高考物理临界状态的假设解决物理试题推断题综合经典题附答案
备战高考物理临界状态的假设解决物理试题推断题综合题汇编附答案解析

备战高考物理临界状态的假设解决物理试题推断题综合题汇编附答案解析一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B 【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q B θθ====3.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
全国高考物理临界状态的假设解决物理试题的推断题综合高考模拟和真题汇总附答案

全国高考物理临界状态的假设解决物理试题的推断题综合高考模拟和真题汇总附答案一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.今年入冬以来,我国多地出现了雾霾天气,给交通安全带来了很大的危害.某地雾霾天气中高速公司上的能见度只有72m ,要保证行驶前方突发紧急情况下汽车的安全,汽车行驶的速度不能太大.已知汽车刹车时的加速度大小为5m/s 2.(1)若前方紧急情况出现的同时汽车开始制动,汽车行驶的速度不能超过多大?(结果可以带根号)(2)若驾驶员从感知前方紧急情况到汽车开始制动的反应时间为0.6s ,汽车行驶的速度不能超过多大? 【答案】(1)125m/s ;(2)24m/s .【解析】试题分析:(1)根据速度位移公式求出求出汽车行驶的最大速度;(2)汽车在反应时间内的做匀速直线运动,结合匀速直线运动的位移和匀减速直线运动的位移之和等于72m ,运用运动学公式求出汽车行驶的最大速度.解:(1)设汽车刹车的加速度a=﹣5m/s 2,要在s=72m 内停下,行驶的速度不超过v 1, 由运动学方程有:0﹣v 12=﹣2as ① 代入题中数据可得:v 1=12m/s(2)设有汽车行驶的速度不超过v 2,在驾驶员的反应时间t 0内汽车作匀速运动的位移s 1: s 1=v 2t 0 ② 刹车减速位移s 2=③s=s 1+s 2 ④由②~④式并代入数据可得:v 2=24m/s 答:(1)汽车行驶的速度不能超过m/s ;(2)汽车行驶的速度不能超过24m/s .【点评】解决本题的关键知道在反应时间内汽车做匀速直线运动,刹车后做匀减速直线运动,抓住总位移,结合运动学公式灵活求解.3.如图甲,小球用不可伸长的轻绳连接绕定点O 在竖直面内圆周运动,小球经过最高点的速度大小为v ,此时绳子拉力大小为F ,拉力F 与速度的平方的关系如图乙所示,图象中的数据a 和b 以及重力加速度g 都为已知量,以下说法正确的是( )A.数据a与小球的质量有关B.数据b与小球的质量无关C.比值只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【答案】D【解析】【分析】【详解】A.当时,此时绳子的拉力为零,物体的重力提供向心力,则有:解得:解得:与物体的质量无关,A错误;B.当时,对物体受力分析,则有:解得:b=mg与小球的质量有关,B错误;C.根据AB可知:与小球的质量有关,与圆周轨道半径有关,C错误;D. 若F=0,由图知:,则有:解得:当时,则有:解得:D 正确.4.火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是( )A .轨道半径2v R g=B .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外C .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内D .当火车质量改变时,安全速率也将改变 【答案】B 【解析】 【详解】AD .火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力由图可以得出(θ为轨道平面与水平面的夹角)tan F mg θ=合合力等于向心力,故2tan v mg m Rθ=解得tan v gR θ=与火车质量无关,AD 错误;B .当转弯的实际速度大于规定速度时,火车所受的重力和支持力的合力不足以提供所需的向心力,火车有离心趋势,故其外侧车轮轮缘会与铁轨相互挤压,外轨受到侧压力作用方向平行轨道平面向外,B 正确;C .当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压,内轨受到侧压力作用方向平行轨道平面向内,C 错误。
全国高考物理临界状态的假设解决物理试题的推断题综合高考真题分类汇总含答案

全国高考物理临界状态的假设解决物理试题的推断题综合高考真题分类汇总含答案
一、临界状态的假设解决物理试题 1.如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2,当圆锥和球一起以角速度匀速转动时,球压紧锥面.
