D类数字功率放大器
氮化镓d类功放

氮化镓(GaN)D类功放指的是利用氮化镓半导体技术制造的D类功率放大器。
氮化镓半导体在射频和微波功率放大器领域具有广泛的应用,其中D类功放是一种高效率的功率放大器类型。
D类功率放大器以其高效率和低失真而闻名,常用于音频放大器、射频通信系统和其他需要高效能的应用场景。
使用氮化镓材料制造D类功率放大器可以提供更高的工作频率、更好的功率密度和更好的热特性。
优点包括:
1. **高效率:** D类功率放大器能够在电源转换方面达到很高的效率,这意味着在输出更高功率的同时减少能源消耗。
2. **低失真:** 在保持较高效率的同时,D类功放能够产生较低的失真,有助于输出信号的准确性。
3. **快速开关特性:** 氮化镓半导体具有优异的开关特性,这使得D类功放器件能够快速切换,减少功耗损失。
氮化镓材料的特性使其成为制造高性能功率放大器的理想选择,尤其是在需要高频率、高功率和高效率的应用中。
利用氮化镓半导体技术制造的D类功率放大器能够为许多领域提供更有效的解决方案,例如通信系统、无线网络、雷达系统、音频设备等。
A类 B类 AB类 D类功放的区别你真的知道吗

A类B类AB类D类功放的区别你真的知道吗A类B类AB类D类功放的区别,有什么不一样你们知道吗?首先根据功放不同的放大类型可分为:Class A(A类也称甲类)、Class B(B类也称乙类)、Class AB(AB类也称甲乙类)、Class D(D类也称数字类)。
()以上都是汽车上常见的功放器。
1、纯甲类功率放大器纯甲类功率放大器又称为A类功率放大器(Class A),它是一种完全的线性放大形式的放大器。
在纯甲类功率放大器工作时,晶体管的正负通道不论有或没有信号都处于常开状态,这就意味着更多的功率消耗为热量,但失真率极低。
纯甲类功率放大器在汽车音响的应用中比较少见,像意大利的Sinfoni高级系列才有这类功率放大器。
这是因为纯甲类功率放大器的效率非常低,通常只有20-30%,但音响发烧友们对它的声音表现津津乐道。
2、乙类功率放大器乙类功率放大器,也称为B类功率放大器(Class B),它也被称为线性放大器,但是它的工作原理与纯甲类功率放大器完全不同。
B类功放在工作时,晶体管的正负通道通常是处于关闭的状态除非有信号输入,也就是说,在正相的信号过来时只有正相通道工作,而负相通道关闭,两个通道绝不会同时工作,因此在没有信号的部分,完全没有功率损失。
但是在正负通道开启关闭的时候,常常会产生跨越失真,特别是在低电平的情况下,所以B 类功率放大器不是真正意义上的高保真功率放大器。
在实际的应用中,其实早期许多的汽车音响功放都是B类功放,因为它的效率比较高。
3、甲乙类功率放大器甲乙类功率放大器也称为AB类功率放大器(Class AB),它是兼容A类与B类功放的优势的一种设计。
当没有信号或信号非常小时,晶体管的正负通道都常开,这时功率有所损耗,但没有A类功放严重。
当信号是正相时,负相通道在信号变强前还是常开的,但信号转强则负通道关闭。
当信号是负相时,正负通道的工作刚好相反。
AB类功率放大器的缺陷在于会产生一点点的交越失真,但是相对于它的效率比以及保真度而言,都优于A类和。
大功率d类功放芯片-概述说明以及解释

大功率d类功放芯片-概述说明以及解释1.引言1.1 概述概述部分内容可以从以下角度进行阐述:在现代音频应用中,功放芯片是不可或缺的关键元件之一。
尤其是在大功率音响系统中,高效能的功放芯片能够提供持续稳定的电流输出,以实现音频信号的放大和驱动功效。
而其中,大功率D类功放芯片由于其高效节能、低发热、小尺寸等优势而备受关注。
