图像分割算法研究及实现
图像分割算法的研究与实现-开题报告

湖北师范学院学士学位论文(设计)开题报告结论及边缘检测准则上面给出的机组图像可以看到对同一原始图像进行边缘检测的效果。
为了便于比较, 我们也专门把基于Canny 类的检测器结果列在了图三。
下表给出以上算法的计算时间:Canny 为了解决"定位精度和抑制噪声"的矛盾, 提出了我们熟知的Canny 准则:( 1) 不漏检真实存在的边缘, 也不把非边缘点作为边缘点检出, 使输出信噪比最大。
( 2) 检测到的边缘点位置距实际边缘点的位置最近。
( 3) 实际存在的边缘点和检测到的边缘点一一对应。
为了达到这3 个准则, Canny 采用变分法导出高斯函数的导数能够达到他提出的最优滤波器的指标, 由此得到公认"较好的"一类边缘检测算法[9]。
图像分割是由图像处理过渡到图像分析的关键步骤,在图像工程中占据重要的位置。
一方面,它是目标表达的基础,对特征测量有重要的影响。
另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
(二) 本课题的主要内容:介绍图像分割的定义及相关概念,讨论了灰度图象的分割方法,对当前比较常用的灰度图象的分割方法给出了详细的介绍,对其方法的优缺点进行详细的评析,根据图象的特点,制定出分割效果最好的方案,并对其进行实验,给出实验结果,对实验结果进行详细的讨论,得出有意义的结论.考虑到既要具有良好的切割效果,又要保留图像的重要边缘特征,具体的实现步骤如下:(1)输入待分割图像f(x,y), f(x,y)为灰度图像。
(2)利用MATLAB显示灰度直方图,用迭代法进行阈值选取,以区分背景和目标。
(3)采用边缘检测算子检测图像的边界特征,确定图象的边界位置。
(4)根据图像边缘检测的结果,在图像的边缘位置即灰度发生急剧变化的地方采用局部阈值法进行分割,对图象边缘进行二值化。
(5)根据图象分割的实际效果,再对以上方法加以完善,力求实现效果最好的图象分割。
图像分割算法的研究与实现_毕业设计论文

学士学位论文(设计)论文题目图像分割算法研究与实现作者姓名指导教师所在院系物理与电子科学学院专业名称电子信息科学与技术完成时间2010年5月15日目录摘要: (1)1.前言 (3)2.图像分割概念 (3)2.1图像分割定义 (3)2.2图像分割方法综述 (5)2.3阈值法 (5)2.4 基于边缘检测的分割方法 (9)2.5基于区域的分割方法 (12)3.图像分割方法详述 (13)3.1图像分割方法 (13)3.2 图像分割方法实现 (13)4.实验结果及分析 (15)4.1 实验结果 (15)4.2 实验结果分析 (19)5.小结 (21)5.1 本文主要工作总结 (21)5.2 结论及展望 (21)6.致谢 (23)7.附录 (25)图像分割算法研究与实现摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。
因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
因此,图像分割多年来一直得到人们的高度重视.本文首先将现有的多种类型图像分割方法归结为3类典型的方法 , 并分析各自的特性;然后提出图象分割方案,并利用MATLAB 软件编写程序,展示实验现象,最后对所做工作进行总结。
关键词:图像分割阈值法边缘检测微分算子局部阈值中图分类号:TP391.41RESEARCH AND IMPLEMENTATION OF IMAGESEGMENTATION ALGORITHMSHan Yan(College of Physics and Electronic Science,Hubei Normal University, Huangshi 435002, China) Abstract :Image segmentation is one of basic problems in image pro- cessing and computer vision,and is a key step in image processingand image