高三文科数学综合测试试题
湖南省长沙市2024届高三上学期统一检测文科数学试题

长沙市2024届高三年级统一模拟考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则()A. B. C. D.2.在复平面内表示复数(,为虚数单位)的点位于其次象限,则实数的取值范围是()A. B. C. D.3.下列函数中,图象关于原点对称且在定义域内单调递增的是()A. B.C. D.4.某人午觉醒来,发觉表停了,他打开收音机,想听电台的整点报时,则他等待的时间不多于5分钟的概率为()A. B. C. D.5.设,,表示不同直线,,表示不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.真命题的个数是()A. 1B. 2C. 3D. 46.若,满意,则的取值范围是()A. B. C. D.7.已知,是双曲线的上、下焦点,点是其一条渐近线上一点,且以为直径的圆经过点,则的面积为()A. B. C. D.8.若,,,则的最小值为()A. 2B. 4C. 6D. 89.已知是函数图象的一个最高点,,是与相邻的两个最低点.若,则的图象对称中心可以是()A. B. C. D.10.在中,,,,且是的外心,则()A. 16B. 32C. -16D. -3211.已知抛物线的焦点为,点在上,.若直线与交于另一点,则的值是()A. 12B. 10C. 9D. 4.512.已知,若函数有三个零点,则实数的取值范围是A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设曲线在点处的切线与直线垂直,则__________.14.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.15.在正方体中,点在线段上运动,则异面直线与所成角的取值范围是__________.16.中,内角,,所对的边分别为,,.已知,且,则面积的最大值是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列的首项,,且对随意的,都有,数列满意,.(Ⅰ)求数列,的通项公式;(Ⅱ)求使成立的最小正整数的值.18.如图,已知三棱锥的平面绽开图中,四边形为边长等于的正方形,和均为正三角形,在三棱锥中:(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的表面积和体积.19.为了解某校学生参与社区服务的状况,采纳按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参与社区服务的时间的统计数据好下表:超过1小时不超过1小时男20 8女12 m(Ⅰ)求,;(Ⅱ)能否有95%的把握认为该校学生一周参与社区服务时间是否超过1小时与性别有关?(Ⅲ)以样本中学生参与社区服务时间超过1小时的频率作为该事务发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参与社区服务时间超过1小时的人数.附:0.050 0.010 0.0013.841 6.635 10.82820.已知椭圆的离心率,左、右焦点分别为、,为椭圆上一点,,且.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左、右顶点为、,过、分别作轴的垂直、,椭圆的一条切线与、交于、两点,求证:的定值.21.已知函数, .(Ⅰ)试探讨的单调性;(Ⅱ)记的零点为,的微小值点为,当时,求证.请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.在平面直角坐标系中,以为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为(为参数),过原点且倾斜角为的直线交于、两点.(Ⅰ)求和的极坐标方程;(Ⅱ)当时,求的取值范围.23.已知函数.(Ⅰ)当,求的取值范围;(Ⅱ)若,对,都有不等式恒成立,求的取值范围.长沙市2024届高三年级统一模拟考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则()A. B. C. D.【答案】B【解析】【分析】写出集合N,然后对集合M,N取交集即可得到答案.【详解】,则故选:B.【点睛】本题考查集合的交集运算,属于简洁题.2.在复平面内表示复数(,为虚数单位)的点位于其次象限,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】利用复数的除法运算将复数化简为a+bi的形式,然后依据复数对应点位于其次象限,即可得到m范围. 【详解】,复数对应的点为(),若点位于其次象限,只需m>0,故选:C.【点睛】本题考查复数的有关概念和复数的商的运算,属于基础题.3.下列函数中,图象关于原点对称且在定义域内单调递增的是()A. B.C. D.【答案】D【解析】【分析】由题意可知函数为奇函数,由奇函数和单调性对四个选项逐个进行检验即可得到答案.