形的应用.要理解好椭圆的定义和椭圆中短轴,长轴和焦距的关系.11.若P是椭圆+=1上任意一点,F1、F2是焦点,则∠F1PF2的最大值为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先根据椭圆方程求得a和b的大小,进而利用椭圆的基本性质,确定最大角的位置,求出∠F1PF2的最大值.解答:解:根据椭圆的方程可知:+=1,∴a=2,b=,c=1,由椭圆的对称性可知,∠F1PF2的最大时,P在短轴端点,此时△F1PF2是正三角形,∴∠F1PF2的最大值为.故答案为:.点评:本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.12.F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,则|PF1|•|PF2|有最大值为16.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用椭圆的定义,可得|PF1|+|PF2|=2a=8,再由基本不等式,即可求得|PF1|•|PF2|的最大值.解答:解:椭圆+=1的a=4,则|PF1|+|PF2|=2a=8,则|PF1|•|PF2|≤()2=16,当且仅当|PF1|=|PF2|=4,则|PF1|•|PF2|有最大值,且为16.故答案为:大,16点评:本题考查椭圆的定义和性质,考查基本不等式的运用:求最值,考查运算能力,属于基础题.13.经过两点P1(),P2(0,)的椭圆的标准方程=1.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),把两点P1(),P2(0,)代入,能求出结果.解答:解L:设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n)把两点P1(),P2(0,)代入,得:,解得m=5,n=4,∴椭圆方程为5x2+4y2=1,即=1.故答案为:=1.点评:本题考查椭圆的标准方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.14.已知焦距为8,离心率为0.8,则椭圆的标准方程为,或.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦距是8,离心率0.8,先求出a=5,c=4,b,由此能求出椭圆的标准方程.解答:解:∵椭圆的焦距是8,离心率0.6,∴,解得a=5,c=4,b2=25﹣16=9,∴椭圆的标准方程为,或.故答案为:,或.点评:本题考查椭圆的标准方程的求法,是基础题,解题时要避免丢解.15.点P在椭圆+=1上,F1,F2是椭圆的焦点,若PF1⊥PF2,则点P的坐标是(3,4),(3,﹣4),(﹣3,4),(﹣3,﹣4).考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆方程求出椭圆的焦点坐标,根据PF1⊥PF2得=0,与椭圆方程联立解得即可.解答:解:由椭圆+=1,得F1(﹣5,0),F2(5,0)设P(x,y),=0,①即(x+5)(x﹣5)+y2=0因为P在椭圆上,所以+=1,②两式联立可得x=±3,∴P(3,4),P(3,﹣4),P(﹣3,4),P(﹣3,﹣4)故答案为:P(3,4),P(3,﹣4),P(﹣3,4),P(﹣3,﹣4).点评:本题主要考查了椭圆的几何性质,向量的应用.三.解答题(共5小题)16.已知椭圆的中心在坐标原点,焦点在x轴上,离心率为,且过点(1,2),求椭圆的标准方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先假设椭圆的方程,再利用的椭圆C的离心率为,且过点(1,2),即可求得椭圆C的方程.解答:解:设椭圆方程为,椭圆的半焦距为c,∵椭圆C的离心率为,∴,∴,①∵椭圆过点(1,2),∴②由①②解得:b2=,a2=49∴椭圆C的方程为.点评:本题重点考查椭圆的标准方程,考查椭圆的性质,解题的关键是待定系数法.17.已知中心在原点,长轴在x轴上的椭圆的两焦点间的距离为,若椭圆被直线x+y+1=0截得的弦的中点的横坐标为﹣,求椭圆的方程.考点:椭圆的标准方程.分析:首先,设椭圆的标准方程为:=1 (a>b>0),然后,设出直线与椭圆的两个交点坐标,然后,将这两个交点坐标代入椭圆方程,两个方程相减,得到关于a,b的一个方程,再结合给定的a,c的关系式,求解即可.解答:解:设椭圆的标准方程为:=1(a>b>0),∵椭圆被直线x+y+1=0截得的弦的中点的横坐标是﹣,∴弦的中点的纵坐标是﹣,设椭圆与直线x+y+1=0的两个交点为P(x1,y1),Q(x2,y2).则有+=1 ①+=1 ②①﹣②,化简得+=0 ③x1+x2=2×(﹣)=﹣,y1+y2=2×()=﹣,且=﹣1,∴由③得a2=2b2,又由题意2c=,有c=,则可求得c2==b2,a2=,∴椭圆的标准方程为:+=1.点评:本题重点考查了椭圆的几何性质、标准方程、直线与椭圆的位置关系等知识,属于中档题,涉及到弦的中点问题,处理思路是“设而不求”的思想.18.已知椭圆的焦点在x轴上,离心率为,且过点P(1,),求该椭圆的方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为(a>b>0),由已知得,由此能求出椭圆方程.解答:解:设椭圆方程为(a>b>0),由已知得,解得,b2=1,∴椭圆方程为.点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.19.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.考点:椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由离心率公式,求得c,再由a,b,c的关系,求得b,即可得到椭圆方程;(2)由离心率公式,求得a,再由a,b,c的关系,求得b,即可得到椭圆方程.解答:解:(1)a=6,e=,即,解得c=2,b2=a2﹣c2=32,则椭圆的标准方程为:=1;(2)c=3,e=,即,解得,a=5,b2=a2﹣c2=25﹣9=16.则椭圆的标准方程为:=1.点评:本题考查椭圆的性质和方程,考查运算能力,属于基础题.20.已知椭圆两焦点的坐标分别是(﹣2,0),(2,0),并且经过点(2,),求椭圆方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析: 直接根据焦点的坐标设出椭圆的方程,再根据点的坐标求出结果. 解答: 解:椭圆两焦点的坐标分别是(﹣2,0),(2,0), 所以:设椭圆的方程为:由于:椭圆经过点(2,), 则:, 且a 2=b 2+4, 则:, 解得:. 椭圆方程为:.点评: 本题考查的知识要点:椭圆方程的求法,属于基础题型.21. 以BC 边为x 轴,BC 线段的中垂线为y 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:116y 25x 22=+。

