《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

合集下载

《高等代数》 第一章矩阵 习题答案

《高等代数》 第一章矩阵 习题答案

1 第一章 矩阵 习题一 1.设有A、B、C三类商品,它们去年和今年的价格如下表所示: 单位:元 年份 价 格 商品

去年 今年

A 100 200

B 90 50

C 120 150

试用矩阵表示上述表格. 解 所求的的矩阵为 1002009050120150



2.写出下列线性方程组的系数矩阵与增广矩阵.

(1) 02132yxyx;

(2) 52323203yxzyxzx. 解 (1)系数矩阵为 2312



增广矩阵为 231120



(2)系数矩阵为

103231320



增广矩阵为 2

103023123205



3.写出矩阵32)()1(jiAji的完全形式.

解 234345A 4.写出既是上三角形矩阵,又是下三角形矩阵的3阶矩阵的一般形式. 解 所求的矩阵为 000000abc



其中a,b,c为任意数.

习题二 1.设矩阵

,312010403,112112,012110321CBA

(1)计算CA23与3A; (2)验证CBABBCA与 ABAB.

解(1) 1233043230112010210213AC369608033020630426=369033256 323123123123

011011011210210210A



7711232010112562109221445612141

矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。

该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。

本文主要介绍该书第四版中的课后练习题及其答案。

提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。

其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。

内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。

本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。

第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。

本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。

第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。

本章习题主要涉及矩阵运算的基本操作和应用。

第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。

本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。

第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。

本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。

结语本文介绍了矩阵分析引论第四版课后练习题及其答案。

对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。

本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。

同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。

矩阵分析考试及答案

矩阵分析考试及答案

矩阵分析考试及答案一、单项选择题(每题3分,共30分)1. 矩阵A和矩阵B的乘积AB中,矩阵A的列数与矩阵B的行数相等,那么矩阵A的列数是()。

A. 矩阵B的行数B. 矩阵B的列数C. 矩阵A的行数D. 矩阵A的列数答案:A2. 矩阵的秩是指矩阵中线性无关的行向量(或列向量)的最大数量,那么矩阵的秩与矩阵的行数和列数之间的关系是()。

A. 秩小于等于行数和列数的最小值B. 秩等于行数和列数的最小值C. 秩大于行数和列数的最小值D. 秩等于行数和列数的最大值答案:A3. 矩阵A是可逆的,那么矩阵A的行列式值是()。

A. 0B. 1C. 不为0D. 无法确定答案:C4. 矩阵A的特征值是指满足方程()的值λ。

A. Ax = λxB. Ax = 0C. Ax = xD. Ax = λIx5. 矩阵A的迹是指矩阵A的对角线元素之和,那么矩阵A的迹与矩阵A的转置AT之间的关系是()。

A. 矩阵A的迹等于矩阵AT的迹B. 矩阵A的迹不等于矩阵AT的迹C. 矩阵A的迹是矩阵AT的迹的两倍D. 矩阵A的迹与矩阵AT的迹无关答案:A6. 矩阵A和矩阵B的乘积AB中,矩阵A的行数与矩阵B的列数相等,那么矩阵AB的行数是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵B的行数D. 矩阵B的列数7. 矩阵A是对称矩阵,那么矩阵A的特征值是()。