【详解】由函数图象关于原点对称知函数为奇函数,选项B,函数定义域为,不关于原点对称,不具有奇偶性,故解除;选项C,因为f(x)=f(-x),函数为偶函数,故解除;选项A,函数为奇函数且f’(x)=cosx-1可知函数在定义域上单调递减,故解除;选项D,函数为奇函数,由指数函数单调性可知函数在定义域上单调递增,故选:D.【点睛】本题考查函数奇偶性和单调性的推断方法,属于基础题.4.某人午觉醒来,发觉表停了,他打开收音机,想听电台的整点报时,则他等待的时间不多于5分钟的概率为()A. B. C. D.【答案】B【解析】【分析】由于电台的整点报时之间的间隔60分,等待的时间不多于5分钟,依据几何概型的概率公式可求.【详解】设电台的整点报时之间某刻的时间x,由题意可得,0≤x≤60,等待的时间不多于5分钟的概率为P==,故选:B.【点睛】本题考查几何概型,先要推断概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于基础题.5.设,,表示不同直线,,表示不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.真命题的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】【分析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择.【详解】对于①,由平行公理4,可知正确;对于②,若a⊂α,明显结论不成立,故②错误;对于③,若a∥α,b∥α,则a,b可能平行,可能相交,可能异面,故③错误;对于④,a∥β,a⊂α,b⊂β,a与b平行或异面,故④错误;真命题的个数为1个,故选:A.【点睛】本题考查命题真假的推断,考查空间中线线、线面间的位置关系等基础学问,考查空间想象实力,是中档题.6.若,满意,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】依据约束条件画出可行域如图,即y=2x-z,由图得当z=2x﹣y过点O(0,0)时,纵截距最大,z最小为0.当z=2x﹣y过点B(1,-1)时,纵截距最小,z最大为3.故所求z=2x﹣y的取值范围是故选:A.【点睛】本题考查线性规划中利用可行域求目标函数的最值和范围,求目标函数范围的一般步骤是“一画、二移、三求”:(1)作出可行域(肯定要留意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最终通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,从而得到范围.7.已知,是双曲线的上、下焦点,点是其一条渐近线上一点,且以为直径的圆经过点,则的面积为()A. B. C. D.【答案】A【解析】【分析】由双曲线方程得到渐近线方程和以为直径的圆的方程,设点P坐标,依据点P在渐近线上和圆上,得点P坐标,从而可得三角形的面积.【详解】等轴双曲线的渐近线方程为,不妨设点在渐近线上,则以为直径的圆为又在圆上,解得,,故选:.【点睛】本题考查双曲线方程和渐近线的简洁应用,考查三角形面积的求法,属于基础题.8.若,,,则的最小值为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】利用基本不等式即可干脆得到所求最小值.【详解】,于是或(舍),当时取等号,则a+b的最小值为4,故选.【点睛】本题考查利用基本不等式求最值问题,属于基础题.9.已知是函数图象的一个最高点,,是与相邻的两个最低点.若,则的图象对称中心可以是()A. B. C. D.【答案】C【解析】【分析】依据题意可得函数周期,从而得点B,C的坐标,,即是图象的对称中心. 【详解】因为P是函数图象的一个最高点,,是与相邻的两最低点,可知|BC的周期,半个周期为3,则得,,由图像可知(-1,0),都是图象的对称中心,故选:.【点睛】本题考查函数的周期性和对称性,属于基础题.10.在中,,,,且是的外心,则()A. 16B. 32C. -16D. -32【答案】D【解析】【分析】利用数量积公式和投影的定义计算即可得到答案.【详解】,又是的外心,由投影的定义可知则故选.【点睛】本题考查向量的数量积的运算,考查投影定义的简洁应用,属于基础题.11.已知抛物线的焦点为,点在上,.若直线与交于另一点,则的值是()A. 12B. 10C. 9D. 4.5【答案】C【解析】【分析】由点A在抛物线上得点A坐标,又F(2,0),设直线AF方程并与抛物线方程联立,利用抛物线的定义即可得到弦长.【详解】法一:因为在上,所以,解得或(舍去),故直线的方程为,由,消去,得,解得,,由抛物线的定义,得,所以.故选.法二:直线过焦点,,又,所以,故选.【点睛】本题考查直线与抛物线的位置关系,考查利用抛物线定义求过焦点的弦长问题,考查学生计算实力.12.已知,若函数有三个零点,则实数的取值范围是A. B. C. D.【答案】A【解析】【分析】本道题将零点问题转化成交点个数问题,利用数形结合思想,即可。
陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题(解析版)

所以 ,解得 ,
所以分数在 内的人数为 .
故答案为:30
15.已知抛物线C: 上的点P到焦点的距离比到y轴的距离大2,则 ______.
【答案】4
【解析】
【分析】确定点P到准线的距离比到y轴的距离大2,得到 ,得到答案.