analysis.Because original image can be translated intomore abstract and more compact format by image segmentation andtarget expression , feather extraction , parameter survey , and so onwhich are base on segmentation , this makes more high images analysis and image understanding possible. Therefore, the image segmen-tation for many years is highly valued.At first ,image segmentationmethods are classified into three typical types ,and their characteris-tics are analyzed. Secondly , the scheme of image segmentation areintroduced .At last,there is a summation to the whole work,writtingprogram with MATLAB , and show the phenomenon.Key words: Image Segmentation ,Threshold , Edge Detection , Differential operator ,Local threshold图像分割算法研究与实现1.前言在图像的研究和应用过程中,人们往往仅对各幅图像中的某些部分感兴趣.这些部分常称为目标或前景,它们一般对应图像中特定的具有独特性质的区域.为了辨别和分析目标,需要将这些区域分离提取出来,在此基础上才有可能对目标进一步利用.图像分割就是将图像分成各具特性的区域并提取出感兴趣的目标的技术和过程.在进行图像分割时,首先要根据目标和背景的先验知识来对图像中的目标、背景进行标记、定位,然后将等待识别的目标从背景中分离出来.图像分割是由图像处理进到图像分析的关键步骤,也是一种基本的计算机视觉技术.这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始的图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能.因此,图像分割多年来一直得到人们的高度重视[1]。
眼底图像分割算法及应用研究

眼底图像分割算法及应用研究一、眼底图像分割的基本原理及算法研究在本论文中,我们将聚焦于眼底图像分割的基本原理及算法研究。
首先,我们将介绍眼底图像分割的背景与意义,为读者铺陈研究该领域的重要性。
接下来,我们将梳理眼底图像分割的基本原理,包括采集眼底图像、预处理与预处理流程、图像分割技术、分割效果的评估等。
然后,我们对眼底图像分割的相关算法进行详细的介绍、分析及比较,包括基于传统算法(如阈值分割算法、固定重心算法、区域生长算法等)的眼底图像分割算法,以及基于深度学习算法(如卷积神经网络、全卷积网络、U-Net等)的眼底图像分割算法。
在算法比较中,我们将针对不同算法的优缺点进行分析、比较与展望,为读者更好地了解各种算法的特点,从而选择最为合适且最为优秀的算法。
二、眼底图像分割算法实现的技术细节与步骤在本论文中,我们将从实现眼底图像分割算法的技术细节和步骤出发,系统地讲解如何实现高效且准确的算法。
具体而言,我们将介绍双目图像的预处理、图像边缘检测及均衡化、直方图的均衡化、自适应阈值分割、形态学处理、改进的区域生长算法、半监督学习等步骤。
在每个步骤中,我们将提供详细的实现技巧、代码框架,以及相应的优化方法。
而在整个算法实现过程的最后,我们将借着开源平台PyTorch,搭建一套完整的眼底图像分割实现流程,帮助读者快速而准确地实现该算法;同时,我们将提供一套代码的详细注释以及详细的改进策略。
三、眼底图像分割算法的优化细节与方案在本论文中,我们将探讨眼底图像分割算法的优化细节与方案。