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题.椭圆中心在坐标原点,对称轴为坐标轴,离心率为,长、短轴之和为,则椭圆方程为.16410022=+y x .11006422=+y x .1100641641002222=+=+y x y x 或 .110818102222=+=+y x y x 或 .若方程+=,表示焦点在轴上的椭圆,那么实数的取值范围是 .(,+∞) .(,) .(,+∞) .(,).已知圆+=,又(3,),为圆上任一点,则的中垂线与之交点轨迹为(为原点) .直线.圆.椭圆.双曲线二、填空题.设椭圆1204522=+y x 的两个焦点为、,为椭圆上一点,且⊥,则-=. .(年全国高考题)椭圆的一个焦点是(,),那么. 三、解答题.椭圆2222by a x +(>>)()、′()()为椭圆的右焦点,若直线⊥′,求椭圆的离心率..在面积为的△中,21,建立适当的坐标系,求以、为焦点且过点的椭圆方程..如图,从椭圆2222by a x +=(>>)上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴的端点的连线∥.()求椭圆的离心率;()设是椭圆上任意一点,是右焦点,求∠的取值范围;()设是椭圆上一点,当⊥时,延长与椭圆交于另一点,若△的面积为3,求此时椭圆的方程.参考答案一、 二、5,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(-)-×. -5. 三、.215- .以所在直线为轴,线段的中垂线为轴建立坐标系,可得椭圆方程为.1315422=+y x .()22 ()[,2π] ()1255022=+y x 提示:()∵⊥轴,∴-,代入椭圆方程求得a b 2,∴-,,2ab k ac b AB -= ∵∥,∴-c b abac b =⇒-=2 从而22. ()设,∠θ,则2a 1F 2c.由余弦定理,得θ212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当时,上式取等号.∴≤θ≤,θ∈[,2π]. ()椭圆方程可化为122222=+cy c x ,又⊥,∴-.21==bak AB2(-)代入椭圆方程,得-2c .求得,526c 到的距离为,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则2. 椭圆的准线方程是3. 已知、为椭圆192522=+y x 的两个焦点,、为过的直线与椭圆的两个交点,则△的周长是 4. 椭圆12222=+by a x ()0>>b a 上有一点到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则点的坐标是5. 椭圆12222=+b y a x 焦点为、,是椭圆上的任一点,为 的中点,若 的长为,那么的长等于6. 过椭圆1273622=+y x 的一个焦点作与椭圆轴不垂直的弦,的垂直平分线交于,交轴于,则FN :AB7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是,则椭圆的方程是 8. 方程1162522=++-my m x 表示焦点在轴上的椭圆,则的值是 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是10. 椭圆142222=+by b x 上一点到右焦点的距离为,则点到左准线的距离是11. 椭圆⎪⎭⎫⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是 12. 曲线()023122=+--+m my y m x 表示椭圆,那么的取值是13. 椭圆13422=+y x 上的一点()11,y x A ,点到左焦点的距离为25,则 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是15. 椭圆中心在原点,焦点在轴上,两准线的距离是5518,焦距为52,其方程为 16. 椭圆上一点与两个焦点、所成的∆1F 中,βα=∠=∠1221,F PF F PF ,则它的离心率17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则α的取值是18. 若()()065562222=--+-λλλλy x 表示焦点在轴上的椭圆,则λ的值是19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫ ⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x20. 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的倍,则点的坐标是21. 中心在原点,对称轴在坐标轴上,长轴为短轴的倍,且过()6,2-的椭圆方程是 22. 在面积为的△中,2tan ,21tan -==N M ,那么以、为焦点且过的椭圆方程是 23. 已知△,()()0,3,0,3-B A 且三边、、的长成等差数列,则顶点的轨迹方程是24. 椭圆1422=+y m x 的焦距为,则的值是 25. 椭圆14922=+y x 的焦点到准线的距离是 26. 椭圆()112222=-+m y m x 的准线平行于轴,则的值是 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是 28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为的三角形,两准线间的距离是225,则此椭圆方程是 31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转︒,所得椭圆方程是 33. 椭圆192522=+y x 上一点到右准线的距离是,那么点右焦半径是34. 是椭圆14322=+y x 的长轴,是一个焦点,过的每一个十等分点作的垂线,交椭圆同一侧于点,,,⋅⋅⋅⋅⋅⋅,,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是 35. 中心在原点,一焦点为(,),长短轴长度比为,则此椭圆方程是 36. 若方程222x ky +=表示焦点在轴的椭圆,则的取值是37. 椭圆221123x y +=的焦点为、,点为椭圆上一点,若线段的中点在轴上,那么1PF :2PF38. 经过)()122,M M --两点的椭圆方程是39. 以椭圆的右焦点(为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于、,若直线是圆的切线,则椭圆的离心率是40. 椭圆的两个焦点、及中心将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是41. 点(),0a 到椭圆2212x y +=上的点之间的最短距离是 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则的取值是 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则的值是 44. 设是椭圆上一点,两个焦点、,如果00211275,15PF F PF F ∠=∠=,则离心率等于45. 是椭圆22143x y +=上任一点,两个焦点、,那么12F PF ∠的最大值是 46. 椭圆2244x y +=长轴上一个顶点为,以为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是47. 椭圆长轴长为,焦距,过焦点作一倾角为α的直线交椭圆于、两点,当MN 等于短轴长时,α的值是48. 设椭圆22143x y +=的长轴两端点、,点在椭圆上,那么直线与的斜率之积是 49. 