序列分析(一)一一序列比对
序列比对

Clustal的输入输出格式
输入序列的格式比较灵活,可以是前面介绍
过的FASTA格式,还可以是PIR、SWISSPROT、GDE、Clustal、GCG/MSF、RSF等 格式。
输出格式也可以选择,有ALN、GCG、
PHYLIP和NEXUS等,用户可以根据自己的 需要选择合适的输出格式。
以多个物种的抗坏血酸过氧化物酶的的蛋 白质序列进行比对为例
第三章
序列比对
为什么要序列比对?
基于同源物鉴定的功能预测 基本假设:
序列的保守性
因为:
功能的保守性
1. 蛋白质一般在三级结构的层面上执行功能; 2. 蛋白质序列的保守性决定于其编码DNA的保守性。
序列比对中的进化假设
1. 所有的生物都起源于同一个祖先; 2. 序列不是随机产生,而是在进化上,不断发生着 演变; 3. 基本假设: 序列保守性 结构保守性 注意:反之并不为真。 结构保守性 序列保守性
寻找序列中相似度最高的区域,也就是匹
局部比对
配密度最高的部分。
适用于在某些部分相似度较高,而其他部
位差异较大的序列。 如:Smith-Waterman算法
局部相似性比对
局部相似性比对的生物学基础是蛋白质功能位点往
往是由较短的序列片段组成的,这些部位的序列具 有相当大的保守性,尽管在序列的其它部位可能有 插入、删除或突变。
Blast。前面讲的两两比对是一种特殊的blast。
基因组BLAST
基本BLAST有5种。
基本blast
粘贴序列
结 果 显 示
结 果 显 示
结 果 显 示
3.3.2 多重序列的本地化软件对齐
例如:可采用ClustalX软件
序列分析(一)一一序列比对

1. 可以找到两个序列间所有可能的残基匹配; 2. 简单、易懂 3. 直观、整体性强
工具:
/Tools/emboss/index.html
例1:自身的比对
AKG F KC A D E
A1 0 0 0 0 0 1 0 0
K 10010000
G
1000000
V -11 Sij
E -22 要求解Sij的分数,我们必须先知道
S -33
L
-44
Si-1, j-1, Si-1, j, Si, j-1的分数,这种方法叫 做递归算法;
C -55 采用这种方法,可以把大的问题分割 Y -66 成小的问题逐一解决,即动态规划算
法;需要存储如何得到Sij分数的过程。
全局比对 (3)
例5:不同序列的比对
P KD F CKA LV
P1 0 0 0 0 0 0 0 0
K 10001000
F
0100000
T
00000
K1
1000
A
100
I
00
V
1
PKDFCKALV PK - FTKAIV
字符的关系: 1. 匹配 2. 删除或插入 3. 替换
对于例五中的情况:
PKDFCKALV PK – FTKA I V 1 1 -11 0 1 1 0 1 Score=1+1+(-1)+1+0+1+1+0+1
序列分析(一)
一一序列比对
生物信息学研究的三个层面
初级层面:
基于现有的生物信息数据库和资源,利用成熟的生 物信息学工具(专业网站、软件)解决生物信息学 问题
——生物信息数据库(NCBI、EBI、DDBJ、UniProt等) ——基因组序列分析、序列比对软件(BLAST、CLUSTAL 等) ——系统发育树构建软件的简单使用(PHYLIP、PALM等) ——搜集、整理有特色的生物信息学数据库
序列比对名词解释

序列比对名词解释序列比对,又被称为序列比对分析,是一种分析生物序列相似性的算法,能够比较并对比不同物种之间的 DNA蛋白质序列,以及用于识别和研究共同特征等。
这是一种运用统计学原理的分析方法,能够发现和比较生物物种的进化关系,从而对比其基因组的序列和结构的相似性。
序列比对的原理是,两个序列通过字符匹配单元来评估两个序列的相似性。
两个序列都会被分解成许多小段,这些小段中的字符将会被比较。
这个过程被称为“匹配盒”,他们使得比较更加精确。
这个算法也使用一种叫做全局算法的系统,用于将两个序列中所有的字符串串连接起来,比较它们之间的相似性。