具体而言,我们将介绍在不同算法环节中,如何利用GPU/CPU并行计算与矩阵运算技术、CUDA指令优化技术等方法来提高算法效率。
在算法优化中,我们将分别分析传统算法与深度学习算法的优化方法,并且介绍如何通过辅助训练、跳过异常样本等技巧提高算法的准确率。
在本部分中,我们将通过实验数据和代码实现,来展示各种优化方法的效果。
四、眼底图像分割算法在眼科医学中的应用在本论文中,我们将探讨眼底图像分割算法在眼科医学中的应用。
基于无监督学习的图像语义分割算法研究

基于无监督学习的图像语义分割算法研究图像语义分割是计算机视觉领域中一项重要的任务,其目标是将图像中的每个像素标记为不同的语义类别。
传统的图像语义分割算法通常需要大量标记好的训练样本,这限制了其在实际应用中的推广和应用。
为了解决这一问题,无监督学习成为了研究者们关注的焦点之一。
本文将对基于无监督学习的图像语义分割算法进行深入研究。
首先,我们将介绍无监督学习在计算机视觉领域中的应用现状。
无监督学习是一种不需要人工标注样本进行训练的机器学习方法,它通过自动学习数据之间的内在结构和模式来实现任务目标。
在图像语义分割任务中,无监督学习可以通过对大量未标记图像进行聚类、自编码器等方法来实现。
接下来,我们将详细介绍基于聚类方法的无监督图像语义分割算法。
聚类是一种常用于数据挖掘和模式识别领域中数据分类和分析方法。
在基于聚类方法进行无监督图像语义分割时,首先将图像像素进行聚类,然后将聚类结果映射到语义类别上。
该方法的优点是简单易实现,但是由于聚类算法本身的限制,往往无法达到较好的分割效果。
然后,我们将介绍基于自编码器的无监督图像语义分割算法。
自编码器是一种无监督学习方法,通过学习输入数据的低维表示来实现数据压缩和特征提取。
在基于自编码器进行无监督图像语义分割时,首先使用自编码器对图像进行重建,并通过重建误差来度量图像的相似性。
然后将相似性矩阵转化为相似性图,并使用图切割算法将相似性图分割为不同的语义区域。
该方法在一定程度上克服了聚类方法的限制,并取得了较好的分割效果。
此外,我们还将介绍一些基于生成对抗网络(GAN)和变分自编码器(VAE)等深度学习方法进行无监督图像语义分割的研究进展。
这些方法通过引入生成模型和判别模型来实现对未标记数据进行特征提取和分类,并在一定程度上提高了分割的准确性和稳定性。
最后,我们将对无监督图像语义分割算法进行综合评估,并展望其未来的发展方向。
虽然无监督学习在图像语义分割领域取得了一定的研究成果,但仍然存在一些挑战和问题,如如何处理类别不平衡和类别不确定性等。
图像分割 实验报告

图像分割实验报告《图像分割实验报告》摘要:图像分割是计算机视觉领域的重要研究方向,它在许多领域都有着重要的应用价值。
本实验旨在探究图像分割算法在不同场景下的表现,并对比不同算法的优缺点,为图像分割技术的进一步发展提供参考。
一、实验背景图像分割是指将图像划分成若干个具有独立语义的区域的过程。
图像分割技术在医学影像分析、自动驾驶、图像识别等领域都有着广泛的应用。
因此,对图像分割算法的研究和优化具有重要意义。
二、实验目的本实验旨在通过对比不同图像分割算法在不同场景下的表现,探究其优劣,并为图像分割技术的进一步发展提供参考。
三、实验内容1. 数据准备:收集不同场景下的图像数据,包括自然景观、医学影像、交通场景等。
2. 算法选择:选择常用的图像分割算法,如基于阈值的分割、边缘检测、区域生长等。
3. 实验设计:将不同算法应用于不同场景的图像数据上,对比它们的分割效果和计算速度。
4. 结果分析:对比不同算法的优缺点,并分析其适用场景和改进空间。
四、实验结果通过实验我们发现,在自然景观图像中,基于阈值的分割算法表现较好,能够有效地将图像分割成不同的颜色区域;而在医学影像中,边缘检测算法表现更为出色,能够准确地识别出器官的边缘;在交通场景中,区域生长算法表现较好,能够有效地区分不同的交通标志和车辆。
五、结论不同的图像分割算法在不同场景下有着不同的表现,没有一种算法能够适用于所有场景。
因此,我们需要根据具体的应用场景选择合适的图像分割算法,或者结合多种算法进行优化,以达到更好的分割效果。