1此时绳的张力是多少?
2若要小球离开锥面,则小球的角速度至少为多少?
【答案】(1)22cossinTmgml(2)cosgl
【解析】 (1)小球此时受到竖直向下的重力mg,绳子的拉力T,锥面对小球的支持力N,三个力
作用,合力充当向心力,即合力2sinFml
在水平方向上有,sincosTNmaFma,,
在竖直方向上:cossinTNmg
联立四个式子可得22cossinTmgml
(2)重力和拉力完全充当向心力时,小球对锥面的压力为零,
故有向心力tanFmg,2sinFml,联立可得cosgl,即小球的角速度至
少为cosgl
;
2.如图甲所示,小车B紧靠平台的边缘静止在光滑水平面上,物体A(可视为质点)以初速度v0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v-t图像如图乙所示,取重力加速度g=10m/s2,求: (1)物体A与小车上表面间的动摩擦因数;
(2)物体A与小车B的质量之比;
(3)小车的最小长度。 【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】 (1)根据vt图像可知,A在小车上做减速运动,加速度的大小
21241m/s3m/s1vat
若物体A的质量为m与小车上表面间的动摩擦因数为,则 1mgma
联立可得 0.3
(2)设小车B的质量为M,加速度大小为2a,根据牛顿第二定律
2mgMa 得 13mM
(3)设小车的最小长度为L,整个过程系统损失的动能,全部转化为内能
220
11()22mgLmvMmv
备战高考物理临界状态的假设解决物理试题推断题综合题含详细答案

备战高考物理临界状态的假设解决物理试题推断题综合题含详细答案一、临界状态的假设解决物理试题1.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B 【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q B θθ====2.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
设小球在水平:面内做匀速圆周运动的角速度为ω,线所受拉力为T ,则下列T 随2ω变化的图像可能正确的是( )A .B .C .D .【答案】C 【解析】 【分析】 【详解】对小球受力分析如图当角速度较小时,小球在光滑锥面上做匀速圆周运动,根据向心力公式可得2sin cos sin T N mL θθθω-=⋅cos sin T N mg θθ+=联立解得22cos sin T mg mL θθω=+⋅当角速度较大时,小球离开光滑锥面做匀速圆周运动,根据向心力公式可得2sin sin T mL ααω=⋅则2T mL ω=综上所述,ABD 错误,C 正确。
故选C 。
3.如图所示,AB 为竖直转轴,细绳AC 和BC 的结点C 系一质量为m 的小球,两绳能承担的最大拉力均为2mg 。
备战高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习附答案

备战高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习附答案一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.质量为m 2=2Kg 的长木板A 放在水平面上,与水平面之间的动摩擦系数为0.4;物块B (可看作质点)的质量为m 1=1Kg ,放在木板A 的左端,物块B 与木板A 之间的摩擦系数为0.2.现用一水平向右的拉力F 作用在木板A 的右端,让木板A 和物块B 一起向右做匀加速运动.当木板A 和物块B 的速度达到2 m/s 时,撤去拉力,物块B 恰好滑到木板A 的右端而停止滑动,最大静摩擦力等于动摩擦力,g=10m/s 2,求:(1)要使木板A 和物块B 不发生相对滑动,求拉力F 的最大值; (2)撤去拉力后木板A 的滑动时间; (3)木板A 的长度。
