高三文科数学综合测试
高三质检文科数学试题

高三质检文科数学试题一、选择题:本大题共10小题,每小题5分,共50分.1.设集合{12},{}M x x N y y a =-≤<=<,若M N ≠∅ ,则实数a 的取值范围一定是( ) A .12a -≤< B . 2a ≤ C .1a ≥- D .1a >- 2.若2(1)i a -+为纯虚数,则实数a 的值为( )A .0B .2-C .1D .1-3. 若命题:P 对于任意[]1,1x ∈-有()0f x ≥,则对命题P 的否定是( )A .对于任意[]1,1x ∈- 有()0f x <B .对于任意(,1)(1,)x ∈-∞-∞ 有()0f x <C .存在[]01,1x ∈-使0()0f x <D .存在[]01,1x ∈-使0()0f x ≥4.在一组样本的数据的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的25,且样本容量为280,则中间一组的频数为( ) A.56 B.80 C.112 D.120 5.已知()2παπ∈ , ,3sin()45πα+=,则cos α=( ) A .210-B .7210C .210-或7210D .7210- 6. 函数211x y x +=+的图像可能是( ) 7. 不等式组201x y y x ≤⎧⎪≥⎨⎪≤-⎩且224u x y y =+-,则u 的最小值为( )xyxyxyxy DCB A -2-1O-1O-12O-12OA .12B . 1C .32D . 4 8. 等差数列{}n a 中的1a 、4025a 是函数16431)(23-+-=x x x x f 的极值点,则=20132log a( )A .2B .3C .4D .5 9. 如图,在直三棱柱111ABC A B C -中,E 是AB 的 中点,D 是1AA 的中点,则三棱锥11D B C E -的体积 与三棱柱111ABC A B C -的体积之比是( ) A .14 B . 16C .18D .3810.菱形ABCD 的边长为233,60ABC ∠=︒,沿对角线AC 折成如图所示的四面体,M 为AC 的中点,60BMD ∠=︒,P 在线段DM 上,记DP x =,PA PB y +=,则函数()y f x =的图像大致为( )二、填空题:本大题共4小题,第小题5分,共20分. 11.已知程序框图如图,则输出的i= .12.在Rt ABC ∆中,1AB =,2BC =,3AC =,D 在边BC 上,23BD =,则AB AD ⋅= .13已知抛物线22y x =的焦点为F ,过F 点,且斜率为3的直线交抛物线于A , B 两点,其中第一象限内的交点为A ,则AFFB= . DEB 1C 1ACBA1DCA BxyxyxyxyDCB A112112112112OOOOMBDCAP14.已知()2xy f x =+是奇函数,且1)1(=f .若()()3g x f x =+,则=-)1(g _______ . 15.方程11x x m -++=有2个解,则m 的取值范围为 . 三、解答题:本大题共6题,共75分.16.在△ABC 中,角C B A ,,所对的边分别为,,a b c ,满足3c =,cos (2)cos 0c B a b C ++=.(1)求角C 的大小; (2)求△ABC 面积的最大值. 17.设2()ln f x x x a x =--(1)当1a =时,求()f x 的单调区间;(2)若()f x 在[2,)∞上单调递增,求a 的取值范围.18.为了了解某班在全市“一检”中数学成绩的情况,按照分层抽样分别抽取了10名男生和5名女生的试卷成绩作为样本,他们数学成绩的茎叶图如图所示,其中茎为十位数和百位数,叶为个位数。
高三期末文科数学试题及答案

高三期末文科数学试题及答案数学试卷(文史类) 202X.1(考试时间120分钟满分150分)本试卷分为挑选题(共40分)和非挑选题(共110分)两部分第一部分(挑选题共40分)一、挑选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A{1,0,1},B{x1x1},则AIB=A.{0,1}B.{1,0} C.{0} D.{1,0,1}2. 下列函数中,既是奇函数又存在零点的是A.f(x) 3. 实行如图所示的程序框图,则输出的i值为A.3 B.4 C.5 D.6第3题图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果以下面的频率散布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有 B.f(x) 1 C.f(x)ex D.f(x)sinx x1A.30辆B.300辆C.170辆 D.1700辆频率 km/h)第 4题图5. 已知m,n表示两条不同的直线,,表示两个不同的平面,且m,n,则下列说法正确的是A.若//,则m//n B.若m,则C.若m//,则// D.若,则m n6.设斜率为2的直线l过抛物线y ax(a0)的焦点F,且与y轴交于点A,若OAF(O为坐标原点)的面积为4,则抛物线方程为A.y24x B. y24x C. y28x D.y28x7. 已知A,B为圆C:(x m)(y n)9(m,n R)上两个不同的点(C为圆心),且满足|CA CB|,则AB 222A. 23 B. C. 2 D. 48. 设函数f(x)的定义域为D,如果存在正实数m,使得对任意x D,当x m D时,都有f(x m)f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x0时,f(x)x a a(a R),若f(x)为R上的“20型增函数”,则实数a的取值范畴是A. a0 B.a20 C. a10 D. a5第二部分(非挑选题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.运算:i(1i) (i为虚数单位).y210. 双曲线x1的渐近线方程为3111. 在ABC中,若BC1,AC2,cosC,则AB sinA. 422xy0112.已知正数x,y满足束缚条件,则z()2x y的最小值为. 2x3y5013.某四棱锥的三视图如图所示,则该四棱锥的体积是.俯视图侧视图第13题图14. 在ABC中,AB AC,D为线段AC的中点,若BD的长为定值l,则ABC 面积的值为(用l表示).三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明进程.15. (本小题满分13分)已知数列{an}是等差数列,数列{bn}是各项均为正数的等比数列,且a1b13,a2b214,a3a4a5b3.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn an bn,n N*,求数列{cn}的前n项和.16. (本小题满分13分)已知函数f(x)cos2xxcosx a的图象过点(,1).(Ⅰ)求实数a的值及函数f(x)的最小正周期;(Ⅱ)求函数f(x)在[0,]上的最小值. 617. (本小题满分13分)某中学从高一年级、高二年级、高三年级各选1名男同学和1名女同学,组成社区服务小组.现从这个社区服务小组的6名同学中随机选取2名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的2人都是女同学的概率;(Ⅱ)设“选出的2人来自不同年级且是1名男同学和1名女同学”为事件N,求事件N产生的概率.18. (本小题满分14分)如图,在四棱锥P ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA AD,且平面PAD平面ABCD,试证明AF平面PCD;(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点 AM,使得EM平面PCD?(直接给出结论,不需要说明理由)19. (本小题满分13分)k2x,k R. x(Ⅰ)当k1时,求曲线y f(x)在点(1,f(1))处的切线方程;(Ⅱ)当k e时,试判定函数f(x)是否存在零点,并说明理由;(Ⅲ)求函数f(x)的单调区间. 已知函数f(x)(2k1)lnx20. (本小题满分14分)已知圆O:x y1的切线l与椭圆C:x3y4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA OB;(Ⅲ)求OAB面积的值.2222北京市朝阳区2015-202X学年度第一学期期末高三年级统一考试数学答案(文史类) 202X.1一、挑选题:(满分40分)4二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ)设等差数列an的公差为d,等比数列bn的公比为q,且q0.依题意有,a1d b1q14, 23(a3d)bq.11由a1b13,又q0,解得q3, d 2.所以an a1(n1)d32(n1)2n1,即an2n1,n N.bn b1qn133n13n,n N. ………………………………………7分(Ⅱ)由于cn an bn2n13n,所以前n项和Sn(a1a2an)(b1b2bn)(352n1)(31323n)n(32n1)3(13n) 2133 n(n2)(3n1). 2所以前n项和Sn n(n2)16. (本小题满分13分)解:(Ⅰ)由f(x)cos2xxcosx a3n(31),n N*.………………………………13分 21cos2x a25sin(2x)61 a. 2611所以f()sin(2)a 1.解得a.66622函数f(x)的最小正周期为. …………………………………………………………7分由于函数f(x)的图象过点(,1),(Ⅱ)由于0x,所以2x. 2则sin(2x).1所以当2x,即x时,函数f(x)在[0,]上的最小值为. ……………13分2217.(本小题满分13分)解:从高一年级、高二年级、高三年级选出的男同学分别记为A,B,C,女同学分别记为X,Y,Z.