【详解】点P到焦点的距离比到y轴的距离大2,即点P到准线的距离比到y轴的距离大2,
(2)
【解析】
【分析】(1)连接 与DE相交于 ,连接 ,连接 交 于点 ,由线面平行的性质得到 ,再根据三角形相似得到 , ,从而得到 ,即可得到 ,从而得解;
(2)取 的中点 ,连接 , ,即可得到 ,再由面面垂直的性质得到 平面 ,求出 的长度,即可得到点 到平面 的距离 ,从而得到点 到平面 的距离,最后根据锥体的体积公式计算可得.
即 ,即 .
故答案为:4.
16.柏拉图多面体并不是由柏拉图所发明,但却是由柏拉图及其追随者对它们所作的研究而得名,由于它们具有高度的对称性及次序感,因而通常被称为正多面体.柏拉图视“四古典元素”中的火元素为正四面体,空气为正八面体,水为正二十面体,土为正六面体.如图,在一个棱长为 的正八面体(正八面体是每个面都是正三角形的八面体)内有一个内切圆柱(圆柱的底面与构成正八面体的两个正四棱锥的底面平行),则这个圆柱的体积的最大值为________ .
点睛:对于比较复杂的流程图,可以模拟计算机把每个语句依次执行一次,找出规律即可.
11.已知 , , ,则()
A. B. C. D.
【答案】A
【解析】
【分析】根据指数函数和对数函数的单调性结合中间量 和 即可得解.
【详解】因为 ,所以 ,
因为 ,所以 ,
2023届江西省部分学校高三上学期1月联考数学(文)试题(word版)

故 .
因为 ,所以 ,即 ,所以 ,
则 .故 对一切 恒成立,
即 对一切 恒成立.
【点睛】含参不等式的证明,若根据参数范围进行适当放缩,消去参数,这样可以简化不等式结构,便于构造函数进行研究,放缩消参是处理含参不等式的常规技巧,值得学习体会,常用放缩方法有切线放缩,也可结合题干中参数取值范围进行放缩.
(一)必考题:共60分.
17.公差不为 的等差数列 的前 项和为 ,且满足 , 、 、 成等比数列.
(1)求 的前 项和 ;
(2)记 ,求数列 的前 项和 .
【答案】(1)
(2)
【解析】
【分析】(1)设等差数列 的公差为 ,则 ,根据题意可得出关于 的方程,求出 的值,可求得数列 的通项公式,利用等差数列的求和公式可求得 ;
(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.
[选修4-4:坐标系与参数方程]
22.在平面直角坐标系 中,曲线C的参数方程为 ( 为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是 .
(1)求曲线C的普通方程和直线l的直角坐标方程;
1
3
1
1
6
3
3
4
1
2
4
1
2
5
3
1
2
6
3
1
6
1
2
1
2
2
5
3
4
5
(1)以此样本数据来估计顾客的抽奖情况,分别估计某顾客抽奖1次,积分为3分和2分的概率:
(2)某顾客抽奖3次,求该顾客至多有1次的积分大于1的概率.
高三文科数学函数大题综合

1.(12分)已知函数()f x 在定义域()0,+∞上为增函数,且满足()()()(),31f xy f x f y f =+=(1)求()()9,27f f 的值 (2)解不等式()()82f x f x +-<2.(12分) 已知12)(-=x x f 的反函数为)(1x f-,)13(log )(4+=x x g . (1)若)()(1x g x f ≤-,求x 的取值范围D ;(2)设函数)(21)()(1x f x g x H --=,当D x ∈时,求函数)(x H 的值域. 3.(12分)函数xa x x f -=2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域;(2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; 4.(12分)已知不等式221(1)x m x ->-⑴若对于所有实数x ,不等式恒成立,求m 的取值范围⑵若对于m ∈[-2,2]不等式恒成立,求x 的取值范围。
5.(13分) 已知函数)(x f 的图象与函数21)(++=x x x h 的图象关于点A (0,1)对称.(1)求函数)(x f 的解析式(2)若)(x g =)(x f +xa ,且)(x g 在区间(0,]2上的值不小于6,求实数a 的取值范围. 6.(14分)设二次函数2()(,,)f x ax bx c abc R =++∈满足下列条件:①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x -1)成立;②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。
(1)求(1)f 的值;(2)求()f x 的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当x ∈[]1,m 时,就有()f x t x +≤成立。
7.(本大题满分12分)若已知函数23()x f x a -= (0,a >且1a ≠),()xg x a =。
高三年级文科数学水平测试试题