首先,大功率D类功放芯片相比于传统AB类功放芯片具有更高的能效。
传统的AB类功放芯片在运行过程中,会有一定的静态功耗,即便在信号输入较小时也会产生较大的功耗。
而D类功放芯片则能够将信号按照不同的频段进行高速开关控制,有效地降低静态功耗,从而提高能效。
其次,大功率D类功放芯片还能够通过采用PWM(脉宽调制)技术,将音频信号数字化后,通过高速开关控制来模拟输出,从而实现较高的输出功率。
这种方式能够更加精确地控制输出音频信号的波形,避免了传统AB类功放芯片在放大过程中产生的失真和功耗。
此外,大功率D类功放芯片还具有体积小、发热低等优势。
由于D类功放芯片在放大过程中的高速开关控制,使得它的工作电压较低,从而减少了芯片本身的功耗,进一步降低了芯片的发热量。
相比之下,传统AB 类功放芯片需要通过线性放大的方式来实现输出,其工作电压高,功耗较大,往往需要加入散热器等辅助散热设备。
综上所述,大功率D类功放芯片在现代音频应用领域具有重要的意义。
其高效能、低发热、小尺寸等特点,使得它成为了大功率音响系统中不可或缺的核心元件。
当下,D类功放芯片的研究和应用也在不断地发展和创新,为音频领域的技术进步打下了坚实的基础。
1.2 文章结构文章结构是指将文章按照一定的组织方式进行划分和安排,以便读者能够更好地理解文章的内容和逻辑。
本文的结构主要分为引言、正文和结论三个部分。
引言部分旨在引导读者进入文章的主题,并提供背景信息,让读者能够了解文章的整体框架和目的。
该部分包括概述、文章结构和目的三个子部分。
概述部分对大功率D类功放芯片进行概括性介绍,包括该芯片的定义、主要特点以及应用领域。
数字多媒体中的D类音频功率放大器分析

- 54 -信 息 技 术0.引言最大效率分类:A 类放大器为 50%,B 类放大器为 79.5%,而C 类放大器高达 100%。
当效率为100%时,就没有输出功率,由此可见,不能如此来设计功率放大器。
由负载线理论可知,负载阻抗决定晶体管的最大输出功率,影响其最大效率。
应用在电视机中影响到电视机播出音效效果。
D 类音频所采用的功率放大器的原理是建立在PWM 工作模式的基础上,通过对比与分析采样频率与音频信号,来得到脉冲宽度和音频信号幅度比例变化的PWM 波,经过驱动电路和功率MOS 栅极,实现功率放大,将放大后的PWM 信号输送到滤波器,低滤波器将大功率的PWM 波形声音信息还原。
如果处于开关状态,其运行效率可达到80%以上,而不会造成非线性失真,从而提高输出声音的质量。
一、电路设计(一)电路系统框图与原理在D 类音频功率放大器的设计中,其组成部分包括前置放大模块、功率输出模块、PWM 调制模块以及反馈环路。
其中反馈环路1是将前置放大器转变成积分器,以此来提高供电系统的稳定性与安全性。
而反馈环路2的组成部分即为两个可调节电阻。
D 类音频功率放大器的工作原理是:首先输入Vin+和Vin-的音频信号,并接收到两个由前置放大器发出的相反相位的音频信号,然后组装固定PWM 电路,其组成部分为载波三角波与比较器。
信号的幅度可以导通一个功率,而截止另一个功率,并讲滤波器方波变为音频信号,以此来促使扬声器发出信号。
放大器所具备的滤波特性是需要用全桥的D 类放大器进行改善的,这样可以防止其干扰音频信号,达到输出平衡的效果。
(二) PWM 调制模块PWM 调制模块包括PWM 比较器和振荡器,PWM 比较器用三角波进行调制。
PWM 载波信号使用三角波,A/D 为转换调制级,对输入模拟音频信号进行采样工作。
将音频信号源接入PWM 比较器同向输入端口,三角波信号则接入反向端口。