从6名同学中随机选出2人参加活动的所有基本事件为:{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z}, {C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15个.……………4分(Ⅰ)设“选出的2人都是女同学”为事件M,则事件M包含的基本事件有{X,Y},{X,Z},{Y,Z},共3个,所以,事件M产生的概率 P(M)(Ⅱ)事件N包含的基本事件有{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6个,所以,事件N产生的概率P(N)31.……………………………………8分15562.……………………………………13分 15518. (本小题满分14分)(Ⅰ)证明:由于底面ABCD是正方形,所以AB∥CD.又由于AB平面PCD,CD平面PCD,所以AB∥平面PCD.又由于A,B,E,F四点共面,且平面ABEF平面PCD EF,所以AB∥EF.……………………5分(Ⅱ)在正方形ABCD中,CD AD.6第6 / 10页又由于平面PAD平面ABCD,且平面PAD平面ABCD AD,所以CD平面PAD.又AF平面PAD 所以CD AF.由(Ⅰ)可知AB∥EF,又由于AB∥CD,所以CD∥EF.由点E是棱PC中点,所以点F是棱PD中点.在△PAD中,由于PA AD,所以AF PD.又由于PD CD D,所以AF平面PCD........................................11分(Ⅲ)不存在. (14)分19. (本小题满分13分)解:函数f(x)的定义域:x(0,).2k1k2x2(2k1)x k(x k)(2x1)f(x)22 . 22xxxx12x. x(x1)(2x1)f(x). 2x(Ⅰ)当k1时,f(x)lnx有f(1)ln1123,即切点(1,3),k f(1)(11)(21) 2. 21所以曲线y f(x)在点(1,f(1))处切线方程是y32(x1),即y2x 1.………………………………………………………………………4分(Ⅱ)若k e,f(x)(2e1)lnx f(x)e2x.x(x e)(2x1).x2令f(x)0,得x1e(舍),x2 1. 7第7 / 10页11e1则f(x)min f()(2e1)ln22(1ln2)e ln210.22122所以函数f(x)不存在零点. ………………………………………………………8分(x k)(2x1).x2当k0,即k0时,(Ⅲ) f(x)当0k11,即k0时,当k,即k时, 22 当k11,即k时,228第8 / 10页综上,当k0时,f(x)的单调增区间是(,);减区间是(0,).1212111k0时,f(x)的单调增区间是(0,k),(,);减区间是(k,). 2221当k时,f(x)的单调增区间是(0,);211当k时,f(x)的单调增区间是(0,),(k,);221减区间是(,k). ……………………………13分2当20. (本小题满分14分)2解:(Ⅰ)由题意可知a4,b248222,所以c a b. 33所以e c.所以椭圆C的离心率为…………………………3分a33(Ⅱ)若切线l的斜率不存在,则l:x1.x23y21中令x1得y1.在44不妨设A(1,1),B(1,1),则OA OB110.所以OA OB.同理,当l:x1时,也有OA OB.若切线l的斜率存在,设l:y kx m1,即k21m2.由y kx m222,得(3k1)x6kmx3m40.明显0. 22x3y46km3m24设A(x1,y1),B(x2,y2),则x1x22,x1x2.3k13k21所以y1y2(kx1m)(kx2m)kx1x2km(x1x2)m.2222所以OA OB x1x2y1y2(k1)x1x2km(x1x2)m9第9 / 10页3m246km(k1)2km2m23k13k12(k21)(3m24)6k2m2(3k21)m223k14m24k244(k21)4k240. 223k13k1所以OA OB.综上所述,总有OA OB成立.………………………………………………9分(Ⅲ)由于直线AB与圆O相切,则圆O半径即为OAB的高. 当l的斜率不存在时,由(Ⅱ)可知AB2.则S OAB 1. 当l的斜率存在时,由(Ⅱ)可知,AB23k14(1k2)(9k21)4(9k410k21)4k2所以AB4(14)(3k21)29k46k219k6k212k21641644416419k6k213329k26k(当且仅当k时,等号成立).所以ABmax, (S OAB)max.时,OAB面积的值为.…………14分 33综上所述,当且仅当k。
2023年高三5月大联考(全国乙卷)文科数学试题及参考答案

2023届高三5月大联考(全国乙卷)文理科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,设复数21,z z 对应的点分别为()()1,12021-Z Z ,,,则=21z z ()A .2B .3C .2D .12.已知集合()(){}012<+-=x x x M ,{}30≤≤=x x N ,则=N M ()A .[)20,B .[]30,C .(]31,-D .(]32,3.《“健康中国2030”规划纲要》提出,将康时促进人的全面发展的必然要求,是经济社会发展的基础条件.实现国民健康长寿,是国家富强、民族振兴的重要标志.也是全国各族人民的共同愿望.为普及健康知识,某公益组织为某社区居民组织了一场健康知识公益讲座,讲座后居民要填写健康知识问卷(百分制),为了解讲座效果,随机抽取了10为居民的问卷,并统计得分情况如下表所示:则下列说法错误的是()A .该10位居民的问卷得分的极差为30B .该10位居民的问卷得分的中位数为94C .该10位居民的问卷得分的中位数小于平均数D .该社区居民的问卷得分不低于90分的概率估计值大于0.24.已知2.0log 1.0=a ,a b lg =,ac 2=,则c b a ,,的大小关系为()A .c b a <<B .b c a <<C .a c b <<D .ca b <<5.从装有若干个红球和白球(除颜色外其余均相同)的黑色布袋中,随机不放回地摸球两次,每次摸出一个球.若事件“两个球都是红球”的概率为152,“两个球都是白球”的概率为31,则“两个球颜色不同”的概率为()A .154B .157C .158D .1511答题居民序号12345678910得分728365768890659095766.若执行如图所示的程序框图,则输出S 的值为()A.94B .98C .115D .11107.若函数()()⎩⎨⎧≥++<++=0,1ln 0,122x a x x ax ax x f 恰有2个零点,则实数a 的取值范围是()A .()()∞+∞-,,10 B .()1,0C .()1,∞-D .()∞+,08.若平面向量b a ,满足b a 2=,且b a22+与b 垂直,则b a ,的夹角为()A .43πB .32πC .3πD .4π9.已知椭圆E :()012222>>=+b a b y a x 的左顶点为A ,上顶点为B ,左、右焦点分别为21,F F ,延长2BF 交椭圆E 于点P .若点A 到直线2BF 的距离为3216,21F PF ∆的周长为16,则椭圆E 的标准方程为()A .1162522=+y xB .1323622=+y xC .1484922=+y x D .16410022=+y x 10.已知数列{}n a 的前n 项和为n S ,且n n n n a S S S -=+++1232,7264=-a a ,344=S ,则2023是数列{}n a 的()A .第566项B .第574项C .第666项D .第674项11.已知函数()()ϕω+=x x f cos 2()00<<->ϕπω,,()30=f ,且()x f 在[]π,0上有且只有三个极值点,则下列说法错误的个数是()①存在ω值,使得函数()x f 在[]π,0上有两个极小值点;②ω的取值范围为⎥⎦⎤⎝⎛619613,;③函数()x f 在⎪⎭⎫ ⎝⎛50π,上单调递增;④若Z ∈ω,则函数()x f 图象的一个对称中心为⎪⎭⎫⎝⎛092π.A .4B .3C .2D .112.在正三棱锥ABC P -中,E D ,分别为侧棱PC PB ,的中点,若BE AD ⊥,且7=AD ,则正三棱锥ABC P -外接球的表面积为()A .π435B .π572C .π7108D .π9152二、填空题:本题共4小题,每小题5分,共20分.13.曲线xxy ln =在1=x 处的切线方程为.14.已知公比小于0的等比数列{}n a 的前n 项和为n S ,12232+==S a a ,,=1a .15.在直四棱柱1111D C B A ABCD -中,底面四边形ABCD 是菱形,︒=∠120ADC ,121AA AD =,E 是棱1AA 的中点,O 为底面菱形ABCD 的中心,则异面直线EO 和AD 所成角的余弦值为.16.已知双曲线C :()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,M 是双曲线C右支上一点,记21F MF ∆的垂心为G ,内心为I .若GI F F 1221=,则双曲线C 的离心率为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)2023年,某地为了帮助中小微企业渡过难关,给予企业一定的专项贷款资金支持.如图是该地120家中小微企业的专项贷款金额(万元)的频率分布直方图:(1)确定a 的值,并估计这120家中小微企业的专项贷款金额的中位数(结果保留整数);(2)按专项贷款金额进行分层抽样,从这120家中小微企业中随机抽取20甲.记专项贷款金额在[200,300]内应抽取的中小微企业数为m .①求m 的值.②从这m 家中小微企业中随机抽取3家,这3家中小微企业的专项贷款金额都在[200,250)内的概率.18.(12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且ABC ∆的面积为3,12222=-+c b a .