倾斜角为4π的直线与椭圆2214x y +=交于、两点,则线段的中点的轨迹方程是 50. 已知点(,)是椭圆上的一点,是椭圆上任一点,当弦长取最大值时,点的坐标是椭圆训练题答案. 544-或 . 1y =± . 20 . ()()0,0,b b -或 . 2sa - . 1:4 . 2222119559x y x y +=+=或 .9252m <<. 3.. (0, . ()1,+∞ . 1. ()()1,1.22194x y+= . cos2cos2αβαβ+- .()37,,88k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.). 8. 1515,44⎛⎛ ⎝⎭⎝⎭或.222211148371352x y x y +=+=或 . 2241153x y += . 2213627x y += . 53或. . 102m m <≠且 . 22143x y +=. .2212575x y += . 222211259925x y x y +=+=或 .2211510x y += . ()()22441925x y +-+= . 6. 20.222221111x y t t t +=-- . ()0,1 . 7 . 221155x y +=.1 .2π. a a +. 3⎤⎥⎣⎦. ≥且≠.3 . ︒ . 1625 . 566ππ或 . 34-. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭.13⎛⎫- ⎪ ⎪⎝⎭椭圆训练试卷一、选择题:本大题共小题,每小题分,共分.请将唯一正确结论的代号填入题后的括号内..椭圆3m 2y mx 222++=1的准线平行于轴,则实数的取值范围是 ( ).-1<<3 .-23<<且≠.-1<<3且≠.<-且≠. 、、、分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( ).22a b.ba 2.ca 2.cb 2.短轴长为5,离心率为32的椭圆的两个焦点分别为、,过作直线交椭圆于、两点,则Δ的周长为 ( ). . . ..下列命题是真命题的是( ).到两定点距离之和为常数的点的轨迹是椭圆.到定直线ca 2和定(,)的距离之比为ac 的点的轨迹是椭圆.到定点(,)和定直线ca 2的距离之比为ac(>>)的点的轨迹 是左半个椭圆.到定直线ca 2和定点(,)的距离之比为ca (>>)的点的轨迹是椭圆.是椭圆4x 23y 2上任意一点,、是焦点,那么∠的最大值是( )..300...椭圆22b 4x 22b y 上一点到右准线的距离是3,则该点到椭圆左焦点的距离是( )..23.3 ..椭圆12x 23y 2的焦点为和,点在椭圆上,如果线段的中点在轴上,那么是的( ).倍.倍.倍.倍.设椭圆22ax 22b y (>>)的两个焦点是和,长轴是1A ,是椭圆上异于、的点,考虑如下四个命题: ①1F 1F ; ②<<;③若越接近于,则离心率越接近于; ④直线与的斜率之积等于22a b .其中正确的命题是 ( ) .①②④ .①②③ .②③④ .①④.过点M(-2,0)的直线与椭圆+=交于P1、P2两点,线段P1P2的中点为P,设直线的斜率为(≠),直线OP的斜率为,则的值为 ( ) .2.-2.21.-21 .已知椭圆22a x 22by (>>)的两顶点(,)、(,),右焦点为,且到直线的距离等于到原点的距离,则椭圆的离心率满足 ( ).<<22.22<<. <<2.2<<.设F1、F2是椭圆2222b y ax=1(>>)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( ).2-3.3-1.23 .22.在椭圆4x 23y 2内有一点(,),为椭圆右焦点,在椭圆上有一点,使的值最小,则这一最小值是` ( ).25.27 . .二、填空题:本大题共小题,每小题分,共分.请将最简结果填入题中的横线上..椭圆3x 2ky 2的离心率是的根,则 ..如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 ..过椭圆3y 2x 22+=1的下焦点,且与圆+-++23=相切的直线的斜率是 . .过椭圆9x25y 2的左焦点作一条长为12的弦,将椭圆绕其左准线旋转一周,则弦扫过的面积为 .三、解答题:本大题共小题,共分.解答题应写出必要的计算步骤或推理过程. .(本小题满分分)已知、为椭圆22a x 22a 9y 25上两点,为椭圆的右焦点,若58,中点到椭圆左准线的距离为23,求该椭圆方程. .(本小题满分分)设中心在原点,焦点在轴上的椭圆的离心率为23,并且椭圆与圆25交于、两点,若线段的长等于圆的直径. (1) 求直线的方程; (2) 求椭圆的方程. .(本小题满分分)已知9x 25y 2的焦点、,在直线:上找一点,求以、为焦点,通过点且长轴最短的椭圆方程..(本小题满分分)一条变动的直线与椭圆4x 22y 2交于、两点,是上的动点,满足关系·.若直线在变动过程中始终保持其斜率等于.求动点的轨迹方程,并说明曲线的形状. .(本小题满分分)设椭圆22a x 22by 的两焦点为、,长轴两端点为、.(1) 是椭圆上一点,且∠,求Δ的面积;(2) 若椭圆上存在一点,使∠,求椭圆离心率的取值范围..(本小题满分分)已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线-+2=的距离为3. ()求椭圆的方程;()设椭圆与直线=+(≠)相交于不同的两点M、N,当|AM|=|AN|时,求的取值范围.椭圆训练试卷参考答案一、 D 二、.或49.12y 8x 22=+.5623±.π三、.解:设(,),(,),由焦点半径公式有58,∴21(∵54),即中点横坐标为41,又左准线方程为45,∴414523,即,∴椭圆方程为925..解:()直线的方程为21; ()所求椭圆的方程为12x 23y 2..解:由9x25y 2,得(,),(,),关于直线的对称点(,),连交于一点,即为所求的点,∴2a 5,∴5,又,∴,故所求椭圆方程为20x 216y 2..解:设动点(,),动直线:,并设(,),(,)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去,得2m 2,其Δ16m 2(2m 2)>,∴6<<6,3m4, 34m 22-,故2,2.由,得,也即(),于是有3mx434m 22-.∵,∴.由,得椭圆7x 27y 22夹在直线±6间两段弧,且不包含端点.由,得椭圆..解:()设,,则21F PF ∆21∠,由2a , 4c∠,得212PF F cos 1b 2∠+.代入面积公式,得 21F PF ∆2121PF F cos 1PF F sin ∠+∠∠2PF F 2133.()设∠α,∠β,点(,)(<<).θ(αβ)βα-β+αtg tg 1tg tg22020000y x a 1y x a y x a --++-220200a y x ay 2-+.∵220a x 220b y ,∴22b a .∴θ202220y b b a ay 2-- 022y c ab 2-3.∴≤3≤3, 即3c4a 2c-4a≥,∴≥,解之得≥32,∴36≤<为所求. .解:()用待定系数法.椭圆方程为22y 3x +=1.()设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(+)++(-)=.由Δ>0,得<+ ①,∴=1k 3mk 32x x 2N M +-=+,从而,=+=1k 3m 2+.∴=km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =+ ②.将②代入①,得2m >,解得0<<.由②得=31m 2->0.解得>21.故所求的取值范围为(21,2).。