要使用序列比对,需要使用一种特定的算法,这个算法可以计算出两个序列的相似性。
这个算法可以使用非常复杂的方法,也可以使用经典的比较算法,比如Smith-Waterman算法、Needleman-Wunsch算法、BLAST算法等。
序列比对常常被用来进行基因组学分析,可以用来分析DNA序列、蛋白质序列,也可以用来分析特定基因的变异性。
序列比对可以帮助研究者发现某些基因的Protein的特定变体,这也可以帮助研究者更进一步地了解这些基因的功能。
序列比对还可以被用于进化分析,可以比较和分析某些物种的基因组,寻找它们在进化过程中的变化。
序列比对也可以用来研究生物物种之间的相似性,可以用来了解它们的系统进化关系。
序列比对也可以用于识别特定的DNA结构,如DNA序列中出现的特定序列,可以帮助研究者识别出重要的基因序列。
此外,序列比对还可以帮助研究者发现特定序列中引入的错误,这对研究者分析基因组序列特征非常关键。
综上所述,序列比对是一种非常重要的算法,可以应用于基因组学、进化学和生物物种比较研究等领域。
它可以帮助研究者比较不同物种的序列或比较一个物种序列的变异性,并根据得出的结果来了解它们的进化关系和进化机制。
也可以用来发现基因组中的特征和错误,这极大地丰富了基因组学的发展。
序列分析一一序列比对

序列分析一一序列比对序列比对是一种广泛应用于生物学领域的分析方法,用于比较两个或多个序列的相似性和差异。
在分子生物学研究中,序列比对可以用于DNA、RNA或蛋白质序列的比较,从而推断基因或蛋白质的功能、进化关系和结构等信息。
序列比对的目标是找到两个或多个序列之间的共同特征和差异。
首先,需要选择一个参考序列,也称为查询序列。
然后,将其他序列与查询序列进行比较,通过标记相同的碱基或氨基酸,来确定它们之间的相似性和差异。
序列比对的常用方法有全局比对和局部比对。
全局比对尝试将两个序列的每个位置进行比较,寻找最佳的序列匹配。
全局比对适用于两个相似序列的比较,但效率较低。
局部比对则通过在序列中寻找最佳的片段匹配,来发现相似区域。
局部比对适用于寻找序列中的特定区域的共同特征。
常用的序列比对算法包括:Smith-Waterman算法、Needleman-Wunsch算法和BLAST(基本本地比对工具)。
其中,Smith-Waterman算法和Needleman-Wunsch算法是精确的序列比对算法。
这两种算法采用动态规划的方法,在计算比对得分的同时记录了比对路径,从而找到最优的比对结果。
然而,由于时间和空间复杂度较高,这两种算法主要用于较短序列的比对。
BLAST算法则是一种启发式方法,通过快速比较序列的特征,自动生成候选相似序列,并进行相似性评分和排序。
在序列比对中,常用的相似性评分方法是比对得分和比对位点的数目。
比对得分是根据序列之间的匹配和错配得分计算而来的,匹配得分通常较高,而错配得分较低。
比对位点的数目表示在比对结果中匹配和错配的总数。
通过这些评分指标,可以量化序列之间的相似性和差异。
序列比对在生物学研究中起到了重要的作用。
例如,可以通过比对DNA或RNA序列来推断物种之间的亲缘关系和进化历史。
比对蛋白质序列可以预测蛋白质的结构和功能。
此外,序列比对还可以用于寻找序列中的共享特征,例如启动子、编码区和保守区等。
序列比对的基本方法

序列比对的基本方法序列比对是生物信息学中重要的一项任务,它用于比较和分析不同生物序列之间的相似性和差异性。
序列比对方法既可以应用于DNA序列之间的比较,也可以用于蛋白质序列之间的比较。
本文将介绍序列比对的基本方法,包括全局比对、局部比对和多序列比对。
一、全局比对全局比对是将整个序列进行比对,得到两个序列之间的最佳匹配。
最常用的全局比对方法是Needleman-Wunsch算法,该算法用动态规划的方式计算两个序列之间的最佳匹配。
其基本思想是在两个序列中插入一个空位,并为每个空位赋予一定的惩罚分数,然后通过计算每种插入方式的得分来确定最佳插入位置,从而得到最佳匹配。