【答案】(1)18N (2)0.4s (3)0.6m 【解析】 【详解】(1)当木板A 和物块B 刚要发生相对滑动时,拉力达到最大 以B 为研究对象,由牛顿第二定律得1111m g m a μ=可得2112m/s a g μ==.再以整体为研究对象,由牛顿第二定律得212121 ))F m m g m m a μ-+=+(( 故得最大拉力18F N =;(2)撤去F 后A 、B 均做匀减速运动,B 的加速度大小仍为1a ,A 的加速度大小为2a ,则 2121122)m m g m g m a μμ+-=(解得225m/s a =故A 滑动的时间220.45v t s s a === (3)撤去F 后A 滑动的距离22122m=0.4m 225v x a ==⨯B 滑动的距离22212m=1m 222v x a ==⨯故木板A 的长度210.6m L x x =-=.【点睛】解题的关键是正确对滑块和木板进行受力分析,清楚滑块和木板的运动情况,根据牛顿第二定律及运动学基本公式求解。
备战高考物理临界状态的假设解决物理试题推断题综合题含答案

备战高考物理临界状态的假设解决物理试题推断题综合题含答案一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L=2m2.今年入冬以来,我国多地出现了雾霾天气,给交通安全带来了很大的危害.某地雾霾天气中高速公司上的能见度只有72m,要保证行驶前方突发紧急情况下汽车的安全,汽车行驶的速度不能太大.已知汽车刹车时的加速度大小为5m/s2.(1)若前方紧急情况出现的同时汽车开始制动,汽车行驶的速度不能超过多大?(结果可以带根号)(2)若驾驶员从感知前方紧急情况到汽车开始制动的反应时间为0.6s,汽车行驶的速度不能超过多大?【答案】(1)125m/s;(2)24m/s.【解析】试题分析:(1)根据速度位移公式求出求出汽车行驶的最大速度;(2)汽车在反应时间内的做匀速直线运动,结合匀速直线运动的位移和匀减速直线运动的位移之和等于72m,运用运动学公式求出汽车行驶的最大速度.解:(1)设汽车刹车的加速度a=﹣5m/s2,要在s=72m内停下,行驶的速度不超过v1,由运动学方程有:0﹣v12=﹣2as ①代入题中数据可得:v1=12m/s(2)设有汽车行驶的速度不超过v2,在驾驶员的反应时间t0内汽车作匀速运动的位移s1:s1=v2t0 ②刹车减速位移s2=③s=s1+s2 ④由②~④式并代入数据可得:v2=24m/s答:(1)汽车行驶的速度不能超过m/s;(2)汽车行驶的速度不能超过24m/s.【点评】解决本题的关键知道在反应时间内汽车做匀速直线运动,刹车后做匀减速直线运动,抓住总位移,结合运动学公式灵活求解.3.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
全国高考物理临界状态的假设解决物理试题的推断题综合高考模拟和真题分类汇总附详细答案
全国高考物理临界状态的假设解决物理试题的推断题综合高考模拟和真题分类汇总附详细答案一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.水平传送带上A 、B 两端点间距L =4m ,半径R =1m 的光滑半圆形轨道固于竖直平面内,下端与传送带B 相切。
传送带以v 0=4m/s 的速度沿图示方向匀速运动,m =lkg 的小滑块由静止放到传送带的A 端,经一段时间运动到B 端,滑块与传送带间的动摩擦因数μ=0.5,g =10m/s 2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
【答案】(1)v B =4m/s ; (2)Q =8J ; (3)不能通过最高点【解析】 【分析】本题考查了动能定理和圆周运动。
【详解】⑴滑块在传送带上先向右做加速运动,设当速度v = v 0时已运动的距离为x 根据动能定理201-02mgx mv μ=得x=1.6m <L所以滑块到达B 端时的速度为4m/s 。
高考物理复习临界状态的假设解决物理试题专项推断题综合练含答案
高考物理复习临界状态的假设解决物理试题专项推断题综合练含答案一、临界状态的假设解决物理试题1.今年入冬以来,我国多地出现了雾霾天气,给交通安全带来了很大的危害.某地雾霾天气中高速公司上的能见度只有72m,要保证行驶前方突发紧急情况下汽车的安全,汽车行驶的速度不能太大.已知汽车刹车时的加速度大小为5m/s2.(1)若前方紧急情况出现的同时汽车开始制动,汽车行驶的速度不能超过多大?(结果可以带根号)(2)若驾驶员从感知前方紧急情况到汽车开始制动的反应时间为0.6s,汽车行驶的速度不能超过多大?【答案】(1)125m/s;(2)24m/s.【解析】试题分析:(1)根据速度位移公式求出求出汽车行驶的最大速度;(2)汽车在反应时间内的做匀速直线运动,结合匀速直线运动的位移和匀减速直线运动的位移之和等于72m,运用运动学公式求出汽车行驶的最大速度.