高中椭圆基础练习题答案

高中椭圆基础练习题答案

、选择题:1•下列方程表示椭圆的是()2 26.如果x ^ ― 1表示焦点在x 轴上的椭圆,则实数 a 的取值范围为()a 2 a +2A.(-2, ::)B. -2,-1 一 2, ::C.(」:,-1)_. (2, ::)D.任意实数 R7. “m>n>0”是“方程 mx 2 • ny 2 =1表示焦点在y 轴上的椭圆的”() A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件38.椭圆的短轴长是 4,长轴长是短轴长的 倍,则椭圆的焦距是() 2A. .5B. 4C.6D. 2 59.关于曲线的对称性的论述正确的是()D .方程x 3_y 3=8的曲 2 2A. 方程x xy y =0的曲线关于X 轴对称 线关于原点对称B. 方程x 3 y 3 =0的曲线关于Y 轴对称2 2 2^2小B. -x -2y 8 2 xC.— 25 2 2D.(x-2) y =12.动点P 到两个定点F 1 (- 4 , 0) . F 2 (4, 0)的距离之和为 8,贝U P 点的轨迹为()A.椭圆B.线段F 1F 2C.直线F 1F 2 D .不能确定 23.已知椭圆的标准方程x 2±“,则椭圆的焦点坐标为()A. (_ 而0)B. (0, _ 而C.(0, _3)D. ( -3,0) 4椭圆 2 2 x_丄 a 2 b 2 2 2=1和-2 2 =1(a 2 b 2 k 2)的关系是 a …k b …k A •有相同的长 短轴B •有相同的离心率 C .有相同的准线D •有相同的焦点 2 25.已知椭圆'計1上一点P 到椭圆的一焦点的距离为3,则P到另一焦点的距离是() A. 2.5 -3B.2C.3D.6C.方程x2 - xy • y2 =10的曲线关于原点对称2 2x y22 =1( a > b > 0)表示的椭圆(a bA.有相同的离心率;B.有共同的焦点;C.有等长的短轴 长轴; D .有相同的顶点二填空题: (本大题共4小题,共20分.)2 2x y11. (6分)已知椭圆的方程为:1,则a=64 100___________ ,焦距等于 ______ ;若CD 为过左焦点 F1的弦,(如图)则? F 2CD 的周长为12. ( 6分)椭圆16x 2 25y 2二400的长轴长为 _______ ,短轴长为 ______ ,焦点坐标为四个顶点坐标分别为 ___________________ ,离心率为 ____ ;椭圆的左准线方程为 ___________ 13. ( 4分)比较下列每组中的椭圆:2 2(2 [①— y 1与②9x 2 • y 2 =36,哪一个更扁 ______________6 1014. (4分)若一个椭圆长轴的长度•短轴的长度和焦距成等差数列,则该椭圆的离心率是 三、解答题:本大题共 6小题,共80分•解答应写出文字说明,证明过程或演算步骤. 15. (30分)求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0, -3) , (0,3),椭圆的短轴长为 8;(2)两个焦点的坐标分别为(-.5 ,0), (、- 5,0),并且椭圆经过点(2、2 -)3(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点R (J6,I )、第11题,b= ____ ,c= ___ ,焦点坐标为:(1 [① 9x 2 4y 2 =36 与②12 16,哪一个更圆 ______2 2x2y2、、、' 16. (12分)已知点M在椭圆1上,M P垂直于椭圆焦点所在的直线,垂直为P,25 9并且M为线段P p'的中点,求P点的轨迹方程17.(12分)设点A,B的坐标为(-a,0),( a,O)(a 0),直线AM,BM相交于点M,且它们的斜率之积为-k(k・0且k -1)求点M的轨迹方程,并讨论k值与焦点的关系.2 218.(12分)当m取何值时,直线I :科=x m与椭圆9x 16y =144相切,相交,相离?2 2x y19.(14分)椭圆1(0 :::m : 45)的焦点分别是F i和F2,已知椭圆的离心率e二45 m过中心O作直线与椭圆交于A, B两点,O为原点,若L ABF2的面积是20,求:(1)m的值(2)直线AB的方程参考答案1.选择题:题号 1 2 3 4 5 6 7 8 9 10 答案BBCDCBCDCA.填空题:三.解答题:15. (1)解:由题意,椭圆的焦点在 y 轴上,设椭圆的标准方程为由焦点坐标可得c=3,短轴长为8,即2b=8,b=4,所以a^ b 2 c^ 252 2椭圆的标准方程为- 125 162 2(2)由题意,椭圆的焦点在 x 轴上,设椭圆的标准方程为 笃 -y 2 =1(a b 0) a b2 2所以b 2 = a 2 - c 2 =9-5=4,所以椭圆的标准方程为 x y 19 4设椭圆的方程为mx 2 • ny 2 =1( m 0, n • 0),P (j6,1)、P 2(-73,-妁p(x, y), m 点的坐标为(X 0,y °),由题意可知2 2因为点m 在椭圆——=1上,所以有25 922 2 2X o-1 ②,把①代入②得 — --1,所以P 点的轨迹是焦点在 y 轴上,标25 925 3611 10,8, 6, (0, ±6) , 12, 40 1210, 8, ( _0 ),(-5,0) . ( 5,0) . ( 0, -4) (0,4),25X 二313142 2笃二=1(a - b - 0)a b(2、、2- . 5)2因为椭圆过解得1m =91 n =3所以椭圆的标准方程为: 16•解:设p 点的坐标为6 m ■ n = 1 3 m 2 n = 12 2①2 2准方程为x y 1的椭圆.25 3617. 解:设点M的坐标为(x, y),因为点A的坐标是(-a,0),所以,直线AM的斜率k AM二一-(x = -a),同理直线BM的斜率k BM二—(x = a) •由已知有x +a x — a2 2—y y k(x =二a )化简得点M的轨迹方程为笃与=1(x=二a)x a x - a a ka当0 ::: k :::1时,表示焦点在x轴上的椭圆;当k 1时,表示焦点在y轴上的椭圆{ y =x 4m ....................... ①18•解:L 9x216 y2=144 …②①代入②得9x2 16(x m)2=144化简得25x232mx 16m2-144 =02 2 2:=(32m) -4 25(16m -144^ -576m 14400当,;",即m = 5时,直线l与椭圆相切;当U,即-5 ::: m ::: 5时,直线与椭圆相交;当:: 0,即m ::: -5或m .5时,直线与椭圆相离•19.解:(1)由已知e=C 5, a =、、45=3、-5 ,得c = 5 ,a 3所以m = b2 = a2—c2二45 —25 二20(2)根据题意SABF^ "SFf B " 20,设B( X, y),则S F^B二2^F1F j|y ,2 2=2c=10,所以y = 14,把y = ±4代入椭圆的方程=1,得x = =3,所以45 204 4B点的坐标为(土3, 士4),所以直线AB的方程为y= — x或y =-一x3 3。

高中椭圆基础知识专题练习题(有答案!)

高中椭圆基础知识专题练习题(有答案!)

高中椭圆基础知识专题练习题(有答案!)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题:1.下列方程表示椭圆的是()A.22199x y += B.2228x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆B.线段12F FC.直线12F FD.不能确定3.已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为()A.(B.(0,C.(0,3)±D.(3,0)±4.椭圆222222222222211()x y x y a b k a b a k b k+=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线 D .有相同的焦点5.已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是()A.3B.2C.3D.66.如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R 7.“m>n>0”是“方程221mx ny +=表示焦点在y 轴上的椭圆的”()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.椭圆的短轴长是4,长轴长是短轴长的32倍,则椭圆的焦距是()4 C.6D.9.关于曲线的对称性的论述正确的是() A.方程220x xy y ++=的曲线关于X 轴对称B.方程330x y +=的曲线关于Y 轴对称C.方程2210x xy y -+=的曲线关于原点对称D.方程338x y -=的曲线关于原点对称第11题10.方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ).A.有相同的离心率;B.有共同的焦点;C.有等长的短轴.长轴;D.有相同的顶点.二、填空题:(本大题共4小题,共20分.)11.(6分)已知椭圆的方程为:22164100x y +=,则a=___,b=____,c=____,焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦,(如图)则∆2F CD 的周长为________.12.(6分)椭圆221625400x y +=的长轴长为____,短轴长为____,焦点坐标为 四个顶点坐标分别为___ ,离心率为 ;椭圆的左准线方程为 13.(4分)比较下列每组中的椭圆:(1)①229436x y += 与②2211216x y += ,哪一个更圆 (2)①221610x y +=与②22936x y +=,哪一个更扁 14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是2F CcD1F三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(30分)求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;(2)两个焦点的坐标分别为(,0),并且椭圆经过点2)3(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、16.(12分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂直为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程17.(12分)设点A ,B 的坐标为(,0),(,0)(0)a a a ->,直线AM,BM 相交于点M ,且它们的斜率之积为(01)k k k ->≠且求点M 的轨迹方程,并讨论k 值与焦点的关系.18.(12分)当m 取何值时,直线l :y x m =+与椭圆22916144x y +=相切,相交,相离19.(14分)椭圆221(045)45x y m m +=<<的焦点分别是1F 和2F ,已知椭圆的离心率3e =过中心O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF 的面积是20,求:(1)m 的值(2)直线AB 的方程参考答案1.选择题:二.填空题:11 10,8,6,(0,6±),12,40 12 10,8,(3,0±),(-5,0).(5,0).(0,-4).(0,4),35,253x =- 13 ②,② 14 35三.解答题:15.(1)解:由题意,椭圆的焦点在y 轴上,设椭圆的标准方程为22221(0)y x a b a b+=>> 由焦点坐标可得3c =,短轴长为8,即28,4b b ==,所以22225a b c =+=∴椭圆的标准方程为2212516y x +=(2)由题意,椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x y a b a b +=>> 由焦点坐标可得c=2a ==6所以2b =22a c -=9-5=4,所以椭圆的标准方程为22194x y += (3)设椭圆的方程为221mx ny +=(0,0m n >>),因为椭圆过12P P 、61321m n m n +=+=⎧∴⎨⎩解得1913m n ==⎧⎨⎩所以椭圆的标准方程为:22193x y += 16.解:设p 点的坐标为(,)p x y ,m 点的坐标为00(,)x y ,由题意可知000022y y x x x x y y ====⎧⎧⇒⎨⎨⎩⎩ ① 因为点m 在椭圆221259x y +=上,所以有22001259x y += ② , 把①代入②得2212536x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为2212536x y +=的椭圆. 17.解:设点M 的坐标为(,)x y ,因为点A 的坐标是(,0)a -,所以,直线AM 的斜率()AM y k x a x a =≠-+,同理直线BM 的斜率()BM y k x a x a=≠-.由已知有(),y yk x a x a x a=-≠±+-化简得点M 的轨迹方程为22221()x y x a a ka +=≠±当01k <<时,表示焦点在x 轴上的椭圆;当1k >时,表示焦点在y 轴上的椭圆. 18.解:{22916144y x m x y =++=…… … … ①②①代入②得22916()144x x m ++=化简得222532161440x mx m ++-=222(32)425(16144)57614400m m m ∆=-⨯-=-+当0,∆=即5m =±时,直线l 与椭圆相切; 当0∆>,即55m -<<时,直线与椭圆相交; 当0∆<,即5m <-或5m >时,直线与椭圆相离.19.解:(1)由已知3c e a ==,a ==5c =, 所以222452520m b a c ==-=-=(2)根据题意21220ABF F F BSS==,设(,)B x y ,则121212F F B S F F y =,12210F F c ==,所以4y =±,把4y =±代入椭圆的方程2214520x y +=,得3x =±,所以B 点的坐标为34±±(,),所以直线AB 的方程为4433y x y x ==-或。

