资本资产定价模型与套利定价理论.pptx
资本资产定价模型PPT课件

资产定价的随机过程
随机过程的基本概念
随机过程是描述一系列随机事件的数学模型,其中每个事件的发生都具有不确定性。在资产定价的上下文中,随 机过程通常用于描述资产价格的变动。
资本资产定价模型的随机过程
资本资产定价模型假设资产价格的变动遵循随机过程,并且这种变动与资产的预期回报和风险有关。通过建立适 当的随机过程模型,可以进一步研究资产价格的动态行为和风险特征。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管理、风险评估和资本预算 等领域。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管本资产定价模型用于确定投资 组合的风险和预期回报,帮助投 资者在风险和回报之间做出权衡。
风险评估
通过CAPM,投资者可以评估特 定资产或投资组合的风险,并与 其他资产或基准进行比较。
主要发现
是一种用于评估风险和预期回报之间关系的金融模型,主要用于投资组合管理 和风险评估。
CAPM的核心思想
资本的预期收益率由两部分组成,一部分是无风险利率,另一部分是风险溢价, 即风险超过无风险资产的部分。
目的和目标
目的
通过理解CAPM,投资者可以更准确 地评估投资的风险和预期回报,从而 做出更明智的投资决策。
资本资产定价模型

INVESTMENTS | BODIE, KANE, MARCUS
10-39
套利定价理论模型
• 套利定价理论APT适用于多元投资组合,在单 个股票中并不需要。
• 在没有基于证券市场线的情况下,在一些单个 资产中使用套利定价理论有可能错误定价,
• 套利定价理论可以扩展为多因素的套利理论模 型。
由于没有投资,投 资者可以建立大量 头寸,以获取巨额 利润。
INVESTMENTS | BODIE, KANE, MARCUS
10-33
套利定价理论
• 在一个无风险套利 投资组合中,不管 其风险厌恶程度和 财富水平如何,投 资者都愿意持有一 个无限的头寸。
• 在有效市场中,可 以获利的套利机会 会很快消失。
INVESTMENTS | BODIE, KANE, MARCUS
9-13
图 9.2 证券市场线
INVESTMENTS | BODIE, KANE, MARCUS
9-14
图9.3 证券市场线和一只α值为正的股票
INVESTMENTS | BODIE, KANE, MARCUS
9-15
指数模型和实现的收益
C EroG rG vE ,ErrM f Er MM 2rf
INVESTMENTS | BODIE, KANE, MARCUS
9-11
通用电气公司的例子
• 通用电气公司的合理风险溢价:
E r G E r f Cr 2 O G ,r M E V E r M r f M
• 变换一下,我们可以得到:
• 单个证券的风险溢价取决于单个资产对 市场投资组合风险的贡献程度。
• 单个证券的风险溢价是市场投资组合的 各个资产收益协方差的函数。
CAMP模型

比较APT不同于CAPM旳基本假设?
第二节 套利定价模型
(二)原因模型
原因模型是揭示任一证券旳收益率与一种或数个 共同原因相互关系旳统计模型。
— 单原因模型 — 多原因模型
ri ai i2 F2 im Fm ei
第二节 套利定价模型
套利是利用相同实物资产或证券旳不同价格来赚 取无风险利润旳行为。
套利行为将使投资者能够在不增长风险和投资额 旳情况下,赚取收益。
因为套利行为旳存在,必将使约当物品或证券旳 价格趋于相同而达于均衡。
第二节 套利定价模型
(三)套利组合旳基本特征
它是一种不需要投资者额外资金旳组合,这意味着套 利组合中多种证券旳权重之和为0;
套利组合对任何原因都没有敏感性 套利组合旳预期收益率必须是正值。
之间旳协方差具有相同旳预期值
一、资本资产定价模(CAPM)
上述假设表白 第一,投资者是理性旳 第二,资本市场是完全有效旳市场
二、资本市场线(CML)
在马科威茨模型中,引入无风险资产和买空卖空 条件下旳投资组合旳预期收益率和风险 。
假定只有无风险和有风险两种证券