解:(1)设汽车刹车的加速度a=﹣5m/s2,要在s=72m内停下,行驶的速度不超过v1,由运动学方程有:0﹣v12=﹣2as ①代入题中数据可得:v1=12m/s(2)设有汽车行驶的速度不超过v2,在驾驶员的反应时间t0内汽车作匀速运动的位移s1:s1=v2t0 ②刹车减速位移s2=③s=s1+s2 ④由②~④式并代入数据可得:v2=24m/s答:(1)汽车行驶的速度不能超过m/s;(2)汽车行驶的速度不能超过24m/s.【点评】解决本题的关键知道在反应时间内汽车做匀速直线运动,刹车后做匀减速直线运动,抓住总位移,结合运动学公式灵活求解.2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
圆形底面的直径为2R,圆筒的高度为R。
(1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率;(2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。
【答案】(1)5n≥甲;(2)2n>乙【解析】【详解】(1)盛满甲液体,如图甲所示,P点刚好全反射时为最小折射率,有1sinnC=由几何关系知222sin2RCRR=⎛⎫+ ⎪⎝⎭解得5n=则甲液体的折射率应为5n≥甲(2)盛满乙液体,如图乙所示,与底边平行的光线刚好射入液体时对应液体的最小折射率,A点1sin n C ='乙 由几何关系得90C α'=︒-B 点恰好全反射有C α'=解各式得2n =乙则乙液体的折射率应为2n >乙3.火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是( )A .轨道半径2v R g=B .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外C .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内D .当火车质量改变时,安全速率也将改变 【答案】B 【解析】 【详解】AD .火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力由图可以得出(θ为轨道平面与水平面的夹角)tan F mg θ=合合力等于向心力,故2tan v mg m Rθ=解得tan v gR θ=与火车质量无关,AD 错误;B .当转弯的实际速度大于规定速度时,火车所受的重力和支持力的合力不足以提供所需的向心力,火车有离心趋势,故其外侧车轮轮缘会与铁轨相互挤压,外轨受到侧压力作用方向平行轨道平面向外,B正确;C.当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压,内轨受到侧压力作用方向平行轨道平面向内,C错误。
高考物理 临界状态的假设解决物理试题 推断题综合题及答案解析
高考物理 临界状态的假设解决物理试题 推断题综合题及答案解析一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
【答案】(1)0.5s(2)6.4m/s(3)30N【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24(1101)N=30N 0.8T =⨯+⨯3.如图所示,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。
高考物理临界状态的假设解决物理试题的推断题综合热点考点难点附答案
高考物理临界状态的假设解决物理试题的推断题综合热点考点难点附答案一、临界状态的假设解决物理试题1.质量为m 2=2Kg 的长木板A 放在水平面上,与水平面之间的动摩擦系数为0.4;物块B (可看作质点)的质量为m 1=1Kg ,放在木板A 的左端,物块B 与木板A 之间的摩擦系数为0.2.现用一水平向右的拉力F 作用在木板A 的右端,让木板A 和物块B 一起向右做匀加速运动.当木板A 和物块B 的速度达到2 m/s 时,撤去拉力,物块B 恰好滑到木板A 的右端而停止滑动,最大静摩擦力等于动摩擦力,g=10m/s 2,求:(1)要使木板A 和物块B 不发生相对滑动,求拉力F 的最大值; (2)撤去拉力后木板A 的滑动时间; (3)木板A 的长度。