椭圆专题训练卷(含解析)

椭圆专题训练卷(含解析)

椭圆专题训练卷一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .102.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4B .5C .7D .84.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A B C D5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .347.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )A .2B .34C .12D .148.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( )A .4B .2C D 9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .B .4C .3D .110.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( )A .(0B .1)C .5)6, D .5(,1)6二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .1312.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1B .3C .4D .813.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( ) A .当点P 不在x 轴上时,12PF F ∆的周长是6 B .当点P 不在x 轴上时,12PF F ∆面积的最大值为3 C .存在点P ,使12PF PF ⊥ D .1PF 的取值范围是[1,3]14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为512-的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________.16.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______.21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点(2,1)P 在椭圆上.(1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程; (2)求点到直线距离的最大值.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项. (1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x yC a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点. (1)求椭圆C 的方程; (2)求直线AB 的斜率.27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 6. (1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围.一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .2.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】“|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“216x +29y ≤1”表示的平面区域N 为椭圆216x +29y ≤1及其内部, 则如图显然N 在M 内, 故选:B .3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4 B .5C .7D .8【答案】D 【解析】∵ 椭圆221102x y m m +=--的焦点在y 轴上,∴ 22a m =-,210b m =-, ∵ 焦距为4, ∴ 24c =即24c =,在椭圆中:222a b c =+即2(10)4m m -=-+,解得:8m =, 故选:D4.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A .3B .3C .2D .3【答案】B 【解析】依题意可知3ab ,即3b =,又c ===,所以该椭圆的离心率3c e a ==. 故选:B5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A 点睛:求椭圆标准方程的两种思路方法(1)定义法:根据椭圆的定义,确定22a b ,的值,结合焦点位置可写出椭圆方程.(2)待定系数法:这种方法是求椭圆方程的常用方法,具体思路是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a b ,的方程组.如果焦点位置不确定,也可把椭圆方程设22100()mx ny m n m n >>≠+=,,的形式.6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .34【答案】A 【解析】试题分析:如图取P 与M 重合,则由2(,0),(,)b A a M c a--⇒直线22:()(0,)bb a AM y x a Ec a a c=+⇒-+-同理由222221(,0),(,)(0,)33b b b b B a Mc G a c e a a c a c a c -⇒⇒=⇒=⇒=+-+,故选A.7.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线2:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) A .32B .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A ,则24y x =由2AB c =,可知22OA x y c =+=2224x x c ⎛⎫+= ⎪ ⎪⎝⎭,解得22x =, 所以221,33A c ⎛⎫ ⎪ ⎪⎝⎭把点A 代入椭圆方程得到222222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得3e =故选A 项.8.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( ) A .4 B .2C .32D .332【答案】A 【解析】延长2F N 交1MF 的延长线于点P ,作图如下:因为MN 为12F MF ∠的角平分线,且2F N MN ⊥, 所以2MF MP =,所以2111MF MF MP MF F P -=-=, 因为,O N 分别为122,F F F P 的中点, 所以ON 为12PF F ∆的中位线, 所以1122ON F P ==, 所以21124MF MF F P ON -===. 故选:A9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .23B .4C .3D .1【答案】C 【解析】连接2PF ,设椭圆的基本量为,,a b c ,()()()()2212121QF QF QO OF QO OF QO QF ⋅=+⋅+=-,()221222222322PF PF QN NO c c a c b ⎛⎫=+-=+-=-== ⎪⎝⎭故答案为:C10.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( ) A .2(0, B .21) C .25)6, D .5(,1)6【答案】D 【解析】∵点,2a N c ⎛⎫ ⎪⎝⎭在椭圆的外部,∴222214c a a b +>,2212b a < ,由椭圆的离心率22121122c b e a a ==--=> ,122MF MN a MF MN +=-+, 又因为2MF MN -+≤2NF ,且22aNF =,要11232MF MN F F +<恒成立,即22a MF MN -+≤32222a a c +<⨯,则椭圆离心率的取值范围是5,16⎛⎫⎪⎝⎭.故选D . 二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .13【答案】CD 【解析】由22c =,则1c =.过点F 的弦长最小值为222b a≥,即22b a ≥即有222a c a -≥,即2210a a --≥,解得:a ≥或152a(舍),122c e a=≤=. 故选: CD.12.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1 B .3C .4D .8【答案】BC 【解析】由题意可得4a =,16122c ,则26a cPF a c .故选:BC .13.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( )A .当点P 不在x 轴上时,12PF F ∆的周长是6B .当点P 不在x 轴上时,12PF F ∆C .存在点P ,使12PF PF ⊥D .1PF 的取值范围是[1,3] 【答案】ABD 【解析】由椭圆方程可知,2,a b ==,从而1c ==. 据椭圆定义,1224PF PF a +==,又1222F F c ==, 所以12PF F ∆的周长是6,A 项正确. 设点()()000,0P x y y ≠,因为122F F =, 则12120012PF F S F F y y ∆⋅==.因为003y b <=,则12PF F ∆项正确. 由椭圆性质可知,当点P 为椭圆C 短轴的一个端点时,12F PF ∠为最大. 此时,122PF PF a ===,又122F F =,则12PF F ∆为正三角形,1260F PF ︒∠=,所以不存在点P ,使12PF PF ⊥,C 项错误.