高三年级文科数学水平测试试题数学(文)试题本卷分为选择题和非选择题两部分;满分150分;考试时间120分钟。
注意事项:1.答卷前;考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号填写在答题卡的密封线内。
2.选择题每小题选出答案后;用2B 铅笔把答题卡对应题目的答案标号涂黑;如需改动;用橡皮擦干净后;再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答;然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁;考试结束后;将答题卷和答题卡一并收回参考公式:如果事件A 、B 互斥;那么)()()(B P A P B A P +=+ 球的表面积公式24R S π=;其中R 表示球的半径球的体积公式334R V π=;其中R 表示球的半径 锥体的体积公式Sh V 31=;其中S 表示底面积;h 表示锥体的高第一部分 (选择题 共50分)一、选择题(本大题共10小题;每小题5分;共计50分。
在每小题列出的四个选项只有一项是最符合题目要求的)1.双曲线14222-=-y x 的渐近线方程为 ( )A .x y 2±=B .y x 2±=C .x y 22±= D .y x 22±= 2.设2:x x f →是集合A 到集合B 的映射;如果B ={1;2};那么B A 等于 ( )A .B .{1}C . 或{2}D . 或{1} 3.数列1614,813,412,211;……的前n 项和为( )A .2212n n n ++B .2212nn n ++-C .12212+++-nn n D .22121nn n ++-+4.掷一个骰子的试验;事件A 表示“小于5的偶数点出现”;事件B 表示“小于5的点数出现”;则一次试验中;事件B A +发生概率为( )A .31B .21 C .32 D .65 5.向量b n a m b a --==若),3,2(),2,1(与b a 2+共线(其中nmn R n m 则且)0,≠∈等于 ( )A .21-B .21 C .-2 D .26.用若干块相同的小正方体搭成一个几何体;该几何体的三视图如下图所示;则搭成该几何体最少需要的小正方体的块数是 ( ) A .8 B .7 C .6 D .57.已知函数)12(),4(cos )4(cos )(22πππf x x x f 则-+=等于 ( )A .23B .23-C .21 D .21-8.下列命题不正确的是(其中l ;m 表示直线;γβα,,表示平面) ( )A .若βαβα⊥⊥⊥⊥则,,,m l m lB .若βαβα⊥⊂⊂⊥则,,,m l m lC .若βαγβγα⊥⊥则,//,D .若βαβα⊥⊂⊥则,,,//m l m l9.迄今为止;人类已借助“网格计算”技术找到了630万位的最大质数。
(完整版)高三文科数学试题

高三文科数学试题(考试时间为120 分钟,共150 分)第Ⅰ卷一、选择题:本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1. 已知会集M x ( x 2)(x 1)0 , N x x 10 ,则 M N =()A .(1,2)B.(11), C .(2,1) D .(2, 1)2..复数5i()2i1A .2 iB .1 2i C.2 i D .1 2i3. 在独立性检验中,统计量K 2有两个临界值: 3.841 和 6.635 ;当K2> 3.841 时,有 95%的掌握说明两个事件有关,当K2> 6.635时,有 99% 的掌握说明两个事件有关,当K 2 3.841时,认为两个事件没关 .在一项打鼾与患心脏病的检查中,共检查了2000 人,经计算的 K 2=20.87,依照这一数据解析,认为打鼾与患心脏病之间()A .有 95%的掌握认为两者有关B .约有 95% 的打鼾者患心脏病C .有 99%的掌握认为两者有关D .约有 99% 的打鼾者患心脏病4.已知椭圆x2y2F 1、 F2, M 是椭圆上一点, N 是 MF 1的中点,161 的左右焦点分别为12若 ON1,则 MF1的长等于()A 、 2B、 4C、 6 D 、 5x+ y≥05. 在平面直角坐标系中,不等式组x- y+ 4≥0表示的平面地域面积是()x≤19A . 3B . 6C .2D. 96. l 是某 参加 2007 年高考的学 生身高条形 , 从左到右的各 条 形 表 示的 学 生 人 数 依 次A 1 ,、 A 2 、 ⋯ 、 A 10 。