A. 全部为正B. 全部为负C. 全部为实数D. 全部为复数答案:C8. 矩阵A是正定矩阵,那么矩阵A的特征值是()。

A. 全部为正B. 全部为负C. 全部为零D. 部分为正,部分为负答案:A9. 矩阵A和矩阵B是同阶方阵,那么矩阵A和矩阵B的乘积AB与矩阵B和矩阵A的乘积BA之间的关系是()。

A. AB等于BAB. AB不等于BAC. AB和BA的秩相等D. AB和BA的行列式相等答案:B10. 矩阵A是奇异矩阵,那么矩阵A的行列式值是()。

A. 0B. 1C. 不为0D. 无法确定答案:A二、填空题(每题4分,共40分)11. 矩阵A的转置记作______,即矩阵A的行变为列,列变为行。

矩阵分析第2章习题解

矩阵分析第2章习题解

第二章习题1、 用初等变换把下列矩阵化为标准型 (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭ (2)23100(1)λλ⎛⎫- ⎪-⎝⎭ (3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭(4)2(1)0000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭解: (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭2122()23233235351102033r r λλλλλλλλλλλλλ-⎛⎫+⎛⎫+ ⎪ ⎪⎪--- ⎪⎝⎭⎝⎭32103λλλλ⎛⎫ ⎪--⎝⎭(2)231(1)λλ⎛⎫-⎪-⎝⎭212222(3)32211110331(3)(1)4(1)r r λλλλλλλλλλλ--⎛⎫⎛⎫---- ⎪ ⎪-+-----⎝⎭⎝⎭[因为32331λλλ-+-除以21λ-商为3λ-余式为4(1)λ-]222222114(1)(3)(1)(3)(1)4(1)11λλλλλλλλλλ⎛⎫⎛⎫------ ⎪ ⎪------⎝⎭⎝⎭211(3)(1)42224(1)011(1)(3)(1)(1)4c c λλλλλλλλ+-+-⎛⎫⎪ ⎪--+-+-⎝⎭31(1)(1)λλλ-⎛⎫⎪+-⎝⎭(3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭222101λλλλλλλλ⎛⎫⎪- ⎪ ⎪++⎝⎭222221001(1)(1)λλλλλλλλλλλλ⎛⎫⎪-⎪ ⎪++-++-++⎝⎭43321000λλλλλλ⎛⎫ ⎪- ⎪ ⎪----⎝⎭ 43210002λλλλ⎛⎫⎪ ⎪ ⎪---⎝⎭ 221(1)λλλ⎛⎫⎪⎪ ⎪+⎝⎭(4)2(1)000000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭ 2(1)00021λλλλλλ+⎛⎫⎪⎪⎪++⎝⎭32(2)(1)000(2)1r r λλλλλλλ-++⎛⎫⎪ ⎪ ⎪-+⎝⎭1(2)0000(1)λλλλλλ-+⎛⎫⎪⎪⎪+⎝⎭21(2)00(2)000(1)λλλλλλλ-+⎛⎫ ⎪++ ⎪ ⎪+⎝⎭ 210(1)000(1)λλλλ⎛⎫⎪+⎪⎪+⎝⎭2100(1)000(1)λλλλ⎛⎫⎪+ ⎪ ⎪+⎝⎭2、试证:Jordan 块 10()0100J αααα⎛⎫⎪= ⎪ ⎪⎝⎭相似于0000αεαεα⎛⎫⎪⎪ ⎪⎝⎭,这里0ε≠是任意实数。

矩阵论课后参考答案-第一章.doc

矩阵论课后参考答案-第一章.doc

其基为竺12个心〃阶的矩阵, 2_1 0 0 00 0 0 00 10 010 0 0J.八八 / 1、 / c\ \ (〃一 1)((〃 一 1) +I) 〃(〃一1)2其基为些12个〃x 〃阶的矩阵,故基可写为矩阵论课后参考答案:习题1.12(1)解:由定义知dim(C'g) = 〃5故可知其基为5个〃冰〃阶矩阵,简单基记为在矩阵上的某一元素位置上为1,其他元素为0 ,如下1 0 0 0' 0 0 0 00 0 0 0' 0 10 0(2)解:对约束A ,= A 分析可知,其为一个上下对称的矩阵(对称阵),则其维数为dim(V) = n + (/? -1) H -- 1 =°故基可写为 (3)解:同上理,对AW"分析可知其为一个上下成负对称的矩阵,且对角元全为0,则其维数为2k、— kf — 2/| - /9= 0 2k] — k~> + " +,= 0 k、—加—3/] = 0 k2-l~-7l2=0k、——,故有h2=4Z2 I】=—3/2解:由题可得+ VK = span(^, , /?2)不难看出其秩为3,则dim(W|+W2)= 3设工即",则存在"以有x— A]。