由图可知,当点P 为椭圆C 的右顶点时,1PF 取最大值,此时13PF a c =+=; 当点P 为椭圆C 的左顶点时,1PF 取最小值,此时11PF a c =-=, 所以1[1,3]PF ∈,D 项正确, 故选:ABD .14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为12的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 【答案】BD 【解析】2222:1(0)x y C a b a b+=>>()()()()1212,0,,0,0,,0,A a A a B b B b ∴--,()()12,0,,0F c F c -对于A :111222||,||,||A F F F F A 为等比数列则2112212||||||A F F A F F ⋅=()()222a c c ∴-=2a c c ∴-=13e ∴=不满足条件,故A 错误; 对于B :11290F B A ∠=︒222211112A F B F B A ∴=+ ()2222a c a a b ∴+=++220c ac a ∴+-=即210e e ∴+-=解得e =或e = 故B 正确;对于C :1PF x ⊥ 轴,且21//PO A B2,b P c a ⎛⎫∴- ⎪⎝⎭21POA B k k =即2b c ab a =--解得bc =222a b c =+2c e a ∴===不满足题意,故C 错误; 对于D :四边形1221A B A B 的内切圆过焦点12,F F 即四边形1221A B A B 的内切圆的半径为c ,ab ∴=422430c a c a ∴-+=42310e e ∴-+=解得232e +=(舍去)或232e =e ∴=故D 正确 故选:BD 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________. 【答案】4或8 【解析】因为221102x y a a +=--是椭圆的方程,所以100a ->且a 20->,所以210a <<,由椭圆的方程可得()2c 102122a a a =---=-,又2c 4=,所以1224a -=,解得4a =或8a =. 故答案为4或816.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.【答案】2212524x y +=【解析】椭圆的短轴长为,即2b =,∴b = .∵两个焦点恰好为长轴的2个相邻的五等分点,∴1225c a =⨯,得5a c =, 又因为222a b c =+,故可解得1c =,5a =,故该椭圆的标准方程为2212524x y +=.故答案为:2212524x y +=.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.【解析】 如图所示,由题意得,()0,A b -,(),0F c -,直线MN 的方程为3y x b =-,把35y b =代入椭圆方程解得45x a =,∴4355N a b ⎛⎫ ⎪⎝⎭,, ∵N 在直线MN 上,∴34355b a b =-,解得3b a =又222a b c =+,∴222)3b c =+,解得3b c =, 令3y x b =-=0,则3M ⎫⎪⎭,即(),0M c ,∴M 为椭圆的右焦点,∴2FM c =, 由椭圆的定义可知,2NF NM a +=, ∵FMN 的周长为6,∴226a c +=, ∵3b a =2a c =,∴1,2,3c a b === ∴()13883255FANSFM b b c b ⎡⎤=⋅⋅--=⋅=⎢⎥⎣⎦故答案为:35. 四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.323【解析】椭圆2214x y +=得:2,1,a b c ===2214x y +=椭圆的焦距长为:19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.【答案】2 ;23π; 【解解:因为由椭圆的定义,我们可知1221222121212121222||||cos 21642812422PF PF a PF a PF PF PF F F PF F F PF PF PF +=∴=-+-∆∠=⨯+-==-⨯⨯中,20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______. 【答案】11(2,)(,1)22---; (0,1),(0,1)-. 【解析】①根据椭圆的方程特征,方程22121x y m m+=+-表示椭圆,则201021m m m m+>⎧⎪->⎨⎪+≠-⎩解得:11(2,)(,1)22m ∈---; ②1m =-时,椭圆的方程2212y x +=,焦点在y 轴,其坐标分别为(0,1),(0,1)-故答案为:①11(2,)(,1)22m ∈---;②(0,1),(0,1)- 21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 【答案】椭圆 45【解析】设()11,A x y ,()22,C x y 则()22,B x y --,1AF 的斜率不为0,可设1:1AF l x my =- 则122:11BF y y l x x =+-①,211:11AF y y l x x =--② 所以()12121221212121211112224y y y y y y y y x x x x my my m y y m y y ⋅=⋅=⋅=+------++ 联立221143x my x y =-⎧⎪⎨+=⎪⎩得2242303m y my ⎛⎫+--= ⎪⎝⎭,得122243m y y m +=+,122343y y m -=+ 所以222316133y x m -=--+由①②得()12122112y y x x m y y y y ++-+=-,所以35x m y = 所以22231316353y x x y -=-⎛⎫-+⎪⎝⎭整理得222215344x x +=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以M 的轨迹所在的曲线是椭圆,14554e == 故答案为:椭圆;45.五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.【答案】2212516x y +=或221167y x +=【解析】(1)若椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x ya b a b+=>>.将点(0,4)代入,得4b =.由26c =,解得3c =.22225∴=+=a b c ,从而椭圆方程为2212516x y +=; (2)若椭圆的焦点在y 轴上,设椭圆的标准方程为22221(0)y xa b a b+=>>.将点(0,4)代入,得4a =.由26c =,解得3c =,2227b a c =-=,从而椭圆方程为221167y x +=. 综上所述,椭圆的标准方程为2212516x y +=或221167y x +=.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点2,1)P 在椭圆上.(1)求m的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率.【答案】(1)2(2)长轴长4、短轴长22、焦距22、离心率2 2【解析】(1)由题意,点(2,1)P在椭圆上,代入,得222114m+=,解得2m=(2)由(1)知,椭圆方程为22142x y+=,则2,2,2a b c===椭圆的长轴长24a=;’短轴长222b=;焦距222c=;离心率22cea==.24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程;(2)求点到直线距离的最大值.【答案】(1);(2)【解析】(1)由已知得,得椭圆(2)设,则当时,.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项.(1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.【答案】(1) 22143x y +=;(2) 3【解析】(1)设所求椭圆方程为22221(0,0)x y a b a b+=>>, 根据已知可得2221212242,2,413F F PF PF a a b a c =∴+==∴==-=-=, 所以此椭圆方程为22143x y +=; (2)在12PF F ∆中,设12,PF m PF n ==,由余弦定理得:22242cos604()22cos60163m n mn m n mn mn mn︒︒=+-⋅∴=+--⋅=- 121134sin 6004322PF F mn S mn ︒∆=∴=⋅=⨯=26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x y C a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点.(1)求椭圆C 的方程;(2)求直线AB 的斜率.【答案】(1)22182x y +=;(2)12. 【解析】(1)将(2,1)P -代入22212x y a +=, 得()2222112a -+=,28a =. 故椭圆方程为22182x y +=. (2)当直线AB 斜率不存在时不合题意,故设直线:AB y kx m =+,1122(,),(,)A x y B x y ,AB 的中点为00(,)M x y ,由22182y kx m x y =+⎧⎪⎨+=⎪⎩得222()148480k x kmx m +++-=, 0122()14214km x x x k +=-=+,00214m y kx m k =+=+, 直线OP 经过弦AB 的中点,则OM OP k k =,0012y x =-, 142m km =--,12k ∴=,即直线AB 的斜率为12. 27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 到短轴的一个端点的距离是6.(1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围. 【答案】解(I )(II ) 【解析】(I )由已知,;,故椭圆C 的方程为………………4分(II )设则A、B坐标是方程组的解.消去,则,………………7分所以k的取值范围是………………12分。