六、展望未来,我们将继续探究图像分割算法的优化和改进,以适应不同场景下的需求。
同时,我们还将研究图像分割算法在深度学习和人工智能领域的应用,为图像分割技术的发展贡献力量。
通过本次实验,我们对图像分割算法有了更深入的了解,也为其在实际应用中的选择提供了一定的指导。
希望我们的研究能够为图像分割技术的发展做出一定的贡献。
基于半监督学习的图像分割算法研究与实现

基于半监督学习的图像分割算法研究与实现近年来,随着人工智能技术的不断发展,图像分割算法成为了计算机视觉领域的一个热门话题。
图像分割是指将一幅图像中的像素分成多个互不重叠的区域,并使得每个区域内的像素具有相似的特征。
图像分割在计算机视觉领域有着广泛的应用,如目标检测、图像识别、医学影像处理等方面。
现有的图像分割算法大体可以分为基于阈值的分割、基于区域的分割、基于边缘的分割和基于图论的分割等几种。
但是,这些算法都存在着一定的缺陷,如阈值灵敏度低、对图像特征提取不够灵活、对图像大小、形状、方向等不敏感等。
针对这些问题,近年来基于半监督学习的图像分割算法逐渐成为研究热点。
半监督学习是指同时利用有标记样本和未标记样本来进行学习,即半监督模型同时利用了标记数据和未标记数据来进行学习和分类,这使得模型的准确性得到了提高,同时减少了标记数据的数量和成本。
基于半监督学习的图像分割算法通常包括两个步骤:1、通过半监督模型对图像进行分割;2、通过自适应连通性分析方法来进一步优化分割结果。
下面,我们将针对这两个步骤展开讨论。
首先,对于半监督模型的选择,一般可以选择支持向量机(SVM)、半监督随机游走(SSL-RW)、半监督鲁棒性特征选择(SSL-BMR)等。
这些算法都可以有效地利用未标记样本来提高图像分割的准确性和鲁棒性。
值得注意的是,对于不同的数据集和应用场景,选择合适的半监督模型是非常关键的。
其次,自适应连通性分析方法也是基于半监督学习的图像分割算法的重要部分之一。
这种方法利用了图像特征之间的连通性来优化图像分割结果,同时充分考虑了相邻像素之间的相似性。
自适应连通性分析方法通常包括以下几个步骤:1、构建相似图,其中相似矩阵由半监督模型输出的小概率值和像素点相似度构成;2、利用谱聚类算法对相似图进行聚类,将图像分割成多个互不重叠的分割区域;3、通过处理定位问题来剪切不必要的边缘像素点,最终得到更为精确的分割结果。
综上所述,基于半监督学习的图像分割算法具有较为广泛的应用前景和研究价值。
图像分割算法的研究与实现

图 4 区域生 长 的例子
图 4表示 了一个 很 简单 的 区域 生长 的例 子 。每一 步所 接受 的邻 近点 的灰
度级与当前物体 的平均灰度级的差小于 2 。图 4(输人图像 ,其起始点灰度 a ) 级为 9 ;图 4() 一步 接受 的邻 近 点 ( 时虚 线框 内的平均 灰度 级为 ( + + b第 此 88
(o oatT ahn eatetf o ue,i sU i ri, el gi g i ui50 7 hn) Cmm nly ecig pr n mpt J mui nv syH injn a s140 , ia i D m oC r a e t o a Jm C
Ab t c : h ma e sg e tt n i r n i r m h ma e p o e sn o t e i g n l ss c mmi e tp T i s r t e i g e m na o s ta st f a T i s o t e i g r c s i g t h ma e a ay i o t d s . hs t e
-
5 4
2 3
3
5 r Q-一 2 Q
一 一 一 一
(
r ●。 r J 9 1 弋 。● 3 c _)
一
图 3 L pain 子实现 后 的图像 al a 算 c
一 . : - = 3
2 基于区域 的分割方法
区域分 割 的实 质 就是把 具 有某 种 相似 性质 的像 素连 通起来 ,从 而构 成 最终 的分 割 区域 。它利用 了图像 的局 部空 间信息 ,可有 效地 克 服其 它 方法存 在 的 图像 分 割空 间不 连续 的缺 点 ,但它 通 常会造 成 图像 的过 度