二、局部比对局部比对是在两个序列中寻找最佳匹配的子序列。
最常用的局部比对算法是Smith-Waterman算法,该算法也是基于动态规划的方法。
不同于全局比对,局部比对将得分为负值的子序列直接设为0,从而忽略掉匹配较差的部分。
该算法在序列比对中应用广泛,可以用于发现序列中的保守区域以及识别重复序列。
三、多序列比对多序列比对是指将多个序列进行比对,从而得到它们之间的相似性和差异性。
多序列比对方法有多种,包括ClustalW、MAFFT和Muscle等。
这些方法常用于计算进化关系,识别保守区域和功能位点等。
其中,ClustalW是最常用的多序列比对软件之一,它使用的是基于目标函数的方法,在多个序列中寻找最佳的全局匹配。
MAFFT和Muscle则分别使用多种算法来处理不同类型的序列,从而提高比对的准确性和效率。
四、快速比对算法传统的序列比对方法在处理大规模序列数据时效率较低。
为了提高比对速度,研究者提出了一系列快速比对算法,如BLAST、 FASTA和Smith-Waterman-Gotoh算法等。
这些算法常用于初步比对和预测,可以在较短的时间内找到相似序列,从而提高工作效率。
其中,BLAST是最常用的快速比对算法之一,其基本思想是将查询序列与参考数据库中的序列进行比对,并根据匹配得分对结果进行排序,从而找到相似序列。
生物信息学中的序列分析技术

生物信息学中的序列分析技术生物信息学是一门涉及到生物学、计算机科学、统计学等多个学科领域的交叉学科。
其主要研究的是通过计算机技术分析和处理生物学数据,以便更好地了解生物学的基本原理以及应用于生物领域的技术和工具。
而生物信息学中的序列分析技术则是其研究重点之一。
序列分析技术通过分析生物分子(如DNA、RNA和蛋白质)的序列以及其结构和功能,提供了许多有用的信息。
例如,帮助确定基因型和表型之间的关系,预测蛋白质的功能以及探测序列之间的相似性和差异性等等。
下面将简单介绍一些常用的序列分析技术。
1. 序列比对序列比对是一种将两个或多个序列进行对比的技术。
其主要目的是确定序列之间的相似性和差异性,并且找到它们之间的一些重要特征(如组成、结构和功能等)。
序列比对可以判断两个或多个DNA或蛋白质序列之间的相似性、距离以及定义进化关系等。
2. 基因结构预测基因结构预测是通过分析 DNA 序列中含有转录位点(TSS)和编码区域(CDS)等关键区域来判断其中有没有完整的基因序列。
对于没有直接测定基因序列的细胞,基因结构预测技术是一种重要的方法来推断基因序列。
3. 蛋白质序列分析蛋白质序列分析是一种分析蛋白质序列以及其结构和功能的技术。
这种技术为寻找具有特定功能的关键氨基酸残基提供了帮助,也可以帮助识别特定的蛋白质家族,并预测蛋白质的结构和功能等。
4. 基因芯片技术基因芯片技术是一种利用高通量 DNA 芯片,将成千上万的DNA 片段同时比较的技术。
这种技术为分析基因表达模式、标记具有特定疾病或特定生理状态的基因,以及识别具有特定性质的遗传物质提供了帮助。
5. 基因组学和转录组学基因组学和转录组学是两个使用序列分析技术来研究生物学的领域。
其中基因组学关注整个基因组的结构和功能,而转录组学关注在特定生理情况下基因表达的情况。
这些研究可以帮助识别特定基因、预测编码蛋白质的结构和功能,甚至确定蛋白质之间的相互作用等。
总之,序列分析技术是在生物学领域中非常有用的技术。
生物信息学中的序列比对与分析教程

生物信息学中的序列比对与分析教程序列比对与分析在生物信息学中扮演着非常重要的角色。
通过对不同生物体的DNA、RNA或蛋白质序列进行比较和分析,我们可以揭示它们之间的相似性和差异性,从而推断它们的功能和进化关系。
本教程将介绍序列比对的基本概念、工具和方法,并探讨如何进行常见的序列分析。
1. 序列比对的基本概念序列比对是用于比较两个或多个生物序列之间的相似性和差异性的过程。
在序列比对中,我们会使用特定的算法和方法,将不同序列中的相似区域进行匹配,以找到它们之间的共同点。