椭圆练习题大题含详细答案

椭圆练习题大题含详细答案

高中椭圆练习题一、选择题:1.下列方程表示椭圆的是()A.22199x y += B.2228x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D.不能确定3.已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为()A.(B.(0,C.(0,3)±D.(3,0)±4.椭圆222222222222211()x y x y a b k a b a k b k+=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线D .有相同的焦点5.已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是()A.3-6.如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R 7.“m>n>0”是“方程221mx ny +=表示焦点在y 轴上的椭圆的”()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的32倍,则椭圆的焦距是()B.4C.6D.2F CcD1F9.关于曲线的对称性的论述正确的是() A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称 D.方程338x y -=的曲线关于原点对称10.方程22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率;B.有共同的焦点; C.有等长的短轴.长轴; D.有相同的顶点.第11题二、填空题:(本大题共4小题,共20分.)11.(6分)已知椭圆的方程为:22164100x y +=,则a=___,b=____,c=____, 焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦, (如图)则2F CD 的周长为________.12.(6分)椭圆221625400x y +=的长轴长为____,短轴长为____, 焦点坐标为 四个顶点坐标分别为___ , 离心率为 ;椭圆的左准线方程为 13.(4分)比较下列每组中的椭圆: (1)①229436x y += 与②2211216x y += ,哪一个更圆 (2)①221610x y +=与②22936x y +=,哪一个更扁 14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列, 则该椭圆的离心率是三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(30分)求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;(2)两个焦点的坐标分别为(),,0),并且椭圆经过点2)3(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、16.(12分)已知点M 在椭圆2211625x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂足为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹及其轨迹方程17.(12分)设点A ,B 的坐标为(,0),(,0)(0)a a a ->,直线AM,BM 相交于点M ,且它们的斜率之积为(01)k k k ->≠且求点M 的轨迹方程,并讨论k 值与焦点的关系.18.(12分)当m 取何值时,直线l :y x m =+与椭圆22916144x y +=相切,相交,相离19.(14分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率e =过中心O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF V 的面积是20, 求:(1)m 的值(2)直线AB 的方程参考答案1.选择题:二.填空题:11 10,8,6,(0,6±),12,40 12 10,8,(3,0±),(-5,0).(5,0).(0,-4).(0,4),35,253x =-13 ②,② 1435三.解答题:15.(1)解:由题意,椭圆的焦点在y轴上,设椭圆的标准方程为22221(0)y x a b a b+=>>由焦点坐标可得3c =,短轴长为8,即28,4b b ==,所以22225a b c =+=∴椭圆的标准方程为2212516y x += (2)由题意,椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x y a b a b+=>>由焦点坐标可得c =2a ==6所以2b =22a c -=9-5=4,所以椭圆的标准方程为22194x y += (3)设椭圆的方程为221mx ny +=(0,0m n >>),因为椭圆过12P P 、61321m n m n +=+=⎧∴⎨⎩解得1913m n ==⎧⎨⎩所以椭圆的标准方程为:22193x y += 16.解:设p 点的坐标为(,)p x y ,m 点的坐标为00(,)x y ,由题意可知000022y y x x x x y y ====⎧⎧⇒⎨⎨⎩⎩ ① 因为点m 在椭圆221259x y +=上,所以有 22001259x y += ② , 把①代入②得2212536x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为2212536x y +=的椭圆. 17.解:设点M 的坐标为(,)x y ,因为点A 的坐标是(,0)a -,所以,直线AM 的斜率()AM y k x a x a =≠-+,同理直线BM 的斜率()BM y k x a x a=≠-.由已知有(),y y k x a x a x a=-≠±+-g 化简得点M 的轨迹方程为22221()x y x a a ka +=≠±当01k <<时,表示焦点在x 轴上的椭圆;当1k >时,表示焦点在y 轴上的椭圆.18.解:{22916144y x m x y =++=…… … … ①②①代入②得22916()144x x m ++=化简得222532161440x mx m ++-=222(32)425(16144)57614400m m m ∆=-⨯-=-+当0,∆=即5m =±时,直线l 与椭圆相切; 当0∆>,即55m -<<时,直线与椭圆相交; 当0∆<,即5m <-或5m >时,直线与椭圆相离. 19.解:(1)由已知c e a ==,a ==5c =, 所以222452520m b a c ==-=-=(2)根据题意21220ABF F F B S S ==V V ,设(,)B x y ,则121212F F B S F F y =V g ,12210F F c ==,所以4y =±,把4y =±代入椭圆的方程2214520x y +=,得3x =±,所以B 点的坐标为34±±(,),所以直线AB 的方程为4433y x y x ==-或。

椭圆练习题及答案

椭圆练习题及答案

椭圆练习题及答案
椭圆练习题及答案
椭圆是数学中的一个重要概念,它在几何学、物理学和工程学等领域都有着重要的应用。

为了帮助大家更好地理解和掌握椭圆的相关知识,我们准备了一些椭圆的练习题及答案,希望能够帮助大家更好地学习和理解椭圆。

1. 椭圆的定义是什么?
答:椭圆是一个平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

2. 椭圆的离心率是多少?
答:椭圆的离心率e满足0<e<1。

3. 椭圆的焦点在坐标系中的位置是怎样的?
答:椭圆的焦点位于椭圆的长轴上。

4. 椭圆的长轴和短轴之间有什么关系?
答:椭圆的长轴是短轴的两倍。

5. 椭圆的面积公式是什么?
答:椭圆的面积为πab,其中a为长轴的一半,b为短轴的一半。

通过以上的练习题及答案,我们可以更好地理解和掌握椭圆的相关知识。

希望大家能够通过不断地练习和思考,更好地理解和应用椭圆的知识,为将来的学习和工作打下坚实的基础。

完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)A组基础过关1.选择题1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于多少?A。

2B。

2/3C。

1/2D。

1/3解析:由题意得2a=2b,所以a=b,又a²=b²+c²,所以b=c,所以a=2c,e=c/a=1/2,答案为C。

2.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是什么?A。

(x²/81)+(y²/72)=1B。

(x²/81)+(y²/9)=1C。

(x²/81)+(y²/45)=1D。

(x²/81)+(y²/36)=1解析:依题意知2a=18,所以a=9,2c=3×2a,所以c=3,所以b=a-c=81-9=72,所以椭圆方程为(x²/81)+(y²/72)=1,答案为A。

3.椭圆x²+4y²=1的离心率是多少?A。

2/3B。

2C。

1/2D。

3解析:先将x²+4y²=1化为标准方程,得(x/1)²+(y/(1/2))²=1,所以a=1,b=1/2,所以c=√(a²-b²)=√(3)/2,所以e=c/a=√(3)/2,答案为A。

2.解答题1.设F₁、F₂分别是椭圆4x²+y²=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF₁⊥PF₂,则点P的横坐标为多少?解析:由题意知,点P即为圆x²+y²=3与椭圆4x²+y²=1在第一象限的交点,解方程组x²+y²=3和4x²+y²=1,得点P的横坐标为√(2/3),答案为√(2/3)。