如果三角波信号比音频输入端信号电平要低,则表示PWM 比较器比电平HV 的输出要高,如果三角波信号比音频输入端信号电平要高,则表示PWM 比较器比电平HV 的输出要低,这个时候系统会将输入的正弦波信号转换为PWM 波,这是D 类音频功率放大器的核心构件,所以对构件的要求比较高,三角波信号好、振荡频率比较稳定、精度高、运行效率快。
D类功率放大器

探讨D类功率放大器摘要:我国经济的飞速发展,丰富了居民物质生活需要,一些家电用品在科学技术的飞速带动下,其更新速度越变越快。
在音频这快速发展的这几十年里,各种技术类型的音频功率放大器充斥着市场,先有a类,后有b类,而后就是ab类的音频功率放大器。
同时在居民对音响效果的追求,科学技术也在这方面发展,d类功率放大器正成为消费者首选。
d类功率放大器具有比较多的优点,其功耗低,产生的热量也比较少,一方面还可以节省许多的印制电路板的面积与制造成本,另一方面可以有效的延长该器械中的电池寿命。
d类功率放大器的原理是透过控制开关的单元中的on/off,在此基础上,比较好的驱动其内部的扬声器的放大器。
由于d类功率放大器的发展历程短,其系统与音频质量还需提高。
本文从d类功放的发展背景、诞生的缘由、功率放大器的基本组成等方面叙述,在此基础上,探讨传统功放与d类功放的比较。
关键词:音频领域;印制电路板;音响效果;扬声器;功耗低家庭影院自上世纪80年代兴起后,现代的家庭影音系统开始有着质的飞跃,可以在瞬间得到众多观众的喜爱,尤其在年轻一代中广受欢迎,并且飞速的进入消费者的家中。
随着信息技术的发展,家庭影音系统正在这些技术的带动下,其技术质量、音响效果等越来越受完美,许多电子技术的爱好者也希望能够自己独立完成按照自己意愿设计的家庭影音系统,这一逐渐成为社会年轻人的一大发展趋势。
一、d类功率放大器的概述几十年在音频领域中,a类,b类,ab类音频功率放大器一直占据统治地位。
音频功率放大器发展经历了这样的几个过程:所有器件从电子管、晶体管到集成电路的过程:电路组成从单管到推挽的过程:电路形成从变压器输出到otl、ocl、btl的形式过程。
其基本类型是模拟音频功率放大器,它的最大缺点是效率太低。
全球音视频领域数字化的浪潮以及人们对音视频设备的环保要求。
迫使人们开发,高效、节能、环保、数字化的音频功率放大器,它应该具有工作效率高,便于与其它数字化设备相连接的特点。
D类功放详细资料方案二

TDA8950TH是飞利浦最新的高效率(2X150W)D类音频放大器【摘要】:正TDA8950是NXP半导体公司推出的新型高效率D类音频功率放大器,在4Ω负载时典型输出功率为2×150w。
该器件主要特点:工作电压范围宽,从±12.5V到±40V:立体声全差分输入,可组成单端(single-ended)放大器或桥式(BTL)放大器;高功率输出:在Vp=±37V、RL=4Ω时,作为单端放大器可输出2×150W,若Vp=±39时,则可输出2×170W:在Vp=±37V、RL=8Ω时,作为BTL放大器可输出300W:由于有BD调制,在BTL放大器中噪声很低;开机及关机时无"砰"的一响;零死区时间PWM输出开关;固定频率:时钟开关频率可外同步;高效率;静态电流小;完善的保护功能:过压保护、输出电流限制该TDA8950是一个高efficiency D类amplifier.典型输出功率音频功率是2×150 W与扬声器负载阻抗的4Ω.该TDA8950在HSOP24权力包装和DBS23P权力包装可用.该amplifier工作在宽电源电压范围±12.5V到±40V和消耗低静态电流低噪声BTL由于屋宇署调制平滑弹出无噪声的启动和开关向下零死时间脉宽调制(PWM)输出开关固定频率内部或外部时钟切换频率低静态电流先进的保护策略:电压保护,输出电流限制热折返固定增益30 dB在SE和36 dB在BTL全短路保护各种负载该TDA8950是双通道amplifier使用D类音频功率技术.