基于颜色空间的图像分割算法研究

基于颜色空间的图像分割算法研究一、简介图像分割是数字图像处理中的重要内容,其目的是将一张图像分成不同的部分或区域。
图像分割在计算机视觉、机器人、医学图像以及自然图像的分析等方面有着广泛的应用。
基于颜色空间的图像分割算法是图像分割领域中的一种常见方法,本文将从该方法的原理、实现及优化方面进行研究。
二、基于颜色空间的图像分割算法原理基于颜色空间的图像分割算法的原理是:在RGB、HSI、HSV、LAB等颜色空间中,将图像像素的颜色信息利用聚类分析的方法分类,从而得到不同的区域。
其中,RGB色彩空间以红、绿、蓝三原色的亮度为基础,可以展现出色彩的真实性,但缺乏人眼的视觉特性;HSI色彩空间是将RGB色彩空间转换至色相(H)、饱和度(S)、强度(I)三方向,用于描述颜色的感性特征。
HSV色彩空间是将RGB色彩空间转换至色调(H)、饱和度(S)、亮度(V)三方向。
LAB色彩空间是基于三个属性:L(亮度)、A(色彩在绿-红轴上的位置)、B(色彩在蓝-黄轴上的位置)。
三、基于颜色空间的图像分割算法实现基于颜色空间的图像分割算法的实现步骤如下:1.选择合适的颜色空间转换成灰度图像;2.确定聚类中心,对灰度图像进行聚类,确定不同的区域;3.利用聚类得到的分割结果对原图像进行分割,得到不同的区域。
四、基于颜色空间的图像分割算法优化基于颜色空间的图像分割算法的优化主要从以下几个方面:1. 颜色空间选择:应选择适合特定应用场合的颜色空间。
例如,应选择HSV颜色空间来提取彩色图像中特定颜色物体的信息;2. 聚类算法:应选择合适的聚类算法,不同聚类算法适用于不同的分割结果;3. 深度学习方法:利用深度学习方法实现图像分割可以提高分割的准确性和效率;4. 视频图像分割:对于视频图像分割,可以将前一帧的分割结果作为后一帧的初始聚类中心,以减少重复计算。
五、总结基于颜色空间的图像分割算法是图像分割领域中的常见方法之一,在医学图像、机器人、计算机视觉等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中北大学课程设计说明书学生:梁一才学号:10050644X30学院:信息商务学院专业:电子信息工程题目:信息处理综合实践:图像分割算法研究与实现指导教师:平职称: 副教授2013 年 12 月 15 日中北大学课程设计任务书13/14 学年第一学期学院:信息商务学院专业:电子信息工程学生姓名:焦晶晶学号:10050644X07 学生姓名:晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践:图像分割算法研究与实现起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:平系主任:王浩全下达任务书日期: 2013 年12月15 日课程设计任务书课程设计任务书目录1 引言 (1)1.1数字图像分割的现状 (1)1.2数字图像分割的意义 (1)2 基于MATLAB的图像分割 (2)3 图像分割的主要研究方法 (3)3.1图像分割定义 (3)3.2图像分割方法综述 (4)3.3分水岭算法 (4)3.3.1分水岭算法概念 (4)3.3.2分水岭算法原理 (5)3.4区域分裂合并法 (6)3.4.1区域分裂合并算法基本原理 (6)3.4.2区域分裂合并算法算法过程 (7)4 MATLAB程序与结果 (8)4.1分水岭算法结果与分析 (8)4.2分裂合并算法结果与分析 (10)5两种图像分割方法的比较 (11)6 结论 (13)7参考文献 (14)1 引言1.1 数字图像分割的现状图像分割技术,是从图像中将某个特定区域与其它部分进行分离并提取出来的处理。
图像分割的方法有许多种,有阈值分割方法,边界分割方法,区域提取方法,结合特定理论工具的分割方法等。
早在1965年就有人提出检测边缘算子,边缘检测已产生不少经典算法。
越来越多的学者开始将数学形态学、模糊理论、遗传算法理论、分形理论和小波变换理论等研究成果运用到图像分割中,产生了结合特定数学方法和针对特殊图像分割的先进图像分割技术。