】+ = I、。

、+1、即尤=切]+ k2a2 = l2(4a2一%) =,2(-5,2,3,4)所以dim(W%) = l(先补充定理:定理:设n元齐次线性方程组的系数矩阵A的秩r(A) = r<n,则齐次线性方程组的基础解析存在,并且基础解系所含线性无关的解向量的个数等于〃-「)证:1)对任意的B E %""则有AB = O且(A-/)B = O成立,故B = 0所以X"={0} O2)明显明㊉岭uF〃3)对于%来说,X为A的一个基础解系,不妨设dim(A) = r ,则有dim(%) = n-尸式 1 而由约束条件f=A知3故有5A (A-I ) = O其中A -/为A 的一个基础解系,则有dim (A-/) = n-/*故岭的秩为dim (岭)= n-dim (A-/) = r 式2故由式 1 及式 2 可知:dim (V ;) + dim (K ) = n = dim (F ,?) 综上则有P l =V }®V 2证毕习题1.2解:由题可知0,%,%与〃]刀2,〃3时空间瑚3)的两组基,则存在一个过渡矩阵c 使得引入£(尸)的一组简单基 环再2,耳3-------------------------- 2(“I ,%,%)=(芯11, 芯12' E 【3)G = (%,%,%)《[G8 -16 91 3 2-6 7 -3 ,C 2-2 -1 1 7-13 71 2 2/(。

史荣昌魏丰版矩阵分析第三章(1)

史荣昌魏丰版矩阵分析第三章(1)

内积空间正规矩阵与第三章内积空间、正规矩阵与H -矩阵定义:设是实数域上的维线性空间,对于中的任意两个向量按照某一确定法则对应着一V R n V ,αβ个实数,这个实数称为与的内积,记为,并且要求内积满足下列运算条件:αβ(,)αβ1()(,)(,)αββα=2()(,)(,)(()(k k αβαβ=34000),,)(,)()(,),(,).αβγαγβγααααα+=+≥==当且仅当时这里是中任意向量,为任意实数,我们称带有这样内积的维线性空间为欧氏空间。

,,αβγV k n V 例1在中,对于nR 1212(,,,),(,,,)n n x x x y y y αβ==""规定11122(,)n nx y x y x y αβ=+++"容易验证是上的一个内积,从而成1(,)n R n R 为一个欧氏空间。

如果规定211222(,)n nx y x y nx y αβ=+++"容易验证也是上的一个内积,这样又成为另外一个欧氏空间2(,)n R n R又成为另外个欧氏空间。

例2在维线性空间中,规定n mR×nm T容易验证这是上的一个内积,这样对于(,):Tr()A B AB =n mR ×n mR ×这个内积成为一个欧氏空间。

例3在维线性空间中,规定2n n nC×(,):()HA B Tr AB =其中H表示中所有元素取共轭复数后再转置,容易验证是上的一个内积,从而连同这个内积一起成为酉空间。

B B (,)n n×n nC ×连同这个内积起成为酉空间。

C欧氏空间的性质)()β欧氏空间的性质:(1)(,,k k αβα==(2)(,)(,)(,))()ttαβγαβαγ++11(3)(,,i i i i i i k k αβαβ===∑∑(4)(,)(,)tti i i i k k αβαβ===∑∑11i i4242ii i ++⎡⎤(1)21i i ⎢⎥−+⎢⎥4212i i ⎢⎥−+−−⎣⎦6123i i +⎡⎤(2)1291i i ⎢⎥−−⎢⎥317i i ⎢⎥−+−⎣⎦⎡018(3)4i i −⎤⎢⎥100i i −−−⎢⎥−−⎦84i i ⎢⎥⎣3132i i +⎡(4)13415i i ⎤⎢⎥−+2155i i ⎢⎥⎢⎥−−⎣⎦标准正交基底与Schmidt 正交化方法定义为一组不含有零向量的向量组如果:设为组不含有零向量的向量组,如果内的任意两个向量彼此正交,则称其为正交向量组{}i α{}i α量组。