(1)求C ;(2)若33cos cos -=B A ,求c .19.(12分)如图,在直三棱柱111C B A ABC -中,︒=∠90BAC ,2211===AA AC AB ,141AA AE =,D 为棱1CC 的中点,F 为棱BC 的中点.(1)求证:⊥BE 平面C AB 1;(2)求三棱锥DEF B -的体积.20.(12分)已知函数()()01ln >+=a ax xx f .(1)当21e a =时,求()x f 的单调区间;(2)若函数()axx f y 1+=有两个不同的零点,求a 的取值范围.21.(12分)已知抛物线C :()022>=p px y ,M 是其准线与x 轴的交点,过点M 的直线l 与抛物线C 交于B A ,两点,当点A 的坐标为()0,4y 时,有BA MB =.(1)求抛物线C 的方程;(2)设点A 关于x 轴的对称点为点P ,证明:直线BP 过定点,并求出该定点坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为⎪⎩⎪⎨⎧+==ααsin 21cos t y t x (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为⎪⎭⎫ ⎝⎛+=4sin 22πθρ.(1)写出曲线C 的直角坐标方程;(2)已知点P 的直角坐标为⎪⎭⎫ ⎝⎛210,,若直线l 与曲线C 交于N M ,两点,求PN PM -的最大值.23.(10分)【选修4-5:不等式选讲】已知c b a ,,都是正实数..(1)若1=ac ,求证:()()b c b b a 4≥++;(2)若1112121=++++cb a ,求c b a ++的最小值.参考答案一、选择题1.C解析:由题意,知i z 21=,i z -=12,∴i i i z z +-=-=11221,∴221=z z .2.A 解析:∵集合{}21<<-=x x M ,{}30≤≤=x x N ,∴[)20,=N M .3.B解析:将这10为居民的问卷得分按照从小到大的顺序排列为65,65,72,76,76,83,88,90,90,95,∴极差为95-65=30,故A 正确;中位数为5.7928376=+,故B 错误;平均数为()5.798095909088837676726565101>=+++++++++⨯,故C 正确;由题表及样本估计总体,知该社区居民问卷得分不低于90分的概率估计值为2.03.0103>=,故D 正确.4.D解析:∵x y 1.0log =在()∞+,0上单调递减,∴1.0log 2.0log 1log 1.01.01.0<<,即10<<a .∵x y lg =在()∞+,0上单调递增,∴1lg lg <a ,即0<b .∵xy 2=在R 上单调递增,∴022>a,即1>c .综上,得c a b <<.5.C解析:设“两个球都是红球”为事件A,“两个球都是白球”为事件B,“两个球颜色不同”为事件C,则()()31152==B P A P ,且B A C =.∵C B A ,,两两互斥,∴()()()()()[]158311521111=--=+-=-=-=B P A P B A P C P C P .6.A解析:初始值20==n S ,.第一次执行循环体:43113111212=⨯=⨯=-=n S a ,,,否;第二次执行循环体:6531311531=⨯+⨯=⨯=n S a ,,,否;第三次执行循环体:8751531311751=⨯+⨯+⨯=⨯=n S a ,,,否;第四次执行循环体:10971751531311971=⨯+⨯+⨯+⨯=⨯=n S a ,,,是,输出S .∵9491717151513131121971751531311=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⨯+⨯+⨯+⨯=S ,∴输出S 的值为94.7.A 解析:①当0=a 时,()()⎩⎨⎧≥+<=0,1ln 0,1x x x x f ,则()x f 只有一个零点0,不符合题意;②当0<a 时,作出函数()x f 的大致图象,如图1,()x f 在()0,∞-和[)∞+,0上各有一个零点,符合题意;③当0>a 时,作出函数()x f 的大致图象,如图2,()x f 在[)∞+,0上没有零点.若()x f 在()0,∞-上有两个零点,则符合题意,此时必须满足()011<-=-a f ,解得1>a .综上,得0<a 或1>a ,故选A.8.B 解析:∵b a 22+与b 垂直,∴()022=⋅+b b a ,化简得222b b a -=⋅.设b a ,的夹角为θ,则21cos -=⋅⋅=ba b a θ.∵[]πθ,0∈,∴32πθ=.9.B解析:由题意,得()()()0,,00,2c F b B a A ,,-,则直线2BF 的方程为0=-+bc cy bx ,∴点A 到直线2BF 的距离()321622=+=+--=c a a bc b bc abd ①.由21F PF ∆的周长为16,得16222121=+=++c a F F PF PF ,即8=+c a ②联立①②解得a b 322=③∵222c a b -=,∴a c 31=④.联立②④,解得26==c a ,,∴24=b ,故椭圆E 额标准方程为1323622=+y x .10.D 解析:由n n n n a S S S -=+++1232,得()n n n n n a S S S S --=-+++1122,即122++=+n n n a a a ,∴数列{}n a 是等差数列,设公差为d ,则由7264=-a a 和344=S 得⎩⎨⎧=+=+1732711d a d a ,解得⎩⎨⎧==341d a ,∴()13314+=⨯-+=n n a n .由202313=+n ,得674=n .11.B 解析:∵()30=f ,∴23cos =ϕ.∵0<<-ϕπ,∴6πϕ-=.当[]π,0∈x 时,⎥⎦⎤⎢⎣⎡--∈-6,66πωπππωx ,∵()x f 在[]π,0上有且只有三个极值点,∴ππωππ362<-≤得619613<≤ω,∴根据图象可以判断,()x f 在[]π,0上有两个极大值点,一个极小值点,∴①错误,②错误;当⎪⎭⎫⎝⎛∈5,0πx 时,6566ππωπωππ-<-≤-,显然065>-ππω,不符合题意∴③错误;由Z ∈ω得3=ω,∴()⎪⎭⎫ ⎝⎛-=63cos 2πx x f ,令Z k k x ∈+=-,263πππ,得Z k k x ∈+=,923ππ,当0=k 时,92π=x ,∴④正确.故选B.12.C 解析:如图,∵ABC P -为正三棱锥,P AC PBC P AB ∆≅∆≅∆,7==BE AD .取线段PE 的中点F ,连接AF DF ,,∵D 为PB 的中点,∴BE DF ∥,BE DF 21=.∵BE AD ⊥,∴DF AD ⊥.在ADF Rt ∆中,72==DF AD ,由勾股定理,得235=AF .设x P A APB ==∠,θ.在P AD ∆中,由余弦定理的推论,得222745212741cos x xx x x -=⋅-+=θ①同理,在P AF ∆中,由余弦定理的推论,得222235817412435161cos x xx x x -=⋅-+=θ②.联立①②,解得32=x ,32cos =θ.在P AB ∆中,由余弦定理,得()()832323223232cos 222222=⨯⨯⨯-+=∠⋅⋅-+=APB PB P A PB P A AB ,∴22=AB .取ABC ∆的中心1O ,连接11AO PO ,,则⊥1PO 平面ABC ,三棱锥ABC P -的外接球球心O 在1PO 上,连接OA ,设外接球半径为R .在1P AO Rt ∆中,R OA =,36232231=⨯=AB AO ,∴()321236232222121=⎪⎪⎭⎫ ⎝⎛-=-=AO P A PO ,∴R R PO OO -=-=321211,∴21212AO OO AO +=,即2223623212⎪⎪⎭⎫ ⎝⎛+-=R R ,解得7213=R ,∴所求外接球的表面积为ππ710842=R .二、填空题13.01=--y x 解析:2ln 1xxy -=',当1=x 时,1='y .又当1=x 时,0=y ,∴曲线xxy ln =在1=x 处的切线方程为1-=x y ,即01=--y x .14.4-解析:设等比数列{}n a 的公比为()0<q q ,将22=a 代入123+=S a ,得1222++=qq ,∴02322=--q q ,解得21-=q 或2=q (舍去),∴41-=a .15.1473解析:如图,连接C D C A AC 11,,,∵O 为AC 的中点,E 是棱1AA 的中点,∴C A OE 1∥.∵11D A AD ∥,∴C A D 11∠或其补角为异面直线EO 与AD 所成的角.不妨设1=AD ,则211111=====DD AA CD AD D A ,.在ADC ∆中,由余弦定理得:32111211120cos 22222=⎪⎭⎫⎝⎛-⨯⨯⨯-+=︒⋅-+=DC AD DC AD AC .∵1111D C B A ABCD -为直四棱柱,∴⊥1AA 平面ABCD .又⊂DC AC ,平面ABCD ,∴DC AA AC AA ⊥⊥11,.∵11AA DD ∥,∴DC DD ⊥1,∴()732222211=+=+=AC AA C A ,512222211=+=+=DC DD C D 在C D A 11∆中,由余弦定理的推论得:14737125712cos 111212121111=⨯⨯-+=⋅-+=∠C A D A C D C A D A C A D .16.2解析:如图,连接MI GM ,并延长,与21F F 分别交于点D O ,.设双曲线C 的焦距为c 2.由题意得c GI 61=.∵21F F GI ∥,且G 为重心,则32=ODGI ,∴4c OD =.∵I 为21F MF ∆的内心,∴MD 为21MF F ∠的平分线,∴35212121===∆∆DF D F S S MF MF MDF D MF ,∴2135MF MF =.又a MF MF 221=-,∴a MF a MF 3521==,.