高中数学排列组合解题技巧
高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
高中数学的归纳数列与排列组合的重要性质及解题方法总结

高中数学的归纳数列与排列组合的重要性质及解题方法总结在高中数学的学习中,归纳数列与排列组合是一类非常重要的概念和方法。
它们不仅在解决实际问题中起着重要作用,还在数学推理和证明中发挥着重要的作用。
本文将介绍归纳数列与排列组合的重要性质以及解题方法,并总结它们在高中数学中的应用。
一、归纳数列的重要性质及解题方法1. 等差数列和等差数列的通项公式等差数列是指数列中任意两项之差都相等的数列。
在解决等差数列问题时,可利用等差数列的通项公式:an = a1 + (n-1)d其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差。
2. 等比数列和等比数列的通项公式等比数列是指数列中任意两项之比都相等的数列。
在解决等比数列问题时,可利用等比数列的通项公式:an = a1 * r^(n-1)其中,an表示等比数列的第n项,a1表示等比数列的首项,r表示等比数列的公比。
3. 斐波那契数列及其性质斐波那契数列是一种特殊的数列,它的每一项都是前两项之和。
斐波那契数列在自然界中有着广泛的应用,如植物的叶子排列、螺旋形状等。
求解斐波那契数列问题时,可以利用递推关系式:Fn = Fn-1 + Fn-2其中,Fn表示斐波那契数列的第n项,Fn-1表示斐波那契数列的第n-1项,Fn-2表示斐波那契数列的第n-2项。
二、排列组合的重要性质及解题方法1. 排列的计算方法排列是指从一组元素中选取一部分进行排列的方法。
在排列问题中,需要关注选取的元素个数、元素的排列顺序和元素是否可重复选取等因素。
排列的计算公式为:A(n,m) = n! / (n-m)!其中,A(n,m)表示从n个元素中选取m个元素进行排列的方法数,n!表示n的阶乘。
2. 组合的计算方法组合是指从一组元素中选取一部分进行组合的方法。
与排列不同,组合不考虑元素的排列顺序。
组合的计算公式为:C(n,m) = n! / (m!(n-m)!)其中,C(n,m)表示从n个元素中选取m个元素进行组合的方法数。
高中数学轻松搞定排列组合难题二十一种方法10页

高考数学轻松搞定排列组合二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学排列组合定序问题陪缩法

高中数学排列组合定序问题陪缩法全文共四篇示例,供读者参考第一篇示例:高中数学中,排列组合是一个重要的概念,它涉及到了数学中的定序问题和组合问题。
在解决这类问题时,我们常常会用到陪缩法,这是一种简便有效的解题方法。
本文将详细介绍高中数学中排列组合定序问题和陪缩法的相关知识。
我们来了解一下排列和组合的概念。
在数学中,排列是指从一组元素中取出一部分元素按照一定的顺序排列在一起的方式。
而组合则是指从一组元素中取出一部分元素没有顺序地排列在一起的方式。
在排列中,每个元素只能使用一次,而在组合中,每个元素可以被多次使用。
在解决排列问题时,我们常常要面对的就是定序问题,即考虑元素之间的顺序关系。
比如说,有4个不同的元素,要求从中选取3个元素按照一定的顺序排列在一起,那么共有多少种排列方式呢?这时我们就可以使用排列的公式来计算:P(n,m) = n!/(n-m)!,其中n代表元素的个数,m代表选取的元素个数。
以上述例子为例,我们可以计算排列的数量为P(4,3) = 4!/(4-3)! = 4×3×2 = 24。
即从4个不同的元素中选取3个元素按照一定顺序排列在一起,共有24种排列方式。
在实际解题过程中,我们常常会遇到需要同时考虑排列和组合问题的情况,这时就要运用到陪缩法。
陪缩法是一种将排列问题转化为组合问题来解决的方法。
它的基本思想是将待排列的元素拉成一队,然后再按照一定的规则来进行组合,最后再乘以适当的倍数,就可以得到排列的数量。
举例而言,假设有4个不同的元素,要求从中选取2个元素按照一定的顺序排列在一起,那么使用陪缩法可以将问题转化为组合问题。
首先我们将4个元素排成一列,然后从中选取2个元素。
这样就得到了一个组合,而实际上这个组合就包含了一组排列。
然后计算组合数量C(4,2) = 4!/[2!(4-2)!] = 6,再乘以2!,得到排列的数量为2×6 = 12。
通过陪缩法的应用,我们可以将原本复杂的排列问题转化为简单的组合问题,从而更容易地解决。
高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识1.排列及计算公式从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示.pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1.2.组合及计算公式从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号cn,m 表示.cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m;3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/n1!*n2!*...*nk!.k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m.排列Pnmn为下标,m为上标Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n组合Cnmn为下标,m为上标Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM 分步②加法原理:N=n1+n2+n3+…+nM 分类2. 排列有序与组合无序Anm=nn-1n-2n-3…n-m+1=n!/n-m! Ann =n!Cnm = n!/n-m!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=k+1!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法集团元素法,把某些必须在一起的元素视为一个整体考虑插空法解决相间问题间接法和去杂法等等在求解排列与组合应用问题时,应注意:1把具体问题转化或归结为排列或组合问题;2通过分析确定运用分类计数原理还是分步计数原理;3分析题目条件,避免“选取”时重复和遗漏;4列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①a+bn=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn特别地:1+xn=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx ,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法乙甲丁丙练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法.1524位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
数学排列组合题的解题思路和方法