尤其是近年来迅速发展起来的小波理论为图像处理带来了新的理论和方法。
小波变换具有良好局部特性,当小波函数尺度较大时,抗噪声的能力强,当小波函数尺度较小时,提取图像细节的能力强,这样就可以很好地解决抑制噪声和提取图像边缘细节之间的矛盾。
图像分割来说,如果不利用关于图像或所研究目标的先验知识,任何基于数学工具的解析方法都很难得到很好的效果。
因此,人们倾向于重新设计一个针对具体问题的新算法来解决所而临的图像分割问题。
这在只有少量图像样本的时候,利用各种先验知识,设计一个具有针对性的算法进行图像分割是比较容易的。
但是当需要构建一些实用的机器视觉系统时,所面临的将是具有一定差异性、数量庞大的图像库,此时如何很好的利用先验知识,设计一个对所有待处理图像都实用的分割算法将是一件非常困难的任务。
其次,由于缺乏一个统一的理论作为基础,同时也缺乏对人类视觉系统(human vision system,HVS)机理的深刻认识,构造一种能够成功应用于所有图像的统一的图像分割算法,到目前为止还是难以实现的。
1.2 数字图像分割的意义现实生活中在分割一幅图像时,多是依据经验和直觉去选择方法,通过反复实践来找到一种最佳的方法。
与计算机科学技术的确定性和准确性相比,图像分割更像是一种艺术行为,有经验的人能比较容易的选用出适当的方法,使不同的图像都得到最佳的分割效果。
但是,当要处理的图像十分庞大时,图像分割就像是流水线上的一道简单工序,这种艺术行为就显得无能为力了。
随着图像技术和多媒体技术的发展,包括图像、音频和视频等信息的多媒体数据己经广泛用于Internet和企事业信息系统中,而且越来越多的商业活动、信息表现和事务交易中都将包括多媒体数据,自然也就包含了大量的图像,基于容的图像检索的广泛应用就是一个例子,这些常常都是以图像分割作为基础的。
由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。
相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域。
边缘提取是图像边缘检测和计算机视觉等领域最基本的技术,如何准确、快速的提取图像中的边缘信息一直是这些领域的研究热点,随着此项技术研究的深入和整个领域的不断发展,边缘提取技术已经成为图像分割、目标识别、图像压缩等技术的基础。
其理论意义深远,应用背景广泛,有相当的使用价值和理论难度。
边缘提取算法的提出通常是面向具体问题的,普遍实用性较差。
区域提取法有两种基本形式:一种是从单个像素出发,逐渐合并以形成所需的分割区域;另一种是从全图出发,逐渐分裂切割至所需的分割区域。
在实际中使用的通常是这两种基本形式的结合。
根据以上两种基本形式,区域提取法可以分为区域生长法和分裂合并法。
区域生长法的基本思想是将具有相似性质的像素合起来构成区域,具体做法是先给定图像中要分割的目标物体的一个小块或者说种子区域,再在种子区域的基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的。
该方法的关键是要选择合适的生长或相似准则。
生长准则一般可分为三种:基于区域灰度差准则、基于区域灰度分布统计性质准则和基于区域形状准则。
分裂合并法是先将图像分割成很多的一致性较强的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的。
区域提取法的缺点是往往会造成过度分割,即将图像分割成过多的区域,因此近年来针对这种方法的研究较少。
2 基于MATLAB的图像分割MATLAB允许用户以数学形式的语言编写程序,用户在命令窗口中输入命令即可直接得出结果,这比C++、Fortran和Basic等等该机语言都要方便的多。
而且它是用C语言开发的,其流程控制语句与C语言中的相应语句几乎一致。
这给使用上带来了方便,使我能较快的适应与使用MATLAB这门语言,使用起来更加方便。
另外,MATLAB的部函数提供了相当丰富的函数,这些函数解决许多基本问题,如矩阵的输入。
在其它语言中(比如C语言中),要输入一个矩阵,先要编写一个矩阵的子函数,而MATLAB语言则提供了一个人机交互的数学系统环境,该系统的基本数据结构是矩阵,在生成矩阵对象时,不要求做明确的维数说明。