(如 A 2表示身高 ( 位: cm) 在 [150 ,155) 内的学生人数 ) . 2 是 l 中身高在必然范 内学生人数的一个算法流程 . 要 身高在160 ~ 180cm( 含 160cm ,不含 180cm) 的 学生人数,那么在流程 中的判断 框内 填写的条件是A.i<9B.i<8C.i<7D.i<6()7.一个几何体的三 如 所示,其中正 是一个正三角形, 个几何体的 ( )A .外接球的半径3B .表面731331 11C .体3D .外接球的表面 4163正视图 侧视图8.一个球的表面 等于,它的一个截面的半径,球心到 截面的距离( )A .3B .C . 1D . 31俯视图225π 5π9.已知角 α的 上一点的坐sin6 ,cos 6, 角 α的最小正()5π2π5π11πA. 6B. 3C. 3D. 610 . 双曲 x2y 21(a 0, b 0) 的左焦点 F ( c,0)( c 0)作 x 2y 2 a 2 的切a 2b 24 ,切点 E ,延 FE 交双曲 右支于点P ,若 OFOP2OE , 双曲 的离心率()A .2B .10C . 10D . 105211.a1 , 关于 x 的不等式 a( x a)( x1) 0 的解集是 ()a(A) { x | xa ,或 x 1}(B) { x | x a}(C) { x | xa ,或 x 1 }(D) { x | x 1}aaa 12. 已知 a n3( n N * ) , 数列 { a n } 的前 n 和 S n ,即 S na 1 a 2a n ,2n5使 S n0 的 n 的最大()第Ⅱ卷本卷包括必考和考两部分。
陕西省安康中学2023届高三下学期5月学业质量检测(二)文科数学试题

陕西省安康中学2023届高三下学期5月学业质量检测(二)文科数学试题学校:___________姓名:___________班级:___________考号:___________二、填空题13.已知等差数列{}na 的前n 项和为n S ,671a a +=,555S =,则公差为______.厂价格(单位:元)与销售量(单位:万袋)的对应关系表:1A D ^平面1AD M ,又1A D Ì平面1A BD ,所以平面1A BD ^平面1AD M ,故B 正确;以点D 为原点,分别以DA ,DC ,1DD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.设2AB =,则()2,2,0B ,()12,0,2A ,()2,0,0A ,()0,2,0C ,()1,2,0N .设()()0,,202M y y <<,则()2,2,0DB =uuu r ,()12,0,2DA =uuuu r.设平面1A BD 的法向量为()111,,m x y z =r,则有11111220,220,m DA x z m DB x y ì×=+=ïí×=+=ïîuuu u r r uuu r r 可取11x =,得()1,1,1m =--r .又()2,,2AM y =-uuuu r,则()()2,2,02,,2240DB AM y y ×=×-=-¹uuu r uuuu r,故A 不正确;因为()0,2,2CM y =-uuuu r ,所以()()1,1,10,2,20m CM y y ×=--×-=-¹uuuu r r ,故D 不正确;因为()1,2,2MN y =--uuuu r ,所以()()1,1,11,2,210m MN y y ×=--×--=+¹uuuu r r ,故C 不正确.故选:B.10.C【分析】根据等比数列的通项公式,列方程求解.。
内蒙古呼和浩特市2024届高三第一次质量监测文科数学试题(含解析)

内蒙古呼和浩特市2024届高三第一次质量监测文科数学试题学校:___________姓名:___________班级:___________考号:___________A .π4B .3π44.在ABC 中,内角A ,B ,C π5C =,则B ∠=( )A .π5B .π155.已知()()()(313f x x x a =+-A .2-B .1-二、填空题三、解答题17.某教育集团为了办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(满意度最高120分,最低0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的结果(单位:分)(1)求证:平面BCQ ⊥平面ACQ (2)若Q 为靠近P 的一个三等分点,20.设函数()e xf x ax =-,(1)当1a =时,求函数()f x 在参考答案:故选:D 7.D【分析】根据几何概型的概率公式,由面积之比即可求解【详解】(){}22,4x y x y +≤表示圆心为原点,半径为(){}22,14x y xy ≤+≤表示圆心为原点,半径为所以概率为4ππ34π4-=,故选:D8.A【分析】应用零点存在定理结合函数单调性列不等式求解即可f x=【详解】若函数()2x()2f x a2x=--单调递增目标函数2z x y =-,即2y x z =-表示斜率为画直线0:2l y x =,平移直线0l 到直线1l ,当直线min 2142z =⨯-=-,所以2z x y =-的最小值为2-.故答案为:2-14.2-/0.4-17.