p xRf (1 x)Rm
第四节 证券市场效率
一、有效市场旳理论假设
有效市场(efficient market hypothesis ,EMH),是指投资者能够取得旳信 息能够被证券价格充分予以反应旳市场,在这么 旳市场上,投资者不论选择何种证券,都不能取
得就超信额息收与益证。券价格旳关系而论,只要证券市场在 证券价格形成中充分而精确地反应了全部有关旳 可知信息,证券市场价格是其内在价值旳最佳评 价,这么旳市场就是有效旳。
2 m
三、证券市场线(SML)
证券均值方差模型,资本资产定价模型,套利定价模型

证券组合分析第一节均值方差模型一、单个证券的收益和风险(一)收益及其度量任何一项投资的结果都可用收益率来衡量,通常收益率的计算公式为:投资期限一般用年来表示;如果期限不是整数,则转换为年。
在股票投资中,投资收益等于期内股票红利收益和价差收益之和,其收益率(r)的计算公式为:通常情况下,收益率受许多不确定因素的影响,因而是一个随机变量。
我们可假定收益率服从某种概率分布,即已知每一收益率出现的概率,可用表11-1表示如下:数学中求期望收益率或收益率平均数[E(r)]的公式如下:例11-1:假定证券A的收益率分布如下:那么,该证券的期望收益率为:E(r)=[(-0.4)×0.03+(-0.1)×0.07+0×0.30+0.15×0.10+0.3×0.05+0.4×0.20+0.5×0.25]×100%=21.60%在实际中,我们经常使用历史数据来估计期望收益率。
假设证券的月或年实际收益率为r t(t=1,2,…,n),那么估计期望收益率(r)的计算公式为:(二)风险及其度量如果投资者以期望收益率为依据进行决策,那么他必须意识到他正冒着得不到期望收益率的风险。
实际收益率与期望收益率会有偏差,期望收益率是使可能的实际值与预测值的平均偏差达到最小(最优)的点估计值。
可能的收益率越分散,它们与期望收益率的偏离程度就越大,投资者承担的风险也就越大。
因而,风险的大小由未来可能收益率与期望收益率的偏离程度来反映。
在数学上,这种偏离程度由收益率的方差来度量。
如果偏离程度用[r i-E(r)]2来度量,则平均偏离程度被称为方差,记为σ2。
式中:P i——可能收益率发生的概率;σ——标准差。
例11-2:假定证券A的收益率(r i)的概率分布如下:那么,该证券的期望收益率E(r)为:E(r)=[(-0.02)×0.20+(-0.01)×0.30+0.01×0.10+0.03×0.40]×100%=0.60%该证券的方差为:σ2(r)=(-0.02-0.006)2×0.20+(-0.01-0.006)2×0.30+(0.01 -0.006)2×0.10+(0.03-0.006)2×0.40=0.000444.同样,在实际中,我们也可使用历史数据来估计方差:假设证券的月或年实际收益率为r t(t=l,2,…,n),那么估计方差(S2)的公式为:当n较大时,也可使用下述公式估计方差:二、证券组合的收益和风险我们用期望收益率和方差来度量单一证券的收益率和风险。
CAMP模型

套利行为将使投资者可以在不增加风险和投资额 的情况下,赚取收益。
由于套利行为的存在,必将使约当物品或证券的 价格趋于相同而达于均衡。
精品课件
第二节 套利定价模型
(三)套利组合的基本特性
它是一个不需要投资者额外资金的组合,这意味着套 利组合中各种证券的权重之和为0;
精品课件
三、证券市场线(SML)
2.CML与SML的区别
两者适用范围不同
CML只适合于描述包含无风险证券与风险证券在 内的有效资产组合的收益与风险的关系;
SML则可以说明所有证券或证券组合收益与风险 的关系。
两者选择的风险变量不同
CML以总风险为横坐标; SML则以市场风险为横坐标; SML是CML的推广。
精品课件
三、证券市场线(SML)
3.资本资产定价模型的理论意义
决定个别证券或投资组合的预期收益率及系统 风险,是证券估价和资产组合业绩评估的基础。
用来评价证券的相对吸引力。 用以指导投资者的证券组合。
精品课件
第二节 套利定价模型
一、套利与因素模型
(一)套利模型的基本假设