数学排列组合题的解题思路和方法数学排列组合题是高中数学中的重要内容之一,也是考试中常出现的题型。
解决这类题目需要掌握一定的思路和方法。
本文将介绍数学排列组合题的解题思路和方法,帮助读者更好地应对这类题目。
一、排列组合的基本概念在开始讨论解题思路和方法之前,我们先来回顾一下排列组合的基本概念。
排列是指从一组元素中选取若干个元素按一定的顺序排列的方式。
排列的公式为P(n, m),表示从n个元素中选取m个元素排列的方式数。
组合是指从一组元素中选取若干个元素不考虑顺序的方式。
组合的公式为C(n, m),表示从n个元素中选取m个元素组合的方式数。
在解决排列组合问题时,我们需要根据题目的要求确定使用排列还是组合的方式,并结合具体情况来计算。
二、解题思路和方法1. 确定题目要求在解决排列组合题时,首先要仔细阅读题目,理解题目的要求。
明确题目要求是使用排列还是组合的方式,以及需要计算的具体数值。
2. 确定元素个数根据题目的描述,确定参与排列组合的元素个数。
通常题目中会给出元素的个数,但也有一些题目需要根据题意进行推断。
3. 确定排列还是组合根据题目的要求,确定是使用排列还是组合的方式。
如果题目要求考虑元素的顺序,则使用排列;如果题目不考虑元素的顺序,则使用组合。
4. 计算排列组合的方式数根据确定的元素个数和使用的排列组合方式,计算出排列组合的方式数。
使用相应的公式,将元素个数代入公式中进行计算。
5. 考虑特殊情况有些排列组合题目中可能存在特殊情况,需要进行额外的考虑。
例如,题目中可能要求某些元素不能重复使用,或者要求某些元素必须同时出现等。
在解题过程中,要注意这些特殊情况,并根据题目要求进行相应的调整。
6. 检查和回答问题在计算出排列组合的方式数后,要对结果进行检查,确保计算的准确性。
同时,根据题目的要求,回答问题,给出最终的答案。
三、实例分析为了更好地理解解题思路和方法,我们来看一个具体的例子。
例题:某班有10名学生,其中3名男生和7名女生,从中选取3名学生组成一支代表队,要求队伍中至少有一名男生,有多少种不同的选择方式?解题思路和方法:1. 确定题目要求:从10名学生中选取3名学生组成代表队,要求队伍中至少有一名男生。
高中数学排列组合公式大全_高中数学排列组合重点常识

高中数学排列组合公式大全_高中数学排列组合重点常识排列组合是高中数学教学内容中的要紧组成部分,在高考试卷中排列组合的占分比愈来愈高,且出现的形式多种多样。
下面我们给你共享高中数学排列组合公式大全,欢迎阅读。
高中数学排列组合公式大全1.排列及计算公式从n个不一样元素中,任取m个元素根据肯定的顺序排成一列,叫做从n个不一样元素中取出m个元素的一个排列;从n个不一样元素中取出m个元素的所有排列的个数,叫做从n个不一样元素中取出m个元素的排列数,用符号 p表示.p=n= n!/!.2.组合及计算公式从n个不一样元素中,任取m个元素并成一组,叫做从n个不一样元素中取出m个元素的一个组合;从n个不一样元素中取出m个元素的所有组合的个数,叫做从n个不一样元素中取出m个元素的组合数.用符号c 表示.c=p/m!=n!/!*m!);c=c;3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p/r=n!/r!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/.k类元素,每类的个数无限,从中取出m个元素的组合数为c.排列)Pnm=n....;Pnm=n!/!;Pnn =n!;0!=1;Pn1=n组合)Cnm=Pnm/Pmm ;Cnm=n!/m!!;Cnn =1 ;Cn1=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。
与序无关是组合,需要有序是排列。
两个公式两性质,两种思想和办法。
总结出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,第一注意多分析。
不重不漏多考虑,捆绑插空是窍门。
排列组合恒等式,概念证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
高中数学排列组合重点常识1.计数原理常识点①乘法原理:N=n1n2n3nM ②加法原理:N=n1+n2+n3++nM2. 排列与组合Anm=n=n!/! Ann =n!Cnm = n!/!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 kk!=!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题办法:优先法:以元素为主,应先满足特殊元素的需要,再分析其他元素. 以位置为主分析,即先满足特殊位置的需要,再分析其他位置.捆绑法插空法间接法和去杂法等等在求解排列与组合应用问题时,应注意:把具体问题转化或归结为排列或组合问题;通过剖析确定运用分类计数原理还是分步计数原理;剖析题目条件,防止选取时重复和遗漏;列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理常识点:①n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3++ Cnran-rbr++ Cn n-1abn-1+ Cnnbn特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。