(1)甲、乙的平均数都为(2)乙的人民满意度比较好【分析】(1)利用平均数和方差的运算公式进行求解即可;(2)根据方差的性质进行求解即可(1212OA OB x x y y ⋅=+=u u r u u u r由图可知,当1C 与2C 只有一个公共点,直线C 设直线1C 的方程为()2y k x =+,且0k >,即2k k +2由图可得函数()f x 的最小值为(2)令()4f x =,可得x ⎧⎨-⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学综合测试试题(三)数学试题(文科)本试卷分选择题和非选择题两部分,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上, 用2B 铅笔将试卷类型(A )填涂在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改 动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区 域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用 铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题,共50分)一、(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知命题p :1sin ,≤∈∀x R x ,则( )A .1sin ,:≥∈∃⌝x R x pB .1sin ,:≥∈∀⌝x R x pC .1sin ,:>∈∃⌝x R x pD .1sin ,:>∈∀⌝x R x p 2.函数xx x f 1ln )(-=的零点个数为 ( )A .0B .1C .2D .33.若xxb x g a x f b a b a ==≠≠=+)()()1,1(0lg lg 与,则函数其中的图象 ( )A .关于直线y=x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称4.下列能使θθθtan sin cos <<成立的θ所在区间是 ( )A .)4,0(πB .)2,4(ππ C .),2(ππD .)23,45(ππ5.下列四个函数中,以π为最小正周期,且在区间),2(ππ上为减函数的是 ( )A .x y 2cos =B .x y sin 2=C .xy cos )31(=D .x y tan -= 6.已知数列{a n }中,a 1=2,前n 项和S n ,若n n a n S 2=,则a n =( )A .n2 B .14+n C .)1(2+n nD .)1(4+n n7.不等式02||2<--x x 的解集是( )A .}22|{<<-x xB .}22|{>-<x x x 或C .}11|{<<-x xD .}11|{>-<x x x 或8.已知函数1)(0,01),sin()(12=⎪⎩⎪⎨⎧≥<<-=-a f x e x x x f x ,若π,则a 的所有可能值组成的集合为( )A .}22,1{-B . {1,22}C .{-22}D .{1}9.设函数P M x f x P x f x M x ax x f ≠⊂≥'=<=--=,若,集合}0)(|{},0)(|{1)(,则实数a 的取值范围是( )A .)1,(-∞B .(0,1)C .),1(+∞D .),1[+∞10.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若b a b a R b a =⇒=-∈0,则、”类比推出“b a b a C c a =⇒=-∈0,则、” ②“若d b c a di c bi a R d c b a ==⇒+=+∈,,则复数、、、”类比推出“d b c a d c b a Q d c b a ==⇒+=+∈,22,则、、、”③“若b a b a R b a >⇒>-∈0,则、、”类比推出“若b a b a c b a >⇒-∈0.,则、”④“若111||<<-⇒<∈x x R x ,则”类比推出“若111||<<-⇒<∈z z C z ,则” 其中类比结论正确....的个数有 ( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分). 11.若复数z 满足方程1-=⋅i i z ,则z= 12.在等比数列{a n }中,∏∏==+=⋅===92110131i i n nki k k ia a a a aa a ,则,若,13.已知xy y x R y x ,则,且14,=+∈+的最大值为 14.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16 ……则数表中的300应出现在第行.三、解答题;本大题共6小题,共80分. 解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分) 已知a>0且1≠a命题P :函数),0()1(log +∞+=在x y a 内单调递减; 命题Q :曲线x x a x y 与1)32(2+-+=轴交于不同的两点. 如果“P\/Q ”为真且“P/\Q ”为假,求a 的取值范围.16.(本小题满分12分)某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?17.(本小题满分14分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c. 