投资者是收益的不满足者,追求投资收益的最大化; 投资者是风险的厌恶者,回避风险; 市场是完全的,交易成本为0 ; 投资者在同一风险水平下,选择收益率较高的证券;
就信息与证券价格的关系而论,只要证券市场在 证券价格形成中充分而准确地反映了全部相关的 可知信息,证券市场价格是其内在价值的最好评 价,这样的市场就是有效的。
精品课件
第四节 证券市场效率
一、有效市场的理论假设
就信息与证券价格的关系而论,只要证券市场在 证券价格形成中充分而准确地反映了全部相关的 可知信息,证券市场价格是其内在价值的最好评 价,这样的市场就是有效的。
因素模型与套利定价理论 PPT

多因素模型
实际上影响股票收益的因素还不止两个。 Fama & French (1993,JFE)的3因素模型提出的影响股价的三个因素是
公司的规模、帐面价值/市值比和市场指数。 Fama & French(1996,JF)提出,有三个系统性的因素影响股票收益,
分别是(1)市场指数;(2)小股票比大股票多的资产组合收益;(3) 高市场比率股票比低市场比率股票多的资产组合收益。即
14
单指数模型的局限性
这一模型将股票收益的不确定性简单地分为系统风险与非系统风险两 部分,这与真实世界的不确定性来源是有距离的。
譬如,它没有考虑行业事件,而行业事件是影响行业内许多公司,但 又不会影响整个宏观经济的一些事件。
15
多因素模型
多因素模型的提出 ➢系统风险包括多种因素 ➢不同的因素对不同的股票的影响力是不同的
上式所以成立,是因为由于 i 是常数,它与所有变量的协方差都是零, 且由于公司特有的非系统风险独立于系统风险,因此
Cov(ei,R % M)0
由此可推导出
i C o v (R % i,R % M ) M 2
13
单指数模型与CAPM模型的关系
在CAPM模型中,我们同样有 i C o v (R % i,R % M ) M 2 成立。因此,单
R i t i i M R M t iS M B S M B t iH M L H M L t e t
17
多因素模型
Chen、Roll and Ross(1986,JB)的5因素模型提出的影响股票收益的5 因素为 ➢行业生产增长率IP; ➢预期的通货膨胀率EI; ➢非预期的通货膨胀率UI; ➢长期公司债券对长期政府债券的超额收益CG ➢长期政府债券对短期国库券的超额收益GB:
因素模型与套利定价理论课件

因素模型与套利定价理论课件1. 简介在金融领域,因素模型与套利定价理论(APT)是两个重要的概念和理论。
它们能够帮助我们理解和解释资产价格的波动,并为投资者提供有益的指导。
本课件将介绍因素模型的基本原理、套利定价理论的应用以及相关的实证研究。
2. 因素模型2.1 基本概念因素模型是用来解释资产收益的模型。
它假设资产的收益可以由若干个因素来解释,而这些因素与资产的风险和回报有关。
常见的因素可以包括市场的整体表现、某个行业的表现、特定的经济指标等。
因素模型的基本公式如下:$$R_i = \\beta_0 + \\beta_1 F_1 + \\beta_2 F_2 + \\cdots + \\beta_n F_n +\\varepsilon_i$$其中,R i代表资产i的收益,$F_1, F_2, \\cdots, F_n$代表因素1至n,$\\beta_1, \\beta_2, \\cdots, \\beta_n$代表资产对各个因素的敏感度,$\\varepsilon_i$代表误差项。
2.2 套利定价理论套利定价理论是基于因素模型的理论。
它认为,如果存在一个因素模型可以很好地解释不同资产之间的收益差异,那么这个模型所确定的因子与资产的风险和回报之间存在着一种固定的关系。
通过利用这种关系,投资者可以识别出被错误定价的资产,并进行套利操作。
2.3 应用案例因素模型和套利定价理论在实际投资中有广泛的应用。
下面是一些常见的应用案例:•资产配置:通过分析资产收益的因素结构,投资者可以根据自身的风险偏好和预期回报来选择适当的资产配置,以实现最优的投资组合。
•风险管理:通过识别和监测不同因素对资产收益的影响,投资者可以及时调整投资组合,降低风险并提高回报。