常用的序列比对算法包括全局比对(如Needleman-Wunsch算法)和局部比对(如 Smith-Waterman算法)等。
2. 序列比对的工具现在有许多序列比对工具可供选择,其中一些是免费提供的。
其中最常用的工具之一是BLAST(Basic LocalAlignment Search Tool)。
BLAST可以快速找到一个或多个与给定序列相似的其他序列,并给出相似性得分。
除了BLAST,还有一些其他的序列比对工具,比如ClustalW、MUSCLE和T-Coffee等。
3. DNA序列比对DNA序列比对是研究生物体间遗传关系和进化关系的重要工具。
DNA序列之间的相似性可以用来确定物种的亲缘关系、寻找共同的进化起源以及研究基因的功能。
在DNA序列比对中,常用的方法是使用BLAST等工具,通过将查询序列与数据库中的已知序列进行比对来找到相似的区域。
4. RNA序列比对RNA序列比对主要用于研究基因表达和功能相关的RNA分子。
与DNA序列比对相似,RNA序列比对也可以通过BLAST等工具进行。
此外,对于非编码RNA序列的比对,可以使用RAPSearch和PIRCH等专门的工具。
5. 蛋白序列比对蛋白序列比对是分析蛋白质结构和功能的关键步骤。
蛋白质序列比对可以通过BLAST等工具进行,还可以使用更高级的算法和方法,如Smith-Waterman算法和多序列比对算法,来找到更为精确的比对结果。
生物信息学中的序列分析与比对算法研究

生物信息学中的序列分析与比对算法研究生物信息学是一门涉及生物学、计算机科学、统计学等多个学科的交叉学科,而序列分析和比对则是生物信息学研究领域中的重要组成部分。
在基因测序技术快速发展的今天,序列分析和比对已经成为了生物学研究的基础和前提,因此,在生物信息学研究中,序列分析和比对算法的研究和发展显得尤为重要。
1.序列分析的概念序列分析是指对两个或多个生物分子序列进行比较和分析,在相同性、异同性、变异性等多个方面进行研究。
其中,分子序列可以是DNA序列、RNA序列或蛋白质序列等。
序列分析可以揭示序列之间的相同之处,进而推断它们之间的亲缘关系。
2.序列比对算法的分类序列比对算法分为全局比对和局部比对。
全局比对是将两个序列的整个长度进行比较和对齐,寻找相似片段。
它适用于两个较长、较相似的序列的比较,比如基因组序列的比较。
全局比对的常用算法有Needleman-Wunsch算法和Smith-Waterman算法。
而局部比对则是寻找两个序列的局部相似片段,其比较重点在于不同片段的局部相似性,适用于两个较短、较不相似的序列比较。
局部比对的常用算法是BLAST算法和FASTA算法。
3.序列比对的挑战序列比对虽然是生物信息学研究的基础,但是在实际研究中,也存在诸多挑战。
其中,序列长度、序列相似性、算法效率和性能等问题,都是需要注意和解决的问题。
3.1 序列长度问题序列长度问题是指在序列比对过程中,长序列相对于短序列在计算时的计算复杂度问题。
当序列的长度过长时,传统的算法就显得不够快速和效率,已有的算法计算复杂度会呈现指数级别增长,导致比对时间过长、内存消耗大等问题。
为了解决这个问题,通常会采用分段比对、单指向树等技术。
3.2 序列相似性问题序列相似性问题是指序列比对中,序列的相似度直接影响到算法效果的问题。
当序列相似度过低时,算法的准确性就会受到影响,比如存在较高的伪阳性率和伪阴性率等问题。
序列相似度过高时,则会导致序列比对的可靠性下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P1 0 0 0 0 0 0 0 0
K 10001000
F
0100000
T
00000
K1
1000
A
100
I
00
V
1
PKDFCKALV PK - FTKAIV
字符的关系: 1. 匹配 2. 删除或插入 3. 替换
点阵法的序列比对
Sequence 1#
1
n
1
“-” Insertion
“-” Insertion
中级层面:
利用数理统计方法和相关的工具,研究生物信息学 问题