已知.272cos 2sin 42=-+C B A a+b=5,c=7,(1)求角C 的大小;(2)求△ABC 的面积. 18.(本小题满分14分)在公差为d (d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3.(1)求数列{a n }与{b n }的通项公式;(2)令n n n b a c ⋅=,求数列{c n }的前n 项和T n .19.(本小题满分14分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,|AB|=3米,|AD|=2米.(Ⅰ)要使矩形AMPN 的面积大于32平方米,则AM 的长应在什么范围内? (Ⅱ)当AM 、AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.20.(本小题满分14分)定义域为R 的偶函数)(ln )(0)(R a ax x x f x x f ∈-=>时,,当,方程0)(=x f 在R 上恰有5个不同的实数解. (Ⅰ)求x<0时,函数)(x f 的解析式; (Ⅱ)求实数a 的取值范围.参考答案一、选择题 1.C2.B 利用数形结合求解,令xy x y x x x x 1ln 1ln 01ln ====-与,即求函数,得的交点个数.3.C 解析:取满足2121lg lg ===+b a b a ,则的特殊值可得答案C. 4.B 解析:取答案各区间的特点值343236ππππ、、、代入检验即可. 5.D 解析:B 、C 的函数周期为2π,不合题意,A 的函数在区间),2(ππ上为增函数,不合题意6.D 解析:由a 1=2知答案A 不正确,再由a 1+a 2=S 2=4a 2322=⇒a 可得答案B 、C 不正确 7.A 解析:2||02||01||0)1|)(|2|(|02||2<⇒<-⇒>+<+-⇒<--x x x x x x x ,由 22<<-⇒x ,故选A.8.A 解析:2221221)sin(01;110a k a a a a e a a ⇒+=⇒=⇒<<-=⇒=⇒≥-ππππ时时=2k+2221-=a ,由范围得,故选A. 9.D 解析:0)(,1,1)(110)1(1)(2='=⇒≠==≥⇒≥--='x f M x x f a a x a x f φ时,,当满足}0|{),,1(1;}0|{0)(≠==>⊂⇒≠=⇒≥'≠x x P a M a P M x x P x f 时,当P M ≠⊂,故a 的取值范围是),1[+∞,故选D.10.B 解析:①、②正确,③、④错误,因为③、④中对于虚数的情况没有大小关系,故选B. 二、填空题11.答案:1-i 解析:i z i ii z -=⇒+=-=11112.答案:81 解析:813)())()()((441016574839298765432====a a a a a a a a a a a a a a a a a a 13.答案:161 解析:∵161)24(41441,,2=+≤⋅=⋅∴∈+y y x y x y x R y x ,当且仅当81,214===y x y x 即时取等号. 14.答案:18 解析:每行的数字取值从(n -1)2+1到n 2,而172<300<182,故300在第18行.三、解答题:15.解:∵1,0≠>a a , ∴命题P 为真时1,0a <⇔命题P 为假时1>⇔a命题Q 为真时,252101,004)32(2><<≠>>--=∆⇔a a a a a 或,即,且 命题Q 为假时 2521≤≤⇔a 由“P\/Q ”为真且“P/\Q ”为假,知P 、Q 有且只有一个正确.情形(1):P 正确,且Q 不正确)1,21[252110∈⎪⎩⎪⎨⎧≤≤<<⇔a a a ,即情形(2):P 不正确,且Q 正确),25(252101+∞∈⎪⎩⎪⎨⎧><<>⇔a a a a ,即或 综上,a 取值范围是),25()1,21[+∞⋃ 另解:依题意,命题P 为真时,0<a<1曲线x x a x y 与1)32(2+-+=轴交于两点等价于04)32(2>--a , 得 2521><a a 或 故命题Q 为真时,2521><a a 或 由“P\/Q ”为真且“P/\Q ”为假,知P 、Q 有且只有一个正确.等价于P 、Q 为真时在数轴表示图形中有且只有一个阴影的部分. 由图形知a 取值范围是),25()1,21[+∞⋃ (注:如果答案中21端点取了开区间,扣2分) 16.解:设此工厂应分别生产甲、乙两种产品x 吨、y 吨. 获得利润z 万元依题意可得约束条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+003001032005436049y x y x y x y x作出可行域如右图利润目标函数z=6x+12y由几何意义知当直线l :z=6x+12y ,经过可行域上的点M 时,z=6x+12y 取最大值.解方程组 ⎩⎨⎧=+=+20054300103y x y x ,得M (20,24)答:生产甲种产品20t ,乙种产品24t ,才能使此工厂获得最大利润17.