设21F MF ∆的内切圆半径为r ,则M 到x 轴的距离为r 3,∵r F F S F MF 3212121⋅⋅=∆,()r F F MF MF S F MF ⋅++⋅=∆21212121,∴2121213F F MF MF F F ++=,∴a c 2=,∴双曲线C 的离心率2==ace .三、解答题(一)必考题17.解:(1)由频率分布直方图,得()150001.0006.02003.0002.0=⨯++++a ,解得004.0=a .设中位数为t ,专项贷款金额在[0,150)内的频率为0.45,在[150,200)内的频率为0.3,∴中位数t 在[150,200)内,∴()05.0006.0150=⨯-t ,解得158≈t ,∴估计这120家中小微企业的专项贷款金额的中位数为158万元.(2)①由题意,得抽取比例为6112020=,专项贷款金额在[200,300]内的中小微企业有()30001.0004.050120=+⨯⨯家,∴应抽取56130=⨯家,∴5=m .②在抽取5家中小微企业中,专项贷款金额在[200,250)内的有4545=⨯家,记为D C B A ,,,,专项贷款金额在[250,300]内的有1515=⨯家,记为E .从这5家中小微企业中随机抽取3家的可能情况为CDE BDE BCE BCD ADE ACE ACD ABE ABD ABC ,,,,,,,,,,共10种,其中这3家中小微企业的专项贷款金额都在[200,250)内的情况为BCD ACD ABD ABC ,,,,共4种,∴所求概率52104==P .18.解:(1)∵ABC ∆的面积为3,∴3sin 21=C ab ,即32sin =C ab ①由余弦定理的推论,得abc b a C 2cos 222-+=.∵12222=-+c b a ,∴6cos =C ab ②.易知2π≠C ,①÷②,得33tan =C .∵()π,0∈C ,∴6π=C .(2)∵6π=C ,∴23cos =C ,即()23cos =+-B A ,∴23sin sin cos cos -=-B A B A .又33cos cos -=B A ,∴63sin sin =B A .由正弦定理得c CcB b A a 2sin sin sin ===,∴B c b A c a sin 2sin 2==,.由(1),知32sin =C ab ,∴34=ab ,∴34sin sin 42=B A c ,即23sin sin cB A =,∴6332=c ,解得6=c .19.解:(1)∵11112141BB AA AA AC AB AA AE ====,,,∴12121BB AB AB AE ==,,∴1BB ABAB AE =.∵111C B A ABC -为直三棱柱,∴侧面11A ABB 为矩形,∴︒=∠=∠9011ABB AB A ,∴1~BAB AEB ∆∆,∴AEB BAB ∠=∠1.又︒=∠+∠90AEB EBA ,∴︒=+∠901BAB EBA ,∴1AB BE ⊥.∵⊥1AA 平面ABC ,⊂AC 平面ABC ,∴AC AA ⊥1.又⊂=⊥11AA A AB AA AB AC ,, 平面11A ABB ,∴⊥AC 平面11A ABB ,∵⊂BE 平面11A ABB ,∴BE AC ⊥.∵⊂=11AB A AC AB , 平面C AB 1,⊂AC 平面C AB 1,∴⊥BE 平面C AB 1.(2)连接AF ,∵⊄111AA BB AA ,∥平面11B BCC ,⊂1BB 平面11B BCC ,∴∥1AA 平面11B BCC ,∴三棱锥DEF B -的体积CD S V V V V ABF ABF D BDF A BDF E DEF B ⋅====∆----31.∵︒=∠==902BAC AC AB ,,F 为BC 的中点,∴BC AF BC ⊥=,22,∴2==BF AF ,∴1222121=⨯⨯=⋅⋅=∆AF BF S ABF ,∴三棱锥DEF B -的体积32213131=⨯⨯=⋅=∆-CD S V ABF DEF B .20.解:(1)由题意,知()x f 的定义域为()∞+,0,当21e a =时,()()()222222ln 1ln e x x e x e x f e x x e x f +⎪⎪⎭⎫⎝⎛+-='+=,.令()x e x x g 2ln 1+-=,则()0122<--='xe x x g ,∴()x g 在()∞+,0上单调递减.∵()02=eg ,∴当()2,0e x ∈时,()0>x g ,从而()0>'x f ;当()+∞∈,2e x 时,()0<x g ,从而()0<'xf ,∴()x f 的单调递增区间为()2,0e ,单调递减区间为()+∞,2e.(2)函数()ax x f y 1+=有两个不同的零点等价于()01=+axx f 有两个不同的解,等价于()011ln =++x ax 有两个不同的解.令()()11ln ++=x ax x h ,()+∞∈,0x ,则()()2ln +='x a x h .由()0='x h ,得21ex =.又0>a ,∴当⎪⎭⎫ ⎝⎛∈21,0e x 时,()0<'x h ;当⎪⎭⎫⎝⎛+∞∈,12e x 时,()0>'x h ,∴()x h 在⎪⎭⎫ ⎝⎛21,0e 上单调递减,在⎪⎭⎫⎝⎛+∞,12e 上单调递增,∴()22min 11e a e h x h -=⎪⎭⎫⎝⎛=.①当012≥-ea 即20e a ≤<时,()x h 至多有一个零点,不符合题意;②当012<-e a 即2e a >时,012<⎪⎭⎫ ⎝⎛e h ,()011>+=a h .由单调性和函数零点存在定理,知()x h 在⎪⎭⎫⎝⎛+∞,12e 上有且只有一个零点.∵2e a >,∴22111e a a <<,且a aa a h ln 2112-+=⎪⎭⎫ ⎝⎛.令()x x x ln 21-+=ϕ,则()xx x 2-='ϕ,∴当()+∞∈,2x 时,()0>'x ϕ,∴()x ϕ在()∞+,2上单调递增.∵22>>e a ,∴()()04ln 32>-=>ϕϕa ,∴012>⎪⎭⎫⎝⎛a h .由单调性和函数零点存在定理,知()x h 在⎪⎭⎫⎝⎛21,0e 上有且只有一个零点.∴当2e a >时,()x h 有两个不同的零点,即()axx f y 1+=有两个不同的零点,符合题意.综上,a 的取值范围是()+∞,2e .21.解:(1)设()B B y x B ,,由BA MB =得B 诶线段MA 的中点.∵⎪⎭⎫ ⎝⎛-0,2p M ,∴⎪⎩⎪⎨⎧=-=02242y y p x B B ,∴⎪⎪⎩⎪⎪⎨⎧=-=2420y y p x B B ,即⎪⎭⎫ ⎝⎛-2,420y p B ,把⎪⎭⎫ ⎝⎛-2,420y p B 代入px y 22=中,得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛422220p p y ,把()0,4y A 代入px y 22=中,得p y 820=,∴p p p 2422=⎪⎭⎫⎝⎛-.又0>p ,∴4=p ,∴抛物线C 的方程为x y 82=.(2)由题意,知直线l 的斜率存在且不为0,∵()02,-M ,∴可设直线l 的方程为2-=my x .设()()2211,,y x B y x A ,,则点()11,y x P -.由⎩⎨⎧=-=xy my x 822消去x 得01682=+-my y ,∴0>∆,根据根与系数的关系得1682121==+y y m y y ,.直线BP 的斜率12212212121288y y y y y y x x y y k -=-+=-+=,直线BP 的方程为()21228x x y y y y --=-,∴()()()221222122122128181********y y y y y y y x y y y y y y x ++--=+---=()28112+-=y y y ,即直线BP 的方程可表示为()28112+-=y y y x .∴直线BP 过定点,且定点坐标为()02,.(二)选考题22.解:(1)∵⎪⎭⎫ ⎝⎛+=4sin 22πθρ,∴θθρcos 2sin 2+=,即θρθρρcos 2sin 22+=.又θρcos =x ,θρsin =y ,222ρ=+y x ,∴曲线C 的直角坐标方程为02222=--+y x y x .(2)依题意,将直线l 的参数方程代入曲线C 的直角坐标方程得:()043cos 2sin 2=-+-t t αα.设点N M ,所对应的参数分别为21,t t ,则43cos 2sin 2121-=+=+t t t t ,αα.∵点P 的直角坐标为⎪⎭⎫ ⎝⎛210,,∴1t PM =,2t PN =.∵021<t t ,∴2121t t t t PN PM +=-=-()ϕααα+=+=sin 5cos 2sin ,其中552sin 55cos ==ϕϕ,.由()03cos 2sin 2>++=∆αα,得R ∈α,∴当()1sin ±=+ϕα时,PN PM -最大,且最大值为5.23.解:(1)∵c b a ,,都是正实数,∴02>≥+ab b a ,02>≥+bc c b ,∴()()bc ab c b b a 22⋅≥++,当且仅当1===c b a 时,等号成立,即()()ac b c b b a 4≥++.又∵1=ac ,∴()()b c b b a 4≥++.(2)∵1112121=++++c b a ,∴12212422=++++cb a .由柯西不等式,得()()[]()22122212142221242++≥⎪⎭⎫⎝⎛++++++++c b a c b a ,即()22215222+≥+++c b a ,即222+≥++c b a ,当且仅当()c b a 21222=+=+,即222222+===c b a ,,时等号成立,∴c b a ++的最小值为222+.。
高三文科数学模拟题二十