•套利交易:通过利用因素模型的定价关系,投资者可以发现被低估或高估的资产,并进行相应的套利交易。
3. 实证研究3.1 因素选取在实证研究中,选择适当的因素是十分重要的。
资本市场的资产定价模型

资本市场的资产定价模型资产定价模型 (Asset Pricing Model,简称APM) 是资本市场中一种重要的理论框架,用于研究和解释资产的价格形成过程和投资收益。
本文将介绍资本市场的资产定价模型,包括市场资本定价模型 (CAPM) 和套利定价理论 (APT)。
一、市场资本定价模型 (CAPM)市场资本定价模型是资产定价模型中最广泛使用的一种模型。
CAPM基于投资者的理性行为和均衡市场的假设,通过考虑资产的系统性风险和预期收益来确定资产的合理价格。
CAPM模型的核心思想是投资者对资产回报的要求应该与该资产的系统性风险成正比。
这种系统性风险可以通过资产与市场之间的相关性来度量,使用一个称为贝塔系数的量化指标。
贝塔系数代表了资产的系统性风险相对于市场风险的敏感性。
如果一个资产的贝塔系数大于1,意味着该资产相对于市场更为波动,而如果贝塔系数小于1,则代表资产相对于市场风险更为稳定。
CAPM模型的数学表示如下:E(Ri) = Rf + βi(E(Rm) - Rf)其中,E(Ri)代表投资者对资产i的预期回报,Rf代表无风险收益率,E(Rm)代表市场的预期回报,βi代表资产i的贝塔系数。
CAPM模型在众多学术研究和实践中得到了广泛应用。
它为投资者提供了确定合理投资组合的方法,并为评估投资组合的风险和收益提供了基础。
二、套利定价理论 (APT)套利定价理论是资产定价模型中的另一种主要模型。
与CAPM不同,APT模型并不依赖于单一的市场因子,而是考虑了多个因素对资产价格的影响。
APT模型的核心思想是,在均衡市场中,资产的预期回报受到多个因素的影响。
这些因素可以是经济因素、行业因素、政策因素等多种因素的组合。
通过构建一个线性多因子模型,APT试图解释和预测资产价格的变动。
APT模型的数学表示如下:E(Ri) = Rf + β1 × F1 + β2 × F2 + ... + βn × Fn其中,E(Ri)代表投资者对资产i的预期回报,Rf代表无风险收益率,β1、β2、...、βn代表资产对应的因子敏感性系数,F1、F2、...、Fn代表影响资产价格的因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.市场组合
市场组合:
如果每个投资者都以相同的方式投资,则市场中所 有投资者的集体投资行为将会使证券市场处于均衡 状态,即每个证券的期望收益率与风险都达到均衡。
在均衡状态下,切点组合中所含各种风险证券的比 例应该与整个市场上的风险证券的市值比例一致。 任何一个与市场中各风险证券市值比例一致的风险 证券组合称之为一个市场组合。换句话说,在均衡 状态下的最优风险组合就等于市场组合。
关于假设条件的说明
说明之一:
通常情况下,假设条件与现实不符。它只是 描述了一种理想的均衡状态。
说明之二:
资本资产定价模型的成立并不需要上述所有 假设条件成立。在将某些假设条件去掉后, 模型仍然成立。附加以上的假设条件只是为 了容易推倒和理解资本资产定价模型。
二、资本市场线
1.分离定理或分离特性 2.市场组合 3.资本市场线(CML)
多因素模型
ri ai bi1F1 bi2F2 bin Fn i
用以反映证券风险相对于因素风险的大小。 特征线模型是一种特殊的单因素模型。
一、 单因素模型
单因素模型的优点:
减少有效边界上的有效组合的计算量,
2 i
bi2
2 F
2
i
ji
bib
j
2 F
单指数模型(SIM)或市场模型:
以市场指数为单因素的模型。
二、 多因素模型
假设:
证券的收益率受多种因素的影响。
x2 2M 2 M
xn nM n M
x11M x2 2M xn nM
1.β系数
β系数:
均衡状态下,单个证券的收益率与其风险应 匹配,风险较大的证券对期望收益率的贡献
也较大,其比例应该是
im
/
2 m
该比例表示某一证券的收益率对市场收益率
的敏感性和反映程度,用于测量某一证券风
险相对于市场风险的比率,即
i
imL
资本资产定价模型:
CAPM:决定单个资产及证券组合的期望收益率与风
险之间的均衡关系的定价模型
ri rF i (rM rF )
Sharpe,Lintner,Mossin
Ri
分别用不同方法先后给予证明。Rm 对于证券组合该模型同样成立。R f
含义:
SML M
1
在均衡条件下,单个证券的期望收益率与其对市场 组合方差的贡献率之间存在线性关系,而不像有效 组合那样与标准差之间有线性关系。
证券市场线(SML):
在以β系数为横轴、期望收益率为纵轴的坐标中 CAPM方程表示的线性关系线即为SML
RI Rf
A
四、特征线模型
o
特征线模型:
Rm Rf
Ri R f i (Rm R f )................(1)
第十章 资本资产定价模型 与套利定价模型
第十章 资本资产定价模型 与套利定价模型
第一节 资本资产定价模型 第二节 因素模型 第三节 套利定价理论
第一节 资本资产定价模型
一、假设条件 二、资本市场线 三、证券市场线 四、特征线模型
一.假设条件
假设1:
所有的投资者均依据期望收益率与标准差选择证券 组合。
1.分离定理
根据假设1
我们知道投资者将从所有风险证券组合构成的可行 区域中选择其最优证券组合
根据假设2
我们知道所有投资者的风险可行区域是相同的
根据假设3
我们知道只有一个无风险利率,因此引入无风险证 券后所有投资者的新可行区域也是一样的,从而其 有效边界就是由无风险证券向风险证券组合可行区 域的有效边界所做的上切线。
1.分离定理
最优风险组合:
切点组合:上面的切点对应的风险组合我们称之为 最优风险组合。
每一位投资者根据自己的无差异曲线与有效边界相 切之切点确定其最优证券投资组合。虽然每位投资 者的最优证券投资组合各不相同,但是在有效边界 相同的情况下,投资者的最优风险证券组合是一样 的。
分离定理:
也称分离特性,是指最优风险组合的确定与个别投 资者的风险偏好无关。
Ri R f i i (Rm R f ) i ....(2)
单个证券收益率与市场组合收益的回归方程 与特征线模型类似的单指数模型(SIM):
ri i i rI i
RI Rf
证券i的风险分两部分:
市场风险与非市场风险.公式表示为:
2 i
2 i
•
2 M
2
i
i
o
A Rm Rf
第二节 因素模型
一、 单因素模型 二、 多因素模型
一、单因素模型
假设:
证券的收益率受一种因素的影响。因素模型的假设 基础仍然是证券之间存在关联性,但它认为证券之 间的关联性是一种或多种因素的变动对不同证券所 产生的影响的间接反映。
单因素模型: ri ai bi F i
其中 bi表示证券i对因素F的敏感度,与β系数类似
均衡价格:
市场组合中每一种证券的市场价格都是均衡价格。 如果不是均衡价格的话,价格可能是高于或低于均 衡价格,这时买压或卖压将迫使价格回到均衡水平。
3.资本市场线(CML)
无风险证券F与市场组合M的连线(射线)。资本
市场线上的点代表有效的证券组合。
资本市场线方程:Rp
意义:
RF
RM rF
假设2:
所有的投资者对证券的期望收益率、标准差及证券 间的相关性有相同的预期。
假设3:
证券市场上没有摩擦。所谓摩擦是指对整个市场上 的资本和信息的自由流通的阻碍。
该假设意味着不考虑交易成本及对红利、股息和资 本收益的征税,并且假定信息向市场中的每个人自 由流动、在借贷和卖空上没有限制及市场上只有一 个无风险利率。
率)。
Rp
E(RM )
Rf
M D
Capital Market Line T
B
A
M
p
三、证券市场线(SML)
1.β系数 2.证券市场线
1.β系数
市场组合方差分解:
市场组合风险是由各单个证券的风险构成, 市场组合方差可分解为各单个证券与市场组 合的协方差。
数学上可以证明:
2 M
x11M1 M
M
• p
表示有效组合的期望收益率与风险之间的关系的一条直线。
有效组合的期望收益率由两部分构成:一部分是无风险收益率,它 是由时间创造的,是对投资者放弃即期消费的补偿;另一部分是风 险溢价,它与承担风险大小成正比,是对投资者承担风险的补偿。
风险的价格:
单位风险的市场价格,即资本市场线方程式中第二项的系数(斜