【答案】(1)18N (2)0.4s (3)0.6m 【解析】 【详解】(1)当木板A 和物块B 刚要发生相对滑动时,拉力达到最大 以B 为研究对象,由牛顿第二定律得1111m g m a μ=可得2112m/s a g μ==.再以整体为研究对象,由牛顿第二定律得212121 ))F m m g m m a μ-+=+(( 故得最大拉力18F N =;(2)撤去F 后A 、B 均做匀减速运动,B 的加速度大小仍为1a ,A 的加速度大小为2a ,则 2121122)m m g m g m a μμ+-=(解得225m/s a =故A 滑动的时间220.45v t s s a === (3)撤去F 后A 滑动的距离22122m=0.4m 225v x a ==⨯B 滑动的距离22212m=1m 222v x a ==⨯故木板A 的长度210.6m L x x =-=.【点睛】解题的关键是正确对滑块和木板进行受力分析,清楚滑块和木板的运动情况,根据牛顿第二定律及运动学基本公式求解。
2.火车转弯时,如果铁路弯道内外轨一样高,外轨对轮绝(如图a 所示)挤压的弹力F 提供了火车转弯的向心力(如图b 所示),但是靠这种办法得到向心力,铁轨和车轮极易受损.在修筑铁路时,弯道处的外轨会略高于内轨(如图c 所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度小为,以下说法中正确的是A .该弯道的半径B .当火车质量改变时,规定的行驶速度也将改变C .当火车速率大于时,外轨将受到轮缘的挤压D .当火车速率小于时,外轨将受到轮缘的挤压 【答案】C 【解析】 【详解】火车拐弯时不侧向挤压车轮轮缘,靠重力和支持力的合力提供向心力,设转弯处斜面的倾角为θ,根据牛顿第二定律得:mgtanθ=mv 2/R ,解得:R= v 2/ g tanθ,故A 错误;根据牛顿第二定律得:mgtanθ=mv 2/R, 解得:gRtan θ,与质量无关,故B 错误;若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力,轮缘挤压外轨.故C 正确;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力,轮缘挤压内轨.故D 错误.故选C .点睛:火车拐弯时以规定速度行驶,此时火车的重力和支持力的合力提供圆周运动所需的向心力.若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力.3.如图所示,轻质杆的一端连接一个小球,绕套在固定光滑水平转轴O 上的另一端在竖直平面内做圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理临界状态的假设解决物理试题推断题综合经典题附答案一、临界状态的假设解决物理试题1.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qB【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R 1相对应的速度v 1时,粒子从cd 边射出,由几何关系可知R 1=L ;由洛伦兹力等于向心力可知:2111v qv B m R =从图中看出,当轨迹的半径对应R 1时从ab 边上射出时用时间最短,此时对应的圆心角为=18030=150θ- 由公式可得:22R mT v qBππ== ; 由1=360t Tθ解得156π=mt qB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.2.火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是( )A .轨道半径2v R g=B .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外C .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内D .当火车质量改变时,安全速率也将改变 【答案】B 【解析】 【详解】AD .火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力由图可以得出(θ为轨道平面与水平面的夹角)tan F mg θ=合合力等于向心力,故2tan v mg m Rθ=解得tan v gR θ=与火车质量无关,AD 错误;B .当转弯的实际速度大于规定速度时,火车所受的重力和支持力的合力不足以提供所需的向心力,火车有离心趋势,故其外侧车轮轮缘会与铁轨相互挤压,外轨受到侧压力作用方向平行轨道平面向外,B 正确;C .当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压,内轨受到侧压力作用方向平行轨道平面向内,C 错误。