与利用C语言或Fortran 等等高级语言编写数值计算的程序相比,利用MATLAB 可以节省大量的编程时间。
这就给用户节省了很多的时间,使用户可以把自己的精力放到创造方面,而把繁琐的问题交给部函数来解决。
除了这些数量巨大的基本部函数外,MATLAB还有为数不少的工具箱。
这些工具箱用于解决某些领域的复杂问题。
3 图像分割的主要研究方法3.1 图像分割定义图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出了上千种各种类型的分割算法,现提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用分割算法,而且近年来每年都有上百篇相关研究报道发表。
然而,还没有制定出选择合适分割算法的标准,这给图像分割技术的应用带来许多实际问题。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一[1]。
多年来人们对图像分割提出了不同的解释和表述,借助集合概念对图像分割可给出如下定义:令集合R代表整个图像区域,对R的图像分割可以看做是将R分成N个满足以下条件的非空子集R1,R2,R3,…,RN;(1)在分割结果中,每个区域的像素有着相同的特性;(2)在分割结果中,不同子区域具有不同的特性,并且它们没有公共特性;(3)分割的所有子区域的并集就是原来的图像;(4)各个子集是连通的区域;图像分割是把图像分割成若干个特定的、具有独特性质的区域并提取出感兴趣目标的技术和过程,这些特性可以是像素的灰度、颜色、纹理等提取的目标可以是对应的单个区域,也可以是对应的多个区域。
3.2 图像分割方法综述图像分割是指将图像划分为与其中含有的真实世界的物体或区域有强相关性的组成部分的过程。
图像分割是图像处理和分析中的重要问题,也是计算机视觉研究中的一个经典难题。
尽管它一直受到科研人员的重视,但是它的发展很慢,被认为是计算机视觉的一个瓶颈。
迄今为止,还没有一种图像分割方法适用于所有的图像,也没有一类图像所有的方法都适用于它。
近几年来,研究人员不断改进原有方法并将其它学科的新理论和新方法引入图像分割,提出了不少新的分割方法。
本文对传统的图像分割方法进行分析。
典型的图像分割方法有阈值法,边缘检测法,区域法。
分析各种图像分割方法可以发现,它们分割图像的基本依据和条件有以下4方面:(l)分割的图像区域应具有同质性,如灰度级别相近、纹理相似等;(2)区域部平整,不存在很小的小空洞;(3)相邻区域之间对选定的某种同质判据而言,应存在显著差异性;(4)每个分割区域边界应具有齐整性和空间位置的准确性。
现有的大多数图像分割方法只是部分满足上述判据。
如果加强分割区域的同性质约束,分割区域很容易产生大量小空洞和不规整边缘:若强调不同区域间性质差异的显著性,则极易造成非同质区域的合并和有意义的边界丢失。
不同的图像分割方法总有在各种约束条件之间找到适当的平衡点。
3.3 分水岭算法3.3.1分水岭算法的概念:分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。
分水岭的概念和形成可以通过模拟浸入过程来说明。
在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
3.3.2分水岭算法的原理:分水岭的计算过程是一个迭代标注过程。
分水岭比较经典的计算方法是L. Vincent提出的。
在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。
首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。
分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。
显然,分水岭表示的是输入图像极大值点。
因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5式中,f(x,y)表示原始图像,grad{.}表示梯度运算。