高三数学模拟试题(二十)一、选择题(5×10=50分)1.已知0,0a b >>,且12(2)y a b x =+为幂函数,则ab 的最大值为( )A .18 B .14 C .12 D .342.有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是( )A .5,10,15,20,25B .5,12,31,39,57C .5,15,25,35,45D .5,17,29,41,53 3.已知复数1i z =-,z 为z 的共轭复数,则下列结论正确的是( )A .1i z =--B .1+i z =-C .2z =D.z =4.已知向量()2,1p =-,(),4q x =,且p q ⊥,则p q +的值为( )AB .5 CD .135.已知()⎪⎭⎫ ⎝⎛+=32sin πx x f ,为了得到()x x g 2sin =的图象,则只要将()x f 的图象( )A .向右平移6π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度 D .向左平移12π 个单位长度6.如图,正方体1111ABCD A BC D -中,E 是棱11B C 的 中点,动点P 在底面ABCD 内,且11PA A E =,则 点P 运动形成的图形是( )A .线段B .圆弧C .椭圆的一部分D .抛物线的一部分7.已知x 、y 满足约束条件2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则z x y =-的取值范围为( )A .[]2,1--B .[]2,1-C .[]1,2-D .[]1,28.直线022=+-y x 经过椭圆(a by a x 12222=+>b >)0的一个焦点和一个顶点,则该椭圆的离心率为( )A .552 B .21 C .55 D .329.已知数列{}n a 的前n 项和为n S ,22-=n n a S ,则4a =( )A .64B .32C .16D .8 10.设函数3x y =与2)21(-=x y 的图像的交点为),(00y x ,则0x 所在的区间是( )A .)1,0(B .)2,1(C .)3,2(D .)4,3((选做)已知S n 是等差数列{a n }(n ∈N *)的前n 项和,且S 6>S 7>S 5,有下列四个命题,假命题...的是( ) A .公差d <0 B .在所有S n <0中,S 13最大 C .满足S n >0的n 的个数有11个 D .a 6>a 7 二、填空题(5×5=25分)12.已知函数()f x 是以5为周期的奇函数,且(3)2f -=,则(2)f -=13.执行框图,会打印出一列数,这个数列的第3项是 .14.已知ABC ∆的内角C B A 、、所对的边分别为,,a b c ,且2a =,3b =,4cos 5B =. 则sin A 的值为 15.观察下列等式:12133+=; 781011123333+++=; 16171920222339333333+++++=; …则当m n <且,m n ∈N 表示最后结果.313232313333n n m m ++--++++= (最后结果用,m n 表示最后结果) 三、解答题(75分)16.(本题满分13分)已知向量)0)(1,cos sin 3(),1,cos 2(>+=-=ωωωωx x x ,函数x f ⋅=)(的最小正周期为π.(1)求函数)(x f 的表达式及最大值; (2)若在0,2x π⎡⎤∈⎢⎥⎣⎦上a x f ≥)(恒成立,求实数a 的取值范围17.(本小题满分13分)设等差数列{}n a 满足246=S ,109a =-。
陕西省渭南市2023届高三下学期文科数学一模试题含解析

渭南市2023届高三教学质量检测(Ⅰ)数学试题(文科)(答案在最后)注意事项:1.本试题满分150分,考试时间120分钟.2.答卷前务必将自己的姓名、学校、班级、准考证号填写在答题卡和答题纸上.3.将选择题答案填涂在答题卡上,非选择题按照题号完成在答题纸上的指定区域内.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,1,2,4A =-,{}220B x x x =-≤,则A B ⋂=()A.{}1,2-B.{}1,2C.{}1,4D.{}1,4-2.设复数z 满足()12i 34i z ⋅+=-+,则z 的虚部是() A.2i B.2C.2i - D.2-3.已知命题3:,sin 2p x R x ∃∈=;命题2:,450q x R x x ∀∈-+>,则下列结论正确的是() A.命题p q ∧是真命题B.命题p q ∧⌝是真命题C.命题p q ⌝∧是真命题D.命题p q ⌝∧⌝是假命题 4.已知1x >,则41y x x =+-取得最小值时x 的值为() A.3B.2C.4D.55.若实数,x y 满足约束条件2240x y x y y +>⎧⎪+⎨⎪⎩则2z x y =-的最大值是()A.2-B.4C.8D.126.已知函数()3sin2cos2,f x x x x R =-∈,则正确的是() A.()22f x -B.()f x 在区间()0,π上有1个零点C.()f x 的最小正周期为2πD.23x π=为()f x 图象的一条对称轴 7.《卖油翁》中写道:“(油)自钱孔入,而钱不湿”,其技艺让人叹为观止,已知铜钱是直径为15mm 的圆,中间有边长为5mm 的正方形孔,若随机向铜钱滴一滴油,则油(油滴的大小忽略不计)正好落入孔中而钱不湿的概率为()A.916B.14C.419π- D.49π8.青花瓷,又称白地青花瓷,常简称青花,是中国瓷器的主流品种之一.如图1,这是一个青花瓷圆盘.该圆盘中的两个圆的圆心重合,如图2,其中大圆半径3R =,小圆半径2r =,点P 在大圆上,过点P 作小圆的切线,切点分别是,E F ,则PE PF ⋅=()A.49B.59C.4D.5 9.已知函数()f x 满足:①定义域为R ,②()1f x +为偶函数,③()2f x +为奇函数,④对任意的[]12,0,1x x ∈,且12x x ≠,都有()()()()12120x x f x f x -->,则7211,,333f f f ⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的大小关系是() A.7211333f f f ⎛⎫⎛⎫⎛⎫-<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.7112333f f f ⎛⎫⎛⎫⎛⎫-<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C.1172333f f f ⎛⎫⎛⎫⎛⎫<-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.1127333f f f ⎛⎫⎛⎫⎛⎫<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.如图,在直三棱柱111ABC A B C -中,122AA AB AC ==,且,,AB AC D E ⊥分别是棱1,BC BB 的中点,则异面直线1A D 与1C E 所成角的余弦值是()A.69 B.66 C.579 D.30611.已知以圆22:(1)4C x y -+=的圆心为焦点的抛物线1C 与圆在第一象限交于A 点,B 点是抛物线22:8C x y =上任意一点,BM 与直线2y =-垂直,垂足为M ,则BM AB -的最大值为()A.1B.2C.1-D.812.已知直线(,0)y ax b a R b =+∈>是曲线()xf x e =与曲线()ln 2g x x =+的公切线,则a b +等于()A.2e +B.3C.1e +D.2二、填空题:本题共4小题,每小题5分,共20分.13.2021年受疫情影响,国家鼓励员工在工作地过年.某机构统计了某市5个地区的外来务工人员数与他们选择留在当地过年的人数占比,得到如下的表格:A 区B 区C 区D 区E 区外来务工人员数 50004000350030002500留在当地的人数占比80% 90% 80% 80% 84%根据这5个地区的数据求得留在当地过年人员数y 与外来务工人员数x 的经验回归方程为0.8135ˆˆyx a =+.该市对外来务工人员选择留在当地过年的每人补贴1000元,该市F 区有10000名外来务工人员,根据经验回归方程估计F 区需要给外来务工人员中留在当地过年的人员的补贴总额为__________万元.(参考数据:取0.81353629.29⨯=)14.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为4,焦点到C 的一条渐近线的距离为1,则C 的渐近线方程为__________.15.宝塔山是延安的标志,是革命圣地的象征,也是中国革命的摇篮,见证了中国革命的进程,在中国老百姓的心中具有重要地位.如图,在宝塔山的山坡A 处测得15CAD ∠=,从A 处沿山坡直线往上前进85m 到达B 处,在山坡B 处测得30,45CBD BCD ∠∠==,则宝塔CD 的高约为__________m .(2 1.41≈,6 2.45≈,结果取整数)16.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动(如图甲),利用这一原理,科技人员发明了转子发动机.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体如图乙所示,若正四面体ABCD 的棱长为1,则勒洛四面体能够容纳的最大球的半径为_______;用过A ,B ,C 三点的平面去截勒洛四面体,所得截面的面积为_____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)设数列{}n a 的前n 项和为n S ,已知13a =,n S n ⎧⎫⎨⎬⎩⎭是公差为2的等差数列. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 前n 项和n T . 18.(12分)从某台机器一天产出的零件中,随机抽取10件作为样本,测得其质量如下(单位:克): 记样本均值为x ,样本标准差为s . (1)求,x s ;(2)将质量在区间(),x s x s -+内的零件定为一等品. (i )估计这台机器生产的零件的一等品率;(ii )从样本中的一等品中随机抽取2件,求这两件产品质量之差的绝对值不超过0.3克的概率P . 