音频输入信号转换成数字脉冲宽度调制信号通过一模拟输入级和PWM调制器,该amplifier输出信号是一个载波频率信号,通常PWMlies之间300 kHz和400千赫.使用在A 2nd-order LC解调filter在模拟音频信号通过扬声器的应用效果.该载波频率由外部电阻R OSC,连接在引脚OSC和pin VSSA.的载波频率的最佳设置之间300千赫和400千赫.引脚上使用外部电阻器的30 kΩ OSC,的载波频率设置为345千赫.如果两个或多个D类amplifiers在相同的音频应用程序中使用,它是建议所有设备在同一开关频率操作通过使用外部时钟电路.由于内部时钟分频器:外加时钟频率必须具备倍频输出PWM频率.外部时钟占空比没有产品性能的关键TDA8950TH是飞利浦最新的高效率(2X150W)D类音频放大器IC选用HSOP24功率封装,具有很低的功耗和静态电流。
D类音频功率放大器设计说明

滤波拓扑概况用于D类功率放大器的滤波器拓扑共有三种:(1) FB-C,铁氧体磁珠和电容;(2) LC,电感和电容;以及(3) “无滤波器”。
某个特定设计应该选择哪种滤波技术,取决于应用的扬声器电缆长度和PCB布局。
下面是这三种滤波器拓扑的优缺点:FB-C滤波如果扬声器电缆长度适中,FB-C滤波足以满足EMI限制。
与LC滤波相比,FB-C滤波方案更为精简,成本效益更高。
但是,由于只能在频率大于10MHz的情况下生效,FB-C滤波的应用围受到很大的限制。
而且,在频率低于10MHz的情况下,如果扬声器电缆走线不合理,也会导致传导辐射超标。
LC滤波相比之下,LC滤波可以在频率大约为30kHz的情况下即开始起到抑制作用。
当某设计中所用的电缆线较长,而PCB布局又不是很好时,LC滤波无疑是一个“保险的”选择。
但是,LC滤波需要昂贵而庞大的外部元件,这显然不适合便携式设备。
而且,当频率大于30MHz,主电感会自谐振,还会需要额外的元件来抑制电磁干扰。
“无滤波器”滤波“无滤波器”放大器拓扑是最具成本效益的方案,因为它省去了额外的滤波元件。
采用较短的双绞线扬声器电缆时,D类放大器完全可以满足电磁兼容性标准。
但是,和FB-C滤波一样,如果扬声器电缆走线不合理,可能出现传导辐射超标。
还需注意,Maxim的D 类放大器也可以实现“无滤波”工作,只要在放大器的开关频率下扬声器是感性负载。
在输出电压进行转换时,转换频率下的大电感值可使过载电流保持相对恒定。
图1:TPA3001D1结构图图2显示了典型的PWM信号是如何从图1中的比较器功能块形成的。
可将音频输入与2 50-kHz的三角波相比较。
当音频输入电压大于250-kHz三角波电压时,非反相比较器输出状态为高,而当250-kHz三角波大于音频信号时,非反相比较器输出状态为低。
非反相比较器输出为高时,反相比较器输出为低;而当非反相比较器输出为低时,反相比较器输出为高。
平均PWM非反相输出电压VOUT+(avg) 为忙闲度乘以电源电压,此外D 表示忙闲度,或"开启"时间t(on) 除以总周期T。
d类功放 输出幅值 -回复

d类功放输出幅值-回复什么是D类功放?D类功放(Class D Amplifier)是一种音频功率放大器,它利用数字电路技术将模拟音频信号转换为数字PWM(脉宽调制)信号,然后通过功率开关器件输出PWM信号以驱动扬声器。
D类功放有很多优点,比如高效率、小尺寸、低功耗、低发热量等,因此在近年来得到越来越广泛的应用。