——概率、数理统计基础 ——现有的数理统计和科学计算工具(EXCEL、SPSS等)
高级层面:
提出有重要意义的生物信息学问题;自主创新, 发展新方法,开发新工具,引领生物信息学领域研 究方向。
——面向生物学领域,解决重要生物学问题 ——利用数学、物理、化学、计算科学等思想和方法 ——建立模型,发展算法 ——自行编程,开发软件
BLOSUM62替代矩阵
以两序列VDSCY和VESLCY为例 空位罚分d=-11
全局比对 (5)
Gap V D S C Y
Gap 0 -11 -3 -22 -33 -44 -55 -11
V -11 4 -11 -7
E -22
S -33
L -44 C -55
VD: -3
Y -66
全局比对 (6)
=5 由于序列长度不同,因此相对长度的得分更有意义:
Sim(s,t)=2×Score/(m+n)=2×5/(9+8)=0.588
注意:
不同类型的字符替换,其 代价是不同的。
核酸矩阵一
BLAST矩阵
A
T
C
G
A
5
-4
-4
-4
T
-4
5
-4
-4
C
-4 -4
5
-4
G
-4 -4
-4
5
目前最流行的序列比较程序BLAST使用的矩阵
Paralog (旁系同源):
指相同的基因组内因 基因复制 形成的多个具有不同功 能的基因。
Xenolog (异同源):
由某一个 水平基因转移 事件而得到的同源序列。
Convergence(趋同):
序列的相似性是由 随机因素 产生。
第一节、双序列比对
点阵分析 动态规划
1. 点阵分析
用途:
1. 寻找两条序列间所有可能的比对; 2. 寻找蛋白质、DNA序列上正向或反向的重复序列; 3. 发现RNA上可能存在的互补区域。
点阵序列比对的缺点
滑动窗口和阈值的选择过于经验化, 信噪比较低 , 不适合进行高通量的数据分析, 对长序列,计算时间长。
作为双序列比对的第一步,点阵图提供了 一个大尺度的轮廓信息
/Tools/emboss/align/
序列相似性打分矩阵
简单的得分函数: p(a, a)=1 p(a, b)=0 p(a, -)=p(-, b)=-1
F
100000
K
10000Байду номын сангаас
C
1000
A
100
D
10
E
1
例2:重复序列
AKGF DKGF E
A1 0 0 0 0 0 0 0 0
K 10001000
G
1000100
F
100010
D
10000
K1
1000
G
1
100
F
1
10
E
1
例3:反向重复/回文
AUGCACGUC
A1 0 0 0 1 0 0 00
U 10000010
假设窗口大小为10,相似度阈值为8,则每 次比较取10个连续的字符,如相同的字符超 过8个,则标记,
基于滑动窗口的点矩阵方法可以明显地降低 点阵图的噪声,并且明确无误的指示出了两 条序列间具有显著相似性的区域。
(a)
(b)
(a)对人类(Homo sapiens)与黑猩猩(Pongo pygmaeus)的β 球蛋白基因序列进行比较的完整点阵图。(b)利用滑动窗口对 以上的两种球蛋白基因序列进行比较的点阵图,其中窗口大小为 10个核苷酸,相似度阈值为8。
Gap Gap 0
G0 E0 S0 L0 C0 K0
LD S CH 00000
Sij
gap: -11,线性罚分模型。
Smith-Waterman算法;
Si-1, j-1 + σ(xi, yj) Sij = max of Si-1, j +d (从上到下)
Si, j-1 +d (从左到右) 0
j
i
Gap V D S C Y
Gap 0 -11 -22 -33 -44 -55
V -11 Sij E -22
S -33 L -44 C -55 Y -66
Needleman-Wunsch算法;
Sij = max of
Si-1, j-1 + σ(xi, yj) Si-1, j +d (从上到下) Si, j-1 +d (从左到右)
基于蛋白质疏水矩阵的全局比对
课后作业 以两序列VDSCY和VESLCY为例 空位线性罚分d=-20