故选B 。
3.如图所示,带电粒子(不计重力)以初速度v 0从a 点垂直于y 轴进入匀强磁场,运动过程中经过b 点,Oa =Ob 。
若撤去磁场加一个与y 轴平行的匀强电场,带电粒子仍以速度v 0从a 点垂直于y 轴进入电场,仍能通过b 点,则电场强度E 和磁感应强度B 的比值为( )A .v 0B .2v C .2v 0 D .2v 【答案】C 【解析】 【详解】设Oa Ob d ==,因为带电粒子在磁场中做匀速圆周运动,所以圆周运动的半径正好等于d ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:200m dq v v B =解得:mv B qd=如果换成匀强电场,水平方向以0v 做匀速直线运动,在水平方向:0d v t =竖直沿y 轴负方向做匀加速运动,即:221 22qE d at t m== 解得:22v m E qd=则有:02Ev B= 故C 正确,A 、B 、D 错误; 故选C 。
4.如图所示,一根长为L 的轻杆一端固定在光滑水平轴O 上,另一端固定一质量为m 的小球,小球在最低点时给它一初速度,使它在竖直平面内做圆周运动,且刚好能到达最高点P ,重力加速度为g 。
关于此过程以下说法正确的是( )A .小球在最高点时的速度等于gLB .小球在最高点时对杆的作用力为零C .若减小小球的初速度,则小球仍然能够到达最高点PD .若增大小球的初速度,则在最高点时杆对小球的作用力方向可能向上 【答案】D 【解析】 【分析】 【详解】A .在最高点,由于轻杆能支撑小球,所以小球在最高点时的速度恰好为零,故A 错误; B. 小球在最高点时小球的速度为零,向心力为零,则此时对杆的作用力F =mg ,方向竖直向下,故B 错误;C. 若减小小球的初速度,根据机械能守恒定律可知,小球能达到的最大高度减小,即不能到达最高点P ,故C 错误;D. 在最高点,根据牛顿第二定律,有2+v F mg m L=当v gL =时,轻杆对小球的作用力F =0;当v gL <时,杆对小球的作用力0F <,则杆对球的作用力方向竖直向上;当v gL >时,杆对小球的作用力0F >,则杆对球的作用力方向竖直向下,所以若增大小球的初速度,则在最高点时杆对小球的作用力方向可能向上,故D 正确。
故选D 。
5.用长为L 的细杆拉着质量为m 的小球在竖直平面内作圆周运动,如下图下列说法中正确的是( )A .小球运动到最高点时,速率必须大于或等于gLB .小球运动到最高点时,速率可以小于gL ,最小速率为零C .小球运动到最高点时,杆对球的作用力可能是拉力,也可能是支持力,也可能无作用力D .小球运动到最低点时,杆对球的作用力一定是拉力 【答案】BCD 【解析】 【详解】小球在最高点的最小速度为零,此时小球重力和支持力相等.故A 错误,B 正确.当小球在最高点压力为零时,重力提供向心力,有2v mg m L=,解得v gL =,当速度小于v时,杆对小球有支持力,方向向上;当速度大于v 时,杆对小球有拉力,方向向下,故C 正确.小球在最低点时,合力提供向心力,知合力方向向上,则杆对球的作用力一定向上.故D 正确.6.如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(g =10m/s 2)( )A .04v ≥m/sB .025v ≥C .025m/s 22m/s v ≤≤D .022v ≤m/s【答案】BD 【解析】 【分析】 【详解】小球不脱离圆轨道时,最高点的临界情况为2v mg m r=解得2v gr ==m/s根据机械能守恒定律得22011222mv mg r mv =⋅+ 解得025v =故要使小球做完整的圆周运动,必须满足025v ≥;若不通过圆心等高处小球也不会脱离圆轨道,根据机械能守恒定律有2012mgr mv =解得022v =m/s故小球不越过圆心等高处,必须满足022v ≤m/s ,所以要使小球不脱离圆轨道运动,v 0应当满足025v ≥m/s 或022v ≤m/s ,AC 错误,BD 正确。
故选BD 。