19.(12分)如图,在直三棱柱111ABC A B C -中,E 为11A C 的中点,2AB BC ==,1C F AB ⊥(1)求证:AB BC ⊥;(2)若1C F ∥平面ABE ,且12C F =,求点A 到平面BCE 的距离.20.(12分)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长.某些折纸活动蕴含丰富的数学内容,例如:用一张圆形纸片,按如下步骤折纸(如图)步骤1:设圆心是E ,在圆内异于圆心处取一点,标记为F ; 步骤2:把纸片折叠,使圆周正好通过点F ; 步骤3:把纸片展开,并留下一道折痕;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.已知这些折痕所围成的图形是一个椭圆.若取半径为6的圆形纸片,设定点F 到圆心E 的距离为4,按上述方法折纸.(1)以点F 、E 所在的直线为x 轴,建立适当的坐标系,求折痕围成的椭圆的标准方程;(2)若过点()1,0Q 且不与y 轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴的正半轴上是否存在定点(),0T t ,使得直线TM ,TN 斜率之积为定值?若存在,求出该定点和定值;若不存在,请说明理由.21.(12分)已知函数()()ln af x x x a R x=--∈有两个极值点()1212,x x x x <. (1)求实数a 的取值范围,并求()f x 的单调区间; (2)证明:()2ln2f x >.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标xOy 中,曲线C 的参数方程为223131t x t y t ⎧=⎪⎪+⎨⎪=⎪+⎩(t 为参数,t ∈R ),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为3cos 32πρθ⎛⎫+=- ⎪⎝⎭. (1)求曲线C 的普通方程;(2)若曲线C 与直线l 交于A ,B 两点,求AOB △的面积. 23.[选修4-5:不等式选讲](10分)已知关于x 的不等式123x x t +-+-≥有解. (1)求实数t 的最大值M ;(2)在(1)的条件下,已知a ,b ,c 为正数,且23abc M =,求()22a b c ++的最小值.渭南市2023届高三教学质量检测(Ⅰ)数学试题(文科)参考答案一、选择题(每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BCCACADBCAAD二、填空题(每小题5分,共20分)13.818.614.3y x =15.4416.61-3π-2分,第二空3分) 三、解答题17.解:(1)∵13a =∴131S =∴()31221n S n n n=+-⨯=+ ∴22n S n n =+当2n ≥时,141n n n a S S n -=-=- 又13a =适合上式,因此41n a n =- (2)()()1111414344143n b n n n n ⎛⎫==- ⎪-⋅+-+⎝⎭11111114377114143129n nT n n n ⎛⎫=-+-++-= ⎪-++⎝⎭ 18.(1)()1110.59.99.410.710.09.610.810.19.79.3100101010x =+++++++++=⨯= 22222221(10.510)(9.910)(9.410)(10.710)(10.010)(9.610)10s ⎡=-+-+-+-+-+-⎣ 22221(10.810)(10.110)(9.710)(9.310) 2.50.2510⎤+-+-+-+-=⨯=⎦,所以0.5s =. (2)①()(),9.5,10.5x s x s -+=,质量在区间()9.5,10.5内的零件定为一等品,样本中一等品有:9.9,10.0,9.6,10.1,9.7共5件,用样本估计总体,这台机器生产的零件的一等品率为51102= ②从5件一等品中,抽取2件,有:()()()()()9.9,10.0,9.9,9.6,9.9,10.1,9.9,9.7,10.0,9.6,()()()()()10.0,10.1,10.0,9.7,9.6,10.1,9.6,9.7,10.1,9.710种情况,如下:抽取两件产品质量之差的绝对值不超过0.3克的情况为:()()()()9.9,10.0,9.9,9.6,9.9,10.1,9.9,9.7,()()()10.0,10.1,10.0,9.7,9.6,9.7共7种,这两件产品质量之差的绝对值不超过0.3克的概率710P =. 19.(1)证明:1CC ⊥平面,ABC AB ⊂平面1,ABC CC AB ∴⊥,又1111,AB C F CC C F C ⊥⋂=,且11,CC C F ⊂平面11BCC B ,AB ∴⊥平面11BCC B ,又BC ⊂平面11,BCC B AB BC ∴⊥.(2)过F 做FM AC ∥交AB 于M ,连接EM ,11,EC AC FM EC ∴∥∥1C F ∥平面1,ABE C F ⊂平面1EMFC ,平面1EMFC ⋂平面,ABE EM = 1,C F EM ∴∥∴四边形1EMFC 是平行四边形,11,2FM EC AC FM ∴==∴是ABC 的中位线. 221111,3,2CF BC CC C F CF ∴===-= 232,2 3.EBCEB EC BC S ∴===∴== 设A 到平面EBC 的距离为d ,则13333A BEC dV d -==, 1123223323A BEC E ABC V V --==⨯⨯⨯=又2d ∴=,即A 到平面EBC 的距离为2.20.解:(1)如图,以FE 所在的直线为x 轴,FE 的中点O 为原点建立平面直角坐标系设(),M x y 为椭圆上一点,由题意可知,64MF ME AE EF +==>= 所以M 点轨迹是以F ,E 为焦点,长轴长24a =的椭圆 因为24c =,26a =,所以2c =,3a =,则2225b a c =-=,所以椭圆的标准方程为22195x y +=(2)解:由已知:直线l 过()1,0Q ,设l 的方程为1x my =+,联立两个方程得221941x y x my ⎧+=⎪⎨⎪=+⎩,消去x 得()225910400m y my ++-=, ()22100160590m m ∆=++>得m ∈R ,设()11,M x y ,()22,N x y ,则1221059m y y m -+=+,1224059y y m -=+(*), ()()1212121211TM TN y y y y k k x t x t my t my t ⋅=⋅=--+-+- 1212121211TM TN y y y y k k x t x t my t my t⋅=⋅=⋅--+-+- ()()()1222121211y y m y y m t y y t =+-++-,将(*)代入上式,可得上式()()222405991t m t -=-+-,要使TM TN k k ⋅为定值,则有290t -=, 又∵0t >,∴3t =,此时109TM TN k k ⋅=-, ∴存在点()3,0T ,使得直线TM 与TN 斜率之积为定值109-,此时3t =21.(1)解:()f x 的定义域为()()220,,,0x x af x x x∞-+='+>, 令()2g x x x a =-+,其对称轴为12x =, 由题意知12,x x 是方程()0g x =的两个不相等的实根,则()Δ14000a g a =->⎧⎨=>⎩,所以104a <<,即实数a 的取值范围是10,4⎛⎫⎪⎝⎭. 当()10,x x ∈时,()0f x '>,所以()f x 在()10,x 上为增函数; 当()12,x x x ∈时,()0f x '<,所以()f x 在()12,x x 上为减函数; 当()2,x x ∞∈+时,()0f x '>,所以()f x 在()2,x ∞+上为增函数.. (2)证明:由(1)知22221,1,2x a x x ⎛⎫∈=-+⎪⎝⎭, ()222222222ln 21ln x x f x x x x x x -+=--=--,令()121ln 12h x x x x ⎛⎫=--<<⎪⎝⎭,则()12120x h x x x -=-=>',所以()h x 在1,12⎛⎫⎪⎝⎭上单调递增,故()11ln ln222h x h ⎛⎫>=-= ⎪⎝⎭,从而()2ln2f x >.22.(1)由223123tx t y ⎧=⎪⎪+⎨⎪=⎪⎩得x t y =,代入2231y t =+ 整理得22230x y +-=,即(2233x y +-=,故曲线C 的普通方程为(()22330x y y +-=≠.(2)直线l 的普通方程为330x -+=,此时直线过圆心(3,AB 即为直径3O 到直线的距离32d =,13333222OAB S =⨯=△23.(1)因为()()12123x x x x +--+--=≤,当且仅当2x ≥等号成立 所以12x x +--的最大值为3.因为不等式()3f x t -≥有解,所以33t -≤,解得06t ≤≤, 所以实数t 的最大值6M =. (2)由(1)知,123abc =因为()2224a b c ab c +++≥(当且仅当a b =时,等号成立),()()22322233422322343412336ab c ab ab c ab ab c abc +=++⋅⋅==⨯=≥,当且仅当22ab c =,即6a b ==23c =时,等号成立,所以()22a b c ++的最小值为36.。
2023年高三2月大联考(全国乙卷)文科数学试题及参考答案

2023届高三2月大联考(全国乙卷)文科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数iz2,则iz
1
()
A.i
4141B.i2121C.i2121D.i414
1
2.若集合
02
4
xx
NxA,4,3,2,0,1B,则BA()
A.4,3,2,1,0,1B.3,2,0,1C.32,0,D.