结论:
1.比对结果与构建的打分矩阵和罚分 函数有关
2.构建合理的矩阵和罚分函数才能进 行最佳比对
3.目前较为公认的是BLOSUM和PAM 矩阵
局部优化比对
下例:局部优化打分 两条序列如下:
LDSCH GESLCK 目标:使用局部优化算法寻找最佳比对的 结果
后者由Henikoff算法得到,对不同家族蛋白质序 列片段进行比对,不加入gaps,这些序列区间对 应于高度保守的区域。 氨基酸匹配率可通过各区 间可能的匹配率得到。再将这 些匹配率计入匹配 率表。
PAM矩阵(Point Accepted Mutation)
序列相似度 = 14% - 27% 40% 50% 60%
Gap V D S C Y
Gap 0 4 -11 -22 -33 -44 -55
V -11 4 2 -7 -18 -29 -40
E -22 -7
6 4 -5 -16 -27
S -33 -18 -5 10 -1 -1 -12
L -44 -29 -16 -1 9 -2 -2
C -55 -40 -27 -12 9 8
对全局比对策略稍作修改可得到局部最 优比对算法。
比对的路径不需要到达搜索图的尽头 ,如 果某种比对的分值不会因为增加比对的 数量而增加时,这种比对就是最佳的。
依赖于记分系统的性质:因为某种路径 的记分会在不匹配的序列段减少 ,当分值 降为零时,路径的延展将会终止,一个 新的路径就会产生。
局部优化比对 (1)
G
1000100
C
101000
A
10000
C
1 1001
G
1
100
U1
10
C
1
例4:RNA stem/loop
AUGUAGCAU
A1 0 0 0 1 0 0 10
U 10100001
G
1001000
C
000001
U
00001
A
0010
C
100
A
10
U
1
例5:不同序列的比对
P KD F CKA LV
优点:
1. 可以找到两个序列间所有可能的残基匹配; 2. 简单、易懂 3. 直观、整体性强
工具:
/Tools/emboss/index.html
例1:自身的比对
AKG F KC A D E
A1 0 0 0 0 0 1 0 0
K 10010000
G
1000000
BLOSUM62替代矩阵
全局比对 (4)
Gap V D S C Y
Gap 0 4 -11-11 -22 -33 -44 -55 V -11 4 -11 E -22
S -33 L -44 C -55 Y -66
Needleman-Wunsch算法;
Sij = max of
Si-1, j-1 + σ(xi, yj) Si-1, j +d (从上到下) Si, j-1 +d (从左到右)
V -11 Sij
E -22 要求解Sij的分数,我们必须先知道
S -33
L
-44
Si-1, j-1, Si-1, j, Si, j-1的分数,这种方法叫 做递归算法;
C -55 采用这种方法,可以把大的问题分割 Y -66 成小的问题逐一解决,即动态规划算
法;需要存储如何得到Sij分数的过程。
全局比对 (3)
BLOSUM62替代矩阵
以两序列VDSCY和VESLCY为例 空位罚分d=-11
动态规划算法:全局比对(1)
Gap V D Gap 0 1gap 2gap
V 1gap E 2gap S… L C Y
S CY …
本例:线性罚分
r(g) gd
全局比对 (2)
Gap V D S C Y
Gap 0 -11 -22 -33 -44 -55
7
Y -66 -51 -38 -23 -3 7 15
比对结果:
Gap V Gap 0 -11
V -11 4 E -22 -7 S -33 -18 L -44 -29 C -55 -40 Y -66 -51
VDS–CY VESLCY
D S CY -22 -33 -44 -55 -7 -18 -29 -40 6 -5 -16 -27 -5 10 -1 -12 -16 -1 9 -3 -27 -12 8 7 -38 -23 -3 15