解:(Ⅰ)∵A+B+C=180°由272cos 2cos 4272cos 2sin422=-=-+C C C B A 得 ∴27)1cos 2(2cos 142=--+⋅C C整理,得01cos 4cos 42=+-C C 解得:21cos =C ∵︒<<︒1800C ∴C=60°(Ⅱ)由余弦定理得:c 2=a 2+b 2-2abcosC ,即7=a 2+b 2-2ab∴ab b a 3)(72-+==25-3ab 6=⇔ab∴23323621sin 21=⨯⨯==∆C ab S ABC 18.解:(1)由条件得:126,4565711-=-=⇒⎩⎨⎧==⇒⎩⎨⎧=+=+n n n b n a q d qd q d (2)123216)45(611661--++⨯+⨯+=++++=n n n n c c c c T ①∴6T n =6+6×62+11×63+…+(5n -4)6n ② ①-②:n n n n T 6)45()666(51512--++++=--n n n n n 6)1(556)45(5)61(6511---=----⋅+=-∴16)1(+-=nn n T19.解:设AM 的长为x 米(x>3)∵||||||||AM DC AN DN =∴32||-=x xAN ∴32||||2-=⋅=x x AM AN S AMPN…………3分(Ⅰ)由S AMPN >32得32322>-x x , ∵12430)12)(4(04816,32><<∴>-->+-∴>x x x x x x x 或,即即AM 长的取值范围是(3,4)),12(+∞⋃(Ⅱ)令2222)3()6(3)3(3)3(633--=---='-=x x x x x x x y x x y ,则 ∴当),6(0,6+∞>'>,即函数在y x 上单调递增,x<6,0<'y ,函数在(3,6)上单调递减∴当x=6时,322-=x x y 取得最小值即S AMPN 取得最小值24(平方米)此时|AM|=6米,|AN|=4米答:当AM 、AN 的长度分别是6米、4米时,矩形AMPN 的面积最小,最小面积是24平方米.另解:以AM 、AN 分别为x 、y 轴建立直角坐标系,设1),2,3()3(),,0(),0,(=+>by a x MN C a b N a M 的方程为直线,则 由C 在直线MN 上得 ab b a 312123-=⇔=+ ∴)31(162163232ab b a ab S AMPN-=⋅=>⇔>=124048162><⇔>+-⇔a a x a 或∴AM 的长取值范围是(3,4)),12(+∞⋃(Ⅱ)∵4,62324232231===≥⇒⋅≥+=b a ba ab b a b a ,即,当且仅当时等号成立. ∴|AM|=6米,|AN|=4米时,S AMPN 达到最小值24答:当AM 、AN 的长度分别是6米、4米时,矩形AMPN 的面积最小,最小面积是24平方米. 20.解:(1)设x<0,则-x>0∵)(x f 为偶函数, ∴ax x x f x f +-=-=)ln()()( (2)∵)(x f 为偶函数,∴)(x f =0的根关于0对称.由)(x f =0恰有5个不同的实数解,知5个实根中有两个正根,二个负根,一个零根. 且两个正根和二个负根互为相反数∴原命题)(0x f x 时当>⇔图像与x 轴恰有两个不同的交点 下面研究x>0时的情况 ∵),0(0)(01)(+∞∈>'≤∴-='x x f a a xx f ,时,当即 ),0(ln )(+∞-=在ax x x f 为单调增函数,故),0(0)(+∞=在x f 不可能有两实根 ∴a>0 令ax x f 10)(==',得 当)(0)(1)(,0)(10x f x f a x x f x f a x ,时,递增,当时,<'>>'<<递减, ∴ax x f 1)(=在处取到极大值1ln --a又当-∞→+∞→-∞→→)(,)(0x f x x f x ,当时, 要使x x f x 与时,)(0>轴有两个交点当且仅当1ln --a >0 解得e a 10<<,故实数a 的取值范围(0,e1) 方法二:(2)∵)(x f 为偶函数, ∴)(x f =0的根关于0对称.由)(x f =0恰有5个不同的实数解知5个实根中有两个正根,二个负根,一个零根. 且两个正根和二个负根互为相反数____________________________________________________________________________________________________ ∴原命题)(0x f x 时当>⇔图像与x 轴恰有两个不同的交点下面研究x>0时的情况x y x f ln 0)(=⇔=的零点个数与直线ax y =交点的个数.∴当0≤a 时,x y ln =递增与直线y=ax 下降或是x 国,故交点的个数为1,不合题意 ∴a>0由几何意义知x y ln =与直线y=ax 交点的个数为2时,直线y=ax 的变化应是从x 轴到与x y ln =相切之间的情形. 设切点t x k t t t x 1|)(ln )ln ,(='=⇒= ∴切线方为 )(1ln t x t t y -=-由切线与y=ax 重合知e a e t t t a 1,1ln ,1==⇒== 故实数a 的取值范围为(0,e1)。