3,2
3.已知命题p:1x,01xx,则p为()A.1x,01xxB.1x,
01xx
C.1x,01xxD.1x,
01xx
4.下列函数中,既是奇函数又在,0上单调递增的为()A.xytanB.xxy1ln1lnC.
x
xy12
D.xeeyxx2
5.如图,已知正三棱柱111
CBAABC的棱长都相等,D为棱AB的中点,
则CD与1
AC所成角的正弦值为()
A.46B.410C.42D.
4
3
6.已知数列na的前n项和为nS,且nnaS263,则55aS的值为()A.1611B.1633C.211D.
48
31
7.将函数xxxxf22sincos62sin的图象向右平移20个单位长度后得到函数xg的图象.若3x是函数xg的一个极值点,则的值为()A.6B.4C.3D.
12
5
8.已知函数xf是偶函数,当0x时,xaxxf2.若曲线xfy在点1,1f
处的切线方程为axy,则实数a的值为()A.4B.2C.1D.
2
1
9.克罗狄斯·托勒密是古希腊著名数学家、天文学家和地理学家,他在所著的《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当凸四边形的对角互补时取等号,后人称之为托勒密定理
河南省许济洛平2022-2023学年高三第三次质量检测文科数学试题含答案

许济洛平2022~2023学年高三第三次质量检测文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}220A x x x =--≤,{}01B x x =<<,则() U A B ⋂=ð().A .(],1-∞-B .()[),12,-∞⋃+∞C .()[),01,-∞⋃+∞D .(),1-∞-2.已知复数i 1i m -+为纯虚数,则实数m 的值为().A .B .1-CD .13.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,2AO AE = ,则BE = ().A .3144AB AD -+ B .1344AB AD + C .1344AB AD -+ D .3144AB AD + 4.若如图所示的程序框图输出的结果为720S =,则图中空白框中应填入().A .7?k ≤B .7?h >C .8?k ≤D .8?k >5.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[)0,50、[)50,100、[)100,150、[)150,200、[)200,300和[]300,500六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是().A .这14天中有5天空气质量为“中度污染”B .从2日到5日空气质量越来越好C .这14天中空气质量指数的中位数是214D .连续三天中空气质量指数方差最小是5日到7日6.设tan α,tan β是方程240x ++=的两根,且ππ,,22αβ⎛⎫∈- ⎪⎝⎭,则αβ+=().A .π3B .2π3-C .π3或2π3-D .2π37.已知三棱锥S ABC -中,SA ⊥底面ABC ,若4SA =,6AB AC BC ===,则三棱锥S ABC -的外接球的体积为().A .332π3B .256π3C .128π3D .64π38.将函数()2πsin sin 3f x x x ⎛⎫=++ ⎪⎝⎭的图像上所有点的横坐标变为原来的12,纵坐标不变,再把所得图像向左平移()0ϕϕ>个单位长度,得到函数()g x 的图像.若对任意的x ∈R ,均有()π6g x g ⎛⎫≤ ⎪⎝⎭,则ϕ的最小值为().A .7π12B .3π4C .11π12D .5π49.著名物理学家牛顿在17世纪提出了牛顿冷却定律,描述温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律.统计学家发现网络热搜度也遵循这样的规律,即随着时间的推移,热搜度会逐渐降低.假设事件的初始热搜度为()000N N >,经过t (天)时间之后的热搜度变为()0t N t N e α-=,其中α为冷却系数.若设某事件的冷却系数0.3α=,则该事件的热搜度降到初始的50%以下需要的天数t 至少为().(ln 20.693≈,t 取整数)A .7B .6C .4D .310.已知函数()21x f x =-,记()0.5log 3f =,()5log 3b f =,()lg 6c f =,则a ,b ,c 的大小关系为().A .a b c<<B .a c b <<C .b c a <<D .c b a <<11.如图,双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,以1F 为圆心,1OF 为半径作圆1F ,过2F 作圆1F 的切线,切点为T .延长2F T 交E 的左支于P 点,若M 为线段2PF 的中点,且2MO MT a +=,则双曲线E 的离心率为().A B .C .2D 12.已知向量a ,b 是夹角为60︒的单位向量,若对任意的1x ,()2,x m ∈+∞,且12x x <,122112ln ln x x x x a b x x ->-- ,则m 的取值范围是().A .1,e e ⎡⎫⎪⎢⎣⎭B .1,e ⎡⎫+∞⎪⎢⎣⎭C .[),e +∞D .)2,e ⎡+∞⎣二、填空题:本题共4个小题,每小题5分,共20分.13.在区间()0,3内随机取一个数x ,使得()()ln 1ln 3x x -<-成立的概率为__________.14.已知抛物线()2:20C y px p =>的焦点为F ,点,02p A ⎛⎫- ⎪⎝⎭,点M 在抛物线C 上,且AM =,则sin MFA ∠=__________.15.定义在R 上的函数()f x 满足()()12f x f x +=,且当[]0,1x ∈时,()121f x x =--.若对任意(],x t ∈-∞,都有()2f x ≤,则t 的取值范围是__________.16.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,b =,且222sin sin sin sin sin A C A C B ++=,则ABC △面积的最大值为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{}n a 满足11a =,11220n n n n a a a a ++⋅+-=.(1)证明:1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)设1n n n b a a +=⋅,求数列{}n b 的前n 项和n T .某校即将举办春季运动会,组委会对一项新增的运动项目进行了调查,以了解学生对该项目是否有兴趣.组委会随机抽取1000人进行问卷调查,经统计知男女生人数之比为3:2,对该项目没有兴趣的学生有480人,其中女生占13.(1)完成22⨯列联表,并判断能否有99.9%的把握认为对该项目有兴趣与性别有关?有兴趣没有兴趣总计男女总计(2)若从对该运动项目没有兴趣的学生中按性别用分层抽样的方法抽取6人,再从这6人中随机选出2人进一步了解没有兴趣的原因,求选出的2人均为男生的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.1000.0500.0250.0100.0010k 2.706 3.841 5.024 6.63510.82819.(12分)如图,四棱锥P ABCD -的底面为矩形,PA PD ⊥,PA PD =,侧面PAD ⊥底面ABCD ,E 是AB 上的动点(不含A 、B 点).(1)证明:平面PAE ⊥平面PDE ;(2)若4AD =,AB =,当E 为AB 的中点时,求点C 到平面PDE 的距离.已知函数()()22ln 0a f x x a x=+>,()32g x x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)若对于任意的(]10,2x ∈,都存在[]21,2x ∈,使得()()112x f x g x ≥成立,试求a 的取值范围.21.(12分)已知对称轴都在坐标轴上的椭圆C 过点1,24A ⎛⎫ ⎪ ⎪⎝⎭与点()2,0B ,过点()1,0的直线l 与椭圆C 交于P ,Q 两点,直线BP ,BQ 分别交直线3x =于E ,F 两点.(1)求椭圆C 的标准方程;(2)PE QF ⋅ 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为5x t y ⎧=⎪⎨=+⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=.(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)设点M的直角坐标为),直线l 与曲线C 交于A ,B 两点,求11MAMB+的值.23.[选修4-5:不等式选讲](10分)已知函数()3f x x a x a =+++.(1)当1a =-时,求不等式()4f x <的解集;(2)若()f x 的最小值为2,且()()24a m a m n -+=,求221n m +的最小值.。
2023年高三420文科数学模拟考试(学生版)——统考