北京理工大学矩阵分析第一章作业答案

北京理工大学矩阵分析第一章作业答案
1.设 R[ x ]4 表示所有次数小于或等于 4 的实系数 多项式组成的线性空间, 求多项式
p( x ) 1 2 x
3
2 3。
p(1) 2 p ( x ) p (1) p (1) ( x 1) ( x 1) 解: 2! p(1) ( x 1)3 . 3!
两边同时作线性变换 , 可得 l1 0. 以此类推, 可得 l2 lk 1 0. 由线性无关的定义,可知
, ( ), 2 ( ), , k 1 ( )
线性无关。
3 . 试证:
tr( AB) tr( BA) ,
k k
A C
mn
,BC
nm
, k 1,2,
所以所求坐标为 (3,6, 6, 2).
2.设 是n 维线性空间V 的一个线性变换,对某个 V 有 k 1 ( ) 0, k ( ) 0. 试证:
, ( ), 2 ( ), , k 1 ( )
线性无关。 证: 假设存在常数 l0 , l1 ,
4. 试证: tr( Ak ) ik , i 是 A 的特征值,k i 1 是一正整数。 证:设 i , i 1,2, , n 是 A 的特征值,x 是相应的 特征向量, Ax i x . 则
n
A2 x A Ax A(i x ) i Ax i2 x . A3 x A A2 x A(i2 x ) i2 x . 从而归纳 同理可得, k k A x i 1,2, , n. 所以 可得 i x,
( ) x 0,
2 2 x 0, ( ) 0, 因为 x 是特征向量, 所以
即 A 的特征值只能是 0 或 1。

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案




( )( ) = ������ Λ������ −1 ������ ������������ −1 = ������������,

( )( ) ������������ = ������ ������������ −1 ������ Λ������ −1 = ������ ������Λ������ −1 = ������ Λ������������ −1
概率与数理统计 第二, C语言程序设计教程 第 西方经济学(微观部分) C语言程序设计教程 第 复变函数全解及导学[西 三版 (浙江大学 三版 (谭浩强 张 (高鸿业 著) 中 二版 (谭浩强 张 安交大 第四版]
社区服务
社区热点
进入社区
/
2009-10-15