然而,与传统的AB类功放相比,D类功放在音频质量方面还存在一定的挑战,特别是在输出幅值上。
输出幅值是指功放输出的音频电压的大小,在音响系统中决定了音量的大小。
对于D类功放来说,输出幅值的控制是一个需要考虑的关键问题。
那么,如何实现D类功放的输出幅值控制呢?首先,D类功放的输出幅值可以通过PWM技术的调制参数来控制。
PWM 技术中,调制参数决定了脉冲的宽度和周期,通过调整这些参数可以改变输出信号的幅值。
其次,为了实现精确的输出幅值控制,通常需要在D类功放的反馈回路中添加一个比例控制单元。
比例控制单元可以根据输入信号和输出信号的比较来调整PWM信号的幅度和偏置,从而达到所需的输出幅值。
此外,在设计D类功放时,还需要考虑一些其他因素来优化输出幅值控制。
例如,在功放的电源电压和功放管件的选择上可以进行优化,以提供更大的输出幅值范围。
同时,还可以采用多级放大方案或者平均PWM技术来增加输出幅值的分辨率和稳定性。
最后,为了最大限度地优化D类功放的输出幅值,还需要进行系统级的调试和优化。
最常见的方法是利用实测数据和仿真结果,通过调整各个模块的参数和结构来达到更好的输出幅值控制效果。
综上所述,D类功放的输出幅值控制是一个复杂且关键的问题。
通过合理的PWM调制参数、比例控制单元、电源优化、放大方案选择以及系统级调试和优化,可以实现D类功放输出幅值的控制,并满足音响系统的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 精选范本 3.3 D类数字功放 D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。早先在音响领域里人们一直坚守着A类功放的阵地,认为A类功放声音最为清新透明,具有很高的保真度。但A类功放的低效率和高损耗却是它无法克服的先天顽疾。后来效率较高的B类功放得到广泛的应用,然而,虽然效率比A类功放提高很多,但实际效率仍只有50%左右,这在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,如今效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视,并得到广泛的应用。
3.3.1 D类功放的特点与电路组成 1.D类功放的特点 (1)效率高。在理想情况下,D类功放的效率为100%(实际效率可达90%左右)。B类功放的效率为78.5%(实际效率约50%),A类功放的效率才50%或25%(按负载方式而定)。这是因为D类功放的放大元件是处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。 (2)功率大。在D类功放中,功率管的耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合,输出功率可达数百瓦。 (3)失真低。D类功放因工作在开关状态,因而功放管的线性已没有太大意义。在D类功放中,没有B类功放的交越失真,也不存在功率管放大区的线性问题,更无需电路的负反馈来改善线性,也不需要电路工作点的调试。 (4)体积小、重量轻。D类功放的管耗很小,小功率时的功放管无需加装体积庞大的散热片,大功率时所用的散热片也要比一般功放小得多。而且一般的D类功放现在都有多种专用的IC芯片,使得整个D类功放电路的结构很紧凑,外接元器件很少,成本也不高。
2.D类功放的组成与原理 D类功放的电路组成可以分为三个部分:PWM调制器、脉冲控制的大电流开关放大器、低通滤波器。电路结构组成如图3.22所示。 .