绝密★启用前赤峰市高三年级4·20模拟考试试题文科数学注意事项:1、答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3、考试结束后,将本试卷和答题卡一并交回.一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设全集{}1,2,3,4,5,6,7,8U =,{}1,3U A B = ,(){}2,4U A B = ,则集合B 为( ) A .{}1,3,5,6,7,8 B .{}2,4,5,6,7,8 C .{}5,6,7,8 D .{}1,2,3,42、已知复数z z 对应向量的模长为2,则( )A .1z =B .1z =±+C .1z =±D .1z =−±3、在“万众创业”的大背景下,“直播电商”已经成为我国当前经济发展的新增长点,已知某电商平台的直播间经营化妆品和食品两大类商品,2022年前三个季度,该直播间每个季度的收入都比上一个季度的收入翻了一番,其前三季度的收入情况如图所示,则( )A .该直播间第三季度总收入是第一季度总收入的3倍;B .该直播间第三季度化妆品收入是第一季度化妆品收入的6倍;C .该直播间第三季度化妆品收入是第二季度化妆品收入的3倍;D .该直播间第三季度食品收入低于前两个季度的食品收入之和.4、函数()21sin f x x x x=−在()(),00,ππ− 上的图像大致为( ) A . B . C . D .5、九连环是中国杰出的益智游戏,九连环由9个相互连接的环组成,这9个环套在一个中空的长形柄中,九连环的玩法就是要将这9个环从柄上解下来(或套上),规则如下:如果要解下(或套上)第n 环,则第1n −号环必须解下(或套上),1n −往前的都要解下(或套上)才能实现.记解下n 连环所需的最少移动步数为n a ,已知()12121,2,213n n n a a a a a n −−===++≥,若要解下7环最少需要移动圆环步数为( ) A .42 B .85C .170D .3416、下列选项中,命题p 是命题q 的充要条件的是( ) A .在ABC 中,:p A B >,:sin sin q A B >.B .已知x ,y 是两个实数,2:230p x x −−≤,:02q x ≤≤.C .对于两个实数x ,y ,:8p x y +≠,:3q x ≠或5y ≠.D .两条直线方程分别是1:260l ax y ++=,()22:110l x a y a +−+−=,12:p l l ∥, :2q a =或1−.7、记函数()()sin 0,02f x x πωϕωϕ =+><< 的最小正周期为T .若()f T =,6x π=为()f x 的零点,则ω的最小值为( ) A .2 B .3 C .4 D .68、四叶草曲线是数学中的一种曲线,因形似花瓣,又被称为四叶玫瑰线(如右图),其方程为()322228xy x y +=,玫瑰线在几何学、数学、物理学等领域中有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学综合练习
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)0000sin 45cos15cos225sin15⋅+⋅的值为( )
(A ) -2 1(B ) -2 1(C )2 (D )2
(2) 集合{x |||4,},{|},a A x x R B x x a =≤∈=<⊆则“A B ( )
(A )充分不必要条件 (B )必要不充分条件
(C )充要条件 (D )既不充分也不必要条件
(3)若PQ 是圆22x 9y +=的弦,PQ 的中点是(1,2)则直线PQ 的方程是( ) (A )230x y +-= (B )250x y +-= (C )240x y -+= (D )20x y -=
(4)已知函数y=f(x)与x y e =互为反函数,函数y=g(x)的图像与y=f(x)图像关于x 轴对称,若g(a)=1,则实数a 值为( )
(A )-e (B) 1e - (C) 1
e
(D) e
(5)抛物线2
12y x =-的准线与双曲线等22
193
x y -
=的两条渐近线所围成的三角形面积等于( )
(A) (6)将函数cos()3y x π
=-的图象上各点的横坐标伸长到原来的2倍(纵坐标不
变),再向左平移6π
个单位,所得函数图象的一条对称轴为( )
(A) 9x π= (B) 8x π= (c) 2x π
= (D) x π=
(7)已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是( )
(A)若α⊥γ,α⊥β,则γ∥β (B)若m∥n,m ⊂n,n ⊂β,则α∥β (C)若m∥n,m∥α,则n∥α (D)若n⊥α,n⊥α,则α∥β (8) 下列结论正确的是( )
(A )当0x >且1x ≠时,1lg
lg x x +
2≥ (B )0x >当2≥ (C )当2x ≥时,1x x +
的最小值为2 (D )02x <≤时,1
x x
-无最大值 (9)双曲线22221(0,0)x y a b a b -=>>的离心率是2,则21
b a
+的最小值为
A. C. 2 D. 1
(10)给出如下三个命题:
①若“p 且q ”为假命题,则p 、q 均为假命题;
②命题“若x ≥2且y ≥3,则x +y ≥5”的否命题为“若x <2且y <3,
则x +y <5”;
③四个实数a 、b 、c 、d 依次成等比数列的必要而不充分条件是ad=bc ;
④在△ABC 中,“︒>45A ”是“2
2sin >A ”的充分不必要条件.
其中不正确的命题的个数是 ( )
A .4
B .3
C .2
D .1
(11)如图,在ΔABC 中,AD AB ⊥,BC BD ,1AD =
,则AC AD ⋅ =
(A )(B )
2 (C )3
(D (12)已知等差数列{}n a 中,有
0110
11
<+a a ,且它们的前n 项和n S 有最大值,则使得0n S >的 n 的最大值为 ( ) A .11 B .19 C . 20
D .21
第Ⅱ卷 (非选择题共90分)
二、填空题:本大题共4小题。
每小题4分.共16分.
(13)若椭圆2214x y m +=的离心率等于2
,则m=____________。
(14)设曲线log a y x =在点(1),0处的切线与直线210x y ++=垂直,则a = .
(15)过圆422=+y x 外一点P (2,4)作圆的切线,切点为A 、B ,则△APB 的外接圆 方
程为 .
(16) 给出下列四个命题:
①命题“x ∃∈R ,2
13x x +>”的否定是“x ∀∈R ,2
13x x +>”;
②在空间中,m 、n 是两条不重合的直线,α、β是两个不重合的平面,若αβ⊥,
n αβ= ,m n ⊥,则m β⊥;
③将函数x y 2cos =的图象向右平移3π
个单位,得到函数sin(2)6
y x π=-的图象; ④函数3
()1
x f x x +=
-的图象关于点(1,1)对称. 其中正确命题的序号是
.(把你认为正确的命题序号都填上)
三、解答题:本大题共6小题。
共74分.解答应写出文字说明、证明过程或演算步骤.
(17)(本小题满分12分)
在斜三角形ABC 中,角A 、B 、C 的对边分别为,,a b c ,且
A
A C A ac c a b cos sin )
cos(222+=--.
(Ⅰ)求角A ;
(Ⅱ)若sin cos B
C
>,求角C 的取值范围.
(18)(本小题满分12分)
已知数列{}n a 的前n 项和为n S ,点(,)()n
nS n N *
∈在函数x x x f 23)(2-=的图象上, (1)求数列{}n a 的通项公式; (2)设1
3
+⋅=n n n a a b ,求数列{}n b 的前n 项和n T .
(19) (本小题满分12分)
如图,四棱锥P ABCD -的底面为正方形,侧棱PA ⊥底面ABCD ,且2P
A A D ==,
,,E F H 分别是线段,,PA PD AB 的中点.
(Ⅰ)求证://PB 平面EFH ;
(Ⅱ)求证:PD ⊥平面AHF .
已知椭圆)0(1:2222>>=+b a b
y a x C 的离心率为2,且曲线过点(1,)2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)已知直线0x y m -+=与椭圆C 交于不同的两点A ,B ,且线段AB 的中点不. 在.圆2
2
5
9x y +=内,求m 的取值范围.
设A (x 1
,y 1
),B (x 2
,y 2
)是椭圆
)0(12
2
22
>>=+b a b
x a y 上的两点,已知
m =⎪⎪⎭
⎫ ⎝⎛a b y x 11,,n =
⎪⎪⎭⎫ ⎝⎛a b y x 22
,。
若m ∙n=0,椭圆的离心率e=23,短轴长为2,O 为坐标原点。
(1)求椭圆的方程;
(2)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由。
22.(本小题满分14分)
已知3x =是函数()()2
ln 110f x a x x x =++-的一个极值点。
(Ⅰ)求实数a 的值;
(Ⅱ)求函数()f x 的单调区间;
(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.。