其中 ������ 和 Λ 是对角矩阵。于是有
w.
m
co m
ww
w.
2. (两个可对角化矩阵������, ������ ∈ ������ ������×������ 称为同时可对角化的,如果存在
co
m
矩阵分析与计算 第1章习题解答与提示
1
第1章 习题解答与提示
课后答案网
同一个相似变换矩阵������ ∈ ������ ������×������ ,使得������ −1 ������������ 和������ −1 ������������ 同为对角矩 阵。)
充分性 若������和������ 同时可对角化,则存在可逆矩阵������ ,使得 ������ = ������ ������������ −1 , ������ = ������ Λ������ −1 ,
是对应������的特征向量,而������是������的单特征值,所以������, ������������ 线性相关。因
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 章线性空间和线性变换(详解)1-1证:用 E ii表示n阶矩阵中除第i行,第i列的元素为 1外,其余元素全为 0 的矩阵 . 用E ij(i j , i1,2,, n1) 表示n阶矩阵中除第 i 行,第 j 列元素与第 j 行第 i 列元素为1 外,其余元素全为0的矩阵.显然, E ii,E ij都是对称矩阵, E ii有 n( n1)个.不难证明E ii,E ij是线性无关的,2且任何一个对称矩阵都可用这n+ n( n1)= n( n 1)个矩阵线性表示,此即对称矩阵组成n(n 1)维线性空间 .222同样可证所有n 阶反对称矩阵组成的线性空间的维数为n(n 1).2评注 : 欲证一个集合在加法与数乘两种运算下是一个n(n 1)维线性空间,只需找出n(n 1)个向量线性无关,并且集合中任何一个向量都可以用这2n(n 1)个向量线性表示即22可.1-2 解:令x1 1 x2 2x3 3x4 4解出 x1 , x2 , x3, x4即可.1-3解:方法一设A x1E1x2E2x3E3x4E4即12111111100 3x1 1 1x2 1 0x3 0 0x4 00故1 2x1x2x3x4x1x2x303x1x2x1于是x1x2x3x41, x1x2x3 2x1x20, x13解之得x1 3, x23, x32, x41A E,E,E,E(3, 3,2,1)T方法二应用同构的概念,R2 2是一个四维空间,并且可将矩阵 A 看做(1,2,0,3)T,E1,E2, E3, E4可看做(1,1,1,1)T,(1,1,1,0)T,(1,1,0,0)T,(1,0,0,0)T.于是有1111110003111020100311000001021000300011因此 A 在E1,E2,E3,E4下的坐标为(3,3,2,1)T.1-4 解:证:设k1 1k22k33k440即11111110k1 1 1k2 0 1k3 1 0k4 1 1k1k2 k3k4k1k2k3k1k3k4k1k2k4于是k1k2k3k40,k1k2k30k1k3k40, k1k2k40解之得k1k2k3k40故α,α,α,α 线性无关.1234设a b11x211x31110c d x110110x41 11x1x2x3x4x1x2x3x1x3x4x1x2x4于是x1x2x3x40, x1x2x30x1x3x40, x1x2x40解之得x1b c d2a, x2a cx3 a d , x4a bx1, x2 , x3 , x4即为所求坐标.1-5 解:方法一(用线性空间理论计算)1p( x) 1 2x31,x, x2, x302y123y 21,x 1,( x 1) ,( x1)y3y4又由于1,x1,( x1)2 ,( x1)311111,x, x2 , x30123 0013 0001于是 p( x) 在基1, x1,( x1)2 ,( x1)3下的坐标为y11111113y2012306y3001306y4000122方法二将 p(x) 12x3根据幂级数公式按x 1 展开可得p( x) 1 2x3p(1)p (1)(x1)p (1) (x1)2p (1)( x1)32!3!36(x1)6(x1)22(x1)3因此 p( x) 在基1, x1,( x1)2 ,( xT 1)3下的坐标为3,6,6, 2.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设β,β,β,βα,α,α,αP将 α1,α2 ,α3, α4 与 β1, β2, β3,β4 代入上式得2 0 5 6 1 0 0 1 13 3 6 1 1 0 01 12 1 0 1 1 P0 1 01 30 1 1故过渡矩阵10 01 10 5 62 P1 1 0 0 1 3 3 61 10 1 1 2 10 0 1 1 10 1 3121 22231 5 42 211 9 52 232 11 82 2②设1y 1ξ0 β β β β y 21 ( 1, 2, 3 , 4 )y 3y 4将 β1, β2, β3, β4 坐标代入上式后整理得719 y 1 2 0 5 6 1 8 y 2 1 3 3 6 0 27 y 3 1 1 2 1 1 1 y 411 33 227评注 :只需将iβ1,β2 ,β3, β41,2,3,4P计算出, β代入过渡矩阵的定义α α α α P .1-7 解:因为span{ α1, α2}span{ β1,β2}span{ α1, α2, β1,β2}由于秩 span{ α1,α2 , β1, β2}3 ,且α1, α2, β1是向量α1, α2, β1,β2的一个极大线性无关组,所以和空间的维数是3,基为α1,α2,β1.