精选范本 驱动开关式功放PWM调制器低通滤波器比较器模拟音频输入三角波发生器高频振荡
(几百kHz)
数字音频输入等比特调制器数字内插滤波器
D类放大PWM信号LC网络
图3.22 D类功放的组成 其中第一部分为PWM调制器。最简单的只需用一只运放构成比较器即可完成。把原始音频信号加上一定直流偏置后放在运放的正输入端,另外通过自激振荡生成一个三角形波加到运放的负输入端。当正端上的电位高于负端三角波电位时,比较器输出为高电平,反之则输出低电平。若音频输入信号为零时,因其直流偏置为三角波峰值的1/2,则比较器输出的高低电平持续的时间一样,输出就是一个占空比为1:1的方波。当有音频信号输入时,正半周期间,比较器输出高电平的时间比低电平长,方波的占空比大于1:1;音频信号的负半周期间,由于还有直流偏置,所以比较器正输入端的电平还是大于零,但音频信号幅度高于三角波幅度的时间却大为减少,方波占空比小于1:1。这样,比较器输出的波形就是一个脉冲宽度被音频信号幅度调制后的波形,称为PWM(Pulse Width Modulation脉宽调制)或PDM(Pulse Duration Modulation脉冲持续时间调制)波形。音频信息被调制到脉冲波形中,脉冲波形的宽度与输入的音频信号的幅度成正比。 第二部分为脉冲控制的大电流开关放大器。它的作用是把比较器输出的PWM信号变成高电压、大电流的大功率PWM信号。能够输出的最大功率由负载、电源电压和晶体管允许流过的电流来决定。 第三部分为由LC网络构成的低通滤波器。其作用是将大功率PWM波形中的声音信息还原出来。利用一个低通滤波器,可以滤除PWM信号中的交流成份,取出PWM信号中的平均值,该平均值即为音频信号。但由于此时电流很大,RC结构的低通滤波器电阻会耗能,不能采用,必须使用LC低通滤波器。当占空比大于1:1的脉冲到来时,C的充电时间大于放电时间,输出电平上升;窄脉冲到来时,放电时间长,输出电平下降,正好与原音频信号的幅度变化相一致,所以原音频信号被恢复出来。D类功放的工作原理见图3.23。
PWM调制比较器模拟音频输入三角波发生器PWM信号+VDD驱动-VSS
LPFLF
CF
原音频信号波形
比较器上的两个波形
比较器输出的PWM信号
LPF后的恢复信号波形
(a)原理简图 (b)工作波形 图3.23 D类功放原理图 . 精选范本 对于数字音频信号输入时,经数字内插滤波器和等比特调制器后,即可得到脉冲宽度与数字音频的采样点数据成正比的PWM信号。其中数字内插滤波器是在数字音频信号的数据之间再插入一些相关联的数据,以内插方式提高数字音频信号的采样点数(采样频率),等比特调制器是将数字信号的数据大小转换为脉冲的宽度,使输出信号的脉冲宽度与输入数据的大小成正比。
3.D类功放的要求 (1)对功率管的要求。D类功放的功率管要有较快的开关响应和较小的饱和压降。D类功放设计考虑的角度与AB类功放完全不同。此时功放管的线性已没有太大意义,更重要的是开关响应和饱和压降。由于功放管处理的脉冲频率是音频信号的几十倍,且要求保持良好的脉冲前后沿,所以管子的开关响应要好。另外,整机的效率全在于管子饱和压降引起的管耗。所以,管子的饱和压降小不但效率高,且功放管的散热结构也能得到简化。若干年前,这种高频大功率管的价格昂贵,限制了D类功放的发展,现在小电流控制大电流的MOSFET已在Hi-Fi功放上得到广泛应用。 (2)对PWM调制电路的要求。PWM调制电路也是D类功放的一个特殊环节,要把20kHz以下的音频调制成PWM信号,三角波的频率至少要达到200kHz(三角波的频率应在音频信号频率的10~20倍以上)。当频率过低时要达到同样要求的THD(总谐波失真)标准,则对无源LC低通滤波器的元件要求就高,结构复杂。如果三角波的频率高,输出波形的锯齿小,就能更加接近原波形,使THD小,而且可以用低数值、小体积和精度要求相对差一些的电感和电容来构成低通滤波器,造价相应降低。但是,晶体管的开关损耗会随频率的上升而上升,无源器件中的高频损耗、射频的聚肤效应都会使整机效率下降。