7.如图所示,在光滑的圆锥顶用长为l 的细线悬挂一质量为m 的物体,圆锥体固定在水平面上不动,其轴线沿竖直方向,细线与轴线之间的夹角为030θ= ,物体以速度v 绕圆锥体轴线做水平匀速圆周运动.(1)当16glv =时,求绳对物体的拉力. (2)当232glv = ,求绳对物体的拉力. 【答案】(133)mg+ (2)2mg 【解析】 【分析】求出物体刚要离开锥面时的速度,此时支持力为零,根据牛顿第二定律求出该临界速度,当速度大于临界速度,则物体离开锥面,当速度小于临界速度,物体还受到支持力,根据牛顿第二定律,物体在竖直方向上的合力为零,水平方向上的合力提供向心力,求出绳子的拉力; 【详解】当物体恰好离开锥面时,此时物体与锥面接触但是没有弹力作用,如图所示:则:竖直方向:0Tcos mg θ-=,水平方向:2mvTsin Rθ=,R Lsin θ= 解得36gl v =;(1)当1v v <时,物体没有离开锥面时,此时物体与锥面之间有弹力作用,如图所示:则在水平方向:2111mv T sin N cos Rθθ-=,竖直方向:110T cos N sin mg θθ+-=,R Lsin θ= 解得:1331T mg +=; (2)2v v >时,物体离开锥面,设线与竖直方向上的夹角为α,如图所示:则竖直方向:20T cos mg α-=,水平方向:2222mv T sin R α=,而且:2R Lsin α=解得:22T mg . 【点睛】解决本题的关键找出物体的临界情况,以及能够熟练运用牛顿第二定律求解.8.现有A 、B 两列火车在同一轨道上同向行驶,A 车在前,其速度v A =10 m/s ,B 车速度v B =30 m/s.因大雾能见度低,B 车在距A 车600 m 时才发现前方有A 车,此时B 车立即刹车,但B 车要减速1 800 m 才能够停止. (1)B 车刹车后减速运动的加速度多大?(2)若B 车刹车8 s 后,A 车以加速度a 1=0.5 m/s 2加速前进,问能否避免事故?若能够避免则两车最近时相距多远?【答案】(1)0.25 m/s 2 (2)可以避免事故 232 m 【解析】 【分析】 【详解】(1)设B 车减速运动的加速度大小为a ,有0-v B 2=-2ax 1,解得: a =0.25 m/s 2.(2)设B 车减速t 秒时两车的速度相同,有v B -at =v A +a 1(t -Δt ) 代入数值解得t =32 s ,在此过程中B 车前进的位移为x B =v B t -212at =832 m A 车前进的位移为x A =v A Δt +v A (t -Δt )+12a 1(t -Δt )2=464 m , 因x A +x >x B ,故不会发生撞车事故,此时Δx =x A +x -x B =232 m.9.一辆大客车正在以30 m/s 的速度匀速行驶.突然,司机看见车的正前方x 0 = 95m 处有一只小狗,如图所示.司机立即采取制动措施,司机从看见小狗到开始制动客车的反应时间为△t=0.5 s ,设客车制动后做匀减速直线运动.试求:(1)为了保证小狗的安全,客车制动的加速度大小至少为多大?(假设这个过程中小狗一直未动)(2)若客车制动时的加速度为5m/s2,在离小狗30m 时,小狗发现危险并立即朝前跑去.假设小狗起跑阶段做匀加速直线运动,加速度a=3m/s2.已知小狗的最大速度为8m/s 且能保持较长一段时间.试判断小狗有没有危险,并说明理由. 【答案】(1)25.625/m s (2)小狗是安全的 【解析】 【分析】【详解】(1)长途客车运动的速度v =30m/s ,在反应时间内做匀速运动,运动的位移为: x 1=v △t =30×0.5m=15m所以汽车减速位移为:x 2=x 0-x 1=95-15=80m 根据速度位移关系知长途客车加速度大小至少为:22221230/5.625/2280v a m s m s x ===⨯.(2)若客车制动时的加速度为a 1=-5m/s 2,在离小狗x =30m 时,客车速度为v 1,则()221122v v a x x -=-,代入数据解得v 1=20m/s设t 时速度相等,即v 1+a 1t =at 解得:t =2.5s此时车的位移231112x v t a t =+代入数据解得x 3=34.375m狗的位移:2419.5752x at m == 即x 4+x >x 3,所以小狗是安全的.10.如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m ,小杯通过最高点的速度为4m/s ,g 取10m/s 2,求: (1)在最高点时,绳的拉力; (2)在最高点时水对小杯底的压力;(3)为使“水流星”能完成竖直平面内的圆周运动,在最高点时最小速率是多少?【答案】(1)9N ,方向竖直向下,(2)6N ,方向竖直向上,10m/s 。