方法一设ξ span{α1,α2}span{ β1, β2} ,于是由交空间定义可知112121k31k41k1k210130117解之得k1l2 , k24l2 ,l13l2 (l2为任意数)于是ξ k1α1k2α2l 2[5,2,3,4] T( 很显然ξl1 1l2 2 )所以交空间的维数为 1,基为[5,2,3,4] T.方法二不难知span{ α1,α2}span{ α1,α2}, span{ β1,β2} span{ β1, β2}其中α[ 2, 2,0,1] T, β[13,2,1,0] T.又span{ α1,α2 }也是线性方程组223x1x32x4x22x3x4的解空间 . span{β1,β2}是线性方程组x113x32x4 3x22x3x4的解空间,所以所求的交空间就是线性方程组x 1 x 3 2x 4x 2 2x 3 x 4x 1 13x 3 2x 4x 2 32x 3x 4的解空间,容易求出其基础解系为[ 5,2,3,4] T ,所以交空间的维数为1,基为[ 5,2,3,4] T .评注:本题有几个知识点是很重要的.(1)span{ α1,α2 , , αn } 的 基 底 就 是α1, α2, , αn 的极大线性无关组. 维数等于秩{ α1,α2 ,,αn } . (2) span{α1, α2} span{ β1, β2} span{ α1,α2 , β1, β2} . (3) 方法一的思路,求交span{ α,α} span{ β, β} 就是求向量 ,既可由 α, α 线性表121 2ξ1 2示,又可由 β, β线性表示的那部分向量 . (4) 方法二是借用“两个齐次线性方程1 2组解空间的交空间就是联立方程组的解空间” ,将本题已知条件改造为齐次线性方程组来求解 .1-8 解:(1):解出方程组 (Ⅰ)x 1 2x 2 x 3 x 45x 1 10x 2 6x 3的基础解系 ,即是 V 1 的基 ,4 x 4 0解出方程组 (Ⅱ) x 1x 2 x 3 2 x 4 0 的基础解系 ,即是 V 2 的基 ;x 12x 2 x 3x 4 0(2): 解出方程组5x 1 10 x 2 6x 3 4 x 4 0 的基础解系 ,即为 V 1V 2的基 ;x 1 x 2x 32x 4 0(3): 设 V 1 span 1,,k,V 2 span1 ,, l ,则1 ,, k ,1 ,, l 的极大无关组即是V 1 V 2 的基 . 1-9 解 : 仿上题解 .1-10 解 : 仿上题解 . 1-11 证:设l 0ξ l 1A (ξ) l 2A2(ξ)l k 1Ak 1(ξ) 0①用 A k 1 从左侧成 ① 式两端,由 A k (ξ) 0 可得l 0A k 1 (ξ) 0因为 A k 1 (ξ) 0 ,所以 l 00,代入 ①可得l 1A (ξ) l 2A 2 (ξ)l k 1A k 1 (ξ) 0②用k 2kA从左侧乘②式两端,由Aξ0可 得 l0 0,继续下去,可得( )l 2l k 1 0 ,于是 ξ,A (ξ), A 2 (ξ), ,A k 1(ξ) 线性无关 .1-12解:由 1-11可知, n 个向量 ξ 0,A ( ),A2(ξ),,An 1 (ξ)线性无关,它是 V 的ξ一个基 . 又由ξξ2ξ,An 1ξA [,A( ),A( ),( )][A (ξ),A 2(ξ), ,A n 1(ξ)][A (ξ),A2(ξ),,An 1(ξ),0]0 0 0 010 0 ξξ2ξ ,An 1ξ 0 1[,A (),A( ),( )]0 0 0 010 n n所以 A在, (ξ),A 2(ξ), ,An 1(ξ)下矩阵表示为 n 阶矩阵ξA0 0 0 01 0 0 00 10 00 0 0 0 n0 01V 中任何一组 n个线性无关的向量组都可以构成V 的一个基,评注 : 维线性空间 因此 ξ,(ξ), A 2(ξ), ,A n1(ξ)是 V 的一个基 .A1-13 证: 设 1, , r , , s1 , , m A, A 1, , r , , s设 1 , , r 是 1,, r ,, s 的极大无关组,则可以证明1,, r 是 1, , r,,s 的极大无关组 .1-14 解: (1) 由题意知A [α1, α2,α3 ] [ α1,α2 ,α3] A1 1 1[β, β, β] [ α,α , α ] 0 1 11 231 230 0 1设 A在基 β1, β2, β3下的矩阵表示是 B ,则1 1 112 3 1 1 11BP 1AP 01 11 0 3 0 1 10 0 1 2 1 5 0 0 12 4 434 6238(2) 由于 A0 ,故 AX 0 只有零解,所以 A的核是零空间 . 由维数定理可知A 的值域是线性空间 R 3 .1-15 解 :已知 A1,2,31,2,3A(1) 求得式 1 , 2 , 3 1 ,2 ,3 P 中的过渡矩阵 P ,则BP 1AP 即为所求 ; (2) 仿教材例 1.5.1.(见<矩阵分析 >史荣昌编著 .北京理工大学出版社 .)1-16 解 :设 A1 ,2 ,3 , 则 R( A)span1 ,2 ,3 ; N ( A) 就是齐次方程组 Ax的解空间 .1-17 证 :由矩阵的乘法定义知AB 与 BA 的主对角线上元素相等 , 故知 AB 与 BA 的迹相等 ; 再由 1-18题可证 .1-18 证 :对 k 用数学归纳法证。

1-19 证:设 A,则A 22,即 = 2 ,即 =1或-1。

1-20 证:设 A,则A 22,即A = 2 ,即 =1或0 。

1-21 解:设 A,其中 0,则 A-11。

1-22证:设 BP 1AP,则E-BE-P 1AP = P 1E A P E A 。

相关文档
最新文档