2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为2,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程是什么?解析:依题意设椭圆G的方程为a²x²+b²y²=1(a>b>0),因为椭圆上一点到其两个焦点的距离之和为12,所以2a=12,所以a=6,又因为椭圆的离心率为2,所以c=a/2=3,所以b=√(a²-c²)=3√5,所以椭圆G的方程为36x²+45y²=1,答案为C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:
1.下列方程表示椭圆的是()
A. B. C. D.22199x y +=22
28x y --=-221259
x y -=22(2)1x y -+=2.动点P 到两个定点(- 4,0).(4,0)的距离之和为8,则P 点的轨迹为() 1F 2F A.椭圆
B.线段
C.直线 D .不能确定
12F F 12F
F 3.已知椭圆的标准方程,则椭圆的焦点坐标为()
2
2
1
10
y x +=A.
B.
C.
D.((0,(0,3)±(3,0)
±4.椭圆的关系是2222
222222222
11()x y x y a b k a b a k b k
+=+=>>--和A .有相同的长.短轴B .有相同的离心率 C .有相同的准线
D .有相同的焦点
5.已知椭圆上一点P 到椭圆的一焦点的距离为
3,则P 到另一焦点的距离是()
22
159
x y +=A.
B.2
C.3
D.6
36.如果表示焦点在x 轴上的椭圆,则实数a 的取值范围为()
22
212
x y a a +=+A. B. C. D.任意实数R
(2,)-+∞()()2,12,--⋃+∞(,1)(2,)-∞-⋃+∞7.“m>n>0”是“方程表示焦点在y 轴上的椭圆的”()
2
2
1mx ny +=A.充分而不必要条件 B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
8.椭圆的短轴长是
4,长轴长是短轴长的倍,则椭圆的焦距是()3
2
B.
C.
D.469.关于曲线的对称性的论述正确的是()
A.方程的曲线关于X 轴对称 22
0x xy y ++=B.方程的曲线关于Y 轴对称3
3
0x y +=C.方程的曲线关于原点对称
2
2
10x xy y -+= D.方程的曲3
3
8x y -=线关于原点对称
2
F F
2
C
c
D
1
F 第11题
10.方程 (a >b >0,k >0且k ≠1)与方程
(a >b >0)表示的椭圆2
2
22
1x y ka kb +=22
2
21x
y a b
+=( ).
A.有相同的离心率;
B.有共同的焦点;
C.有等长的短轴.长轴;
D.有相同的顶点.
二、填空题:(本大题共4小题,共20分.)
11.(6分)已知椭圆的方程为:,则a=___,b=____,c=____,焦点坐标为:
22
164100
x y +=___
__,焦距等于______;若CD 为过左焦点F1的弦,(如图)则∆CD 的周长为
2F ________.
12.(6分)椭圆的长轴长为____,短轴长为____,焦点坐标为 2
2
1625400x y +=四个顶点坐标分别为___ ,离心率为 ;椭圆的左准线方程为
13.(4分)比较下列每组中的椭圆:
(1)① 与② ,哪一个更圆
2
2
9436x y +=22
11216
x y +=(2)①与②,哪一个更扁
22
1610
x y +=22936x y +=14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(30分)求满足下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;
(2)两个焦点的坐标分别为(),,0),并且椭圆经过点2
)
3
(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、16.(12分)已知点M 在椭圆上,M 垂直于椭圆焦点所在的直线,垂直为
22
1259
x y +='P ,并且M 为线段的中点,求点的轨迹方程
'P P 'P P 17.(12分)设点A ,B 的坐标为,直线AM,BM 相交于点M ,且它
(,0),(,0)(0)a a a ->们的斜率之积为求点M 的轨迹方程,并讨论值与焦点的关系.
(01)k k k ->≠、k
18.(12分)当取何值时,直线:与椭圆相切,相交,相m l y x m =+22
916144x y +=离?
19.(14分)椭圆的焦点分别是和,已知椭圆的离心率
22
1(045)45x y m m
+=<<1F 2F
作直线与椭圆交于A ,B 两点,为原点,若的面积是20,e =
O O 2ABF A 求:(1)的值(2)直线AB 的方程
m
参考答案
1.选择题:
题号12345678910答案B B C D C B C D C A
二.填空题:
11 10,8,6,(0,),12,40 12 10,8,(),(-5,0).(5,0).(0,-4).
6±3,0
±
(0,4),,13 ②,② 14
3
5
25
3
x=-
3
5
三.解答题:
15.(1)解:由题意,椭圆的焦点在轴上,设椭圆的标准方程为
y
22
22
1(0)
y x
a b
a b
+=>>
由焦点坐标可得,短轴长为8,即,所以
3
c=28,4
b b
==22225
a b c
=+=椭圆的标准方程为
∴221
2516
y x
+=
(2)由题意,椭圆的焦点在轴上,设椭圆的标准方程为
x
22
22
1(0)
x y
a b
a b
+=>>由焦点坐标可得6
c=2a==
所以==9-5=4,所以椭圆的标准方程为
2
b22
a c
-
22
1
94
x y
+=
(3)设椭圆的方程为(),因为椭圆过
221
mx ny
+=0,0
m n
>>
12
P P

解得所以椭圆的标准方程为:61321
m n m n +=+=⎧∴⎨⎩
1
9
1
3
m n ==⎧⎨⎩22
193
x y +=16.解:设点的坐标为,点的坐标为,由题意可知
p (,)p x y m 00(,)x y ① 因为点在椭圆
上,所以有00
002
2y y x x x x y y ====⎧⎧⇒⎨⎨⎩⎩m 22
1259
x y += ② , 把①代入②得,所以P 点的轨迹是焦点在轴上,22
001
259x y +=22
125
36
x y +=
y 标准方程为的椭圆.
22
12536
x y +=17.解:设点M 的坐标为,因为点A 的坐标是,所以,直线AM 的斜率
(,)x y (,0)a -,同理直线BM 的斜率.由已知有()AM y k x a x a =
≠-+()BM y
k x a x a
=≠-化简得点M 的轨迹方程为(),y y
k x a x a x a
=-≠±+-A 22221()
x y x a a ka +=≠±当时,表示焦点在轴上的椭圆;当时,表示焦点在y 轴上的椭圆.
01k <<x 1k >18.解:
{
22916144y x m x y =++=…… …

①②
①代入②得化简得2
2916()144x x m ++=2
2
2532161440
x mx m ++-=222(32)425(16144)57614400
m m m ∆=-⨯-=-+当即时,直线与椭圆相切;
0,∆=5m =±l 当,即时,直线与椭圆相交;
0∆>55m -<<当,即或时,直线与椭圆相离.
0∆<5m <-5m >19.解:(1)由已知,,c e a =
=
a ==5c =所以2
2
2
452520
m b a c ==-=-= (2)根据题意,设,则,
2
1220ABF F F B S S ==A A (,)B x y 12
12
12
F F B S F F y =A A
,所以,把代入椭圆的方程,得,所12210F F c ==4y =±4y =±22
14520
x y +
=3x =±以点的坐标为,所以直线AB 的方程为B 34±±、、、4433
y x y x =
=-、。

相关文档
最新文档