更高的调制频率还会出现射频干扰,所以调制频率也不能高于1MHz。而在实际的中小功率D类数字功放中,当三角波的频率达到500kHz以上时,也可以直接由扬声器的音圈所呈现的电感来还原音频信号,而不用另外的LC低通滤波器。 另外在PWM调制器中,还要注意到调制用的三角波的形状要好、频率的准确性要高、时钟信号的抖晃率要低,这些参数都会影响到后面输出端由LPF所复原的音频信号的波形是否与输入端的原音频信号的波形完全相同,否则会使两者有差异而产生失真。 (3)对低通滤波器的要求。位于驱动输出端与负载之间的无源LC低通滤波器也是对音质有重大影响的一个重要因数。该低通滤波器工作在大电流下,负载就是音箱。严格地讲,设计时应把音箱阻抗的变化一起考虑进去,但作为一个功放产品指定音箱是行不通的,所以D类功放与音箱的搭配中更有发烧友驰骋的天地。实际证明,当失真要求在0.5%以下时,用二阶Butterworth最平坦响应低通滤波器就能达到要求。如要求更高则需用四阶滤波器,这时成本和匹配等问题都必须加以考虑。近年来,一般应用的D类功放已有集成电路芯片,用户只需按要求设计低通滤波器即可。 (4)D类功放的电路保护。D类功率放大器在电路上必须要有过电流保护及过热保护。此二项保护电路为D类功率IC或功率放大器所必备,否则将造成安全问题,甚至伤及为其供电的电源器件或整个系统。过电流保护或负载短路保护的简单测试方法:可将任一输出端与电源端(Vcc)或地端(Ground)短路,在此状况下短路保护电路应被启动而将输出晶体. 精选范本 管关掉,此时将没有信号驱动喇叭而没有声音输出。由于输出短路是属于一种严重的异常现象,在短路之后要回到正常的操作状态必需重置(Reset)放大器,有些IC则可在某一延迟(Delay)时间后自动恢复。至于过热保护,其保护温度通常设定在150°~160°C,过热后IC自动关掉输出晶体管而不再送出信号,待温度下降20°C~30°C之后自动回复到正常操作状态。 (5)D类功放的电磁干扰。D类功率放大器必须要解决AB类功率放大器所没有的EMI(Electro Magnetic Interference,电磁干扰)问题。电磁干扰是由于D类功率放大器的功率晶体管以开关方式工作,在高速开关及大电流的状况下所产生的。所以D类功放对电源质量更为敏感。电源在提供快速变化的电流时不应产生振铃波形或使电压变化,最好用环牛变压器供电,或用开关电源供电。此外解决EMI的方案是使用LC电源滤波器或磁珠(bead)滤波器以过滤其高频谐波。中高功率的D类功率放大器因为EMI太强目前采用LC滤波器来解决,小功率则用Bead处理即可,但通常还要配合PCB版图设计及零件的摆设位置。比如,采用D类放大器后,D类放大器接扬声器的线路不能太长,因为在该线路中都携带着高频大电流,其作用犹如一个天线辐射着高频电磁信号。有些D类放大器的接线长度仅可支持2cm,做得好的D类放大器则可支持到10cm。
3.3.2 D类功放实例 下面以荷兰飞利浦公司生产的TDA8922功放芯片为例,对D类功放电路进行介绍。 TDA8922是双声道、低损耗的D类音频数字功率放大器,它的输出功率为2×25W。具有如下特点:效率高(可达90%),工作电压范围宽(电源供电±12.5V~±30V),静态电流小(最大静流不超过75mA),失真低,可用于双声道立体声系统的放大(SE接法,Single-Ended)或单声道系统的放大(BTL接法,Bridge-Tied Load),双声道SE接法的固定增益为30dB,单声道BTL接法的固定增益为36dB,输出功率高(典型应用时2×25W),滤波效果好,内部的开关振荡频率由外接元件确定(典型应用为350kHz),并具有开关通断的“咔嗒/噼噗”噪声抑制,负载短路的过流保护,静电放电保护,芯片过热保护等功能。广泛应用于平板电视、汽车音响、多媒体音响系统和家用高保真音响设备等。
1.内部结构与引脚功能 TDA8922的内部结构如图3.24所示,包含两个独立的信号通道和这两个通道共用的振荡器与过热、过流保护及公共偏置电路。每个信号通道主要包括脉宽调制和功率开关放大两个部分。