八年级数学轴对称与轴对称图形复习题
八年级数学上册画轴对称图形同步练习含解析

画轴对称图形一、单选题(共10小题)1.点A (2,—1)关于x轴对称的点B的坐标为()A.(2, 1) B.(—2,1)C.(2,-1)D.(-2,— 1)【答案】A【解析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,进而得到答案.【详解】点A(2,—1)关于x轴对称的点B的坐标为:(2,1).故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.2.点M(1,4-m)关于直线y=-3对称的点的坐标为(1,7),则m=()A.16 B.27 C.17 D.15【答案】C【解析】与平行于x轴的直线y=-3对称的点的坐标与原坐标的横坐标相等,纵坐标到直线y=-3的距离相等,由此分析所求对称点的坐标即可;【详解】解:当M关于直线y=—3对称的点的坐标为(1,7)时,如图:根据对称的性质,有:—3-(4-m)=10解得:m=17,故选:C.【点睛】本题考查坐标与图形的性质,解题的关键是要掌握坐标系中对称点的坐标变化与对称轴的关系.3.平面直角坐标系内的点A(1,﹣2)与点B(1,2)关于() A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【答案】A【解析】根据关于x轴对称点的特征即可解答.【详解】点A(1,﹣2)与点B(1,2)关于x轴对称.故选A.【点睛】本题考查了关于x轴对称点的性质,熟知关于x轴对称点的性质是解决问题的关键.4.在直角坐标系中,点A(–2,2)与点B关于x轴对称,则点B 的坐标为()A.(–2,2) B.(–2,–2)C.(2,–2)D.(2,2)【答案】B【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A(—2,2)与点B关于x轴对称,∴点B的坐标为(—2,-2).故选:B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.5.点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣1【答案】D【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】(2,b+2)与点(a—3,-1)关于x轴对称,得a—3=2,b+2=1.解得a=5,b=—1,故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.如图,△ABC顶点B的坐标是(﹣5,2),先把△ABC向右平移3个单位得到△A1B1C1,再作△A1B1C1关于y轴的对称图形△A2B2C2,则顶点B2的坐标是()A.(2,﹣2)B.(﹣2,2) C.(2,2)D.(﹣2,﹣2)【答案】C【解析】根据点B1,B之间的关系结合点B的坐标,可得出点B1的坐标,再由顶点B2和顶点B1关于y轴对称,可得出点B2的坐标,此题得解.【详解】∵顶点B的坐标是(﹣5,2),将其向右平移3个单位得到顶点B1,∴顶点B1的坐标为(﹣2,2).又∵顶点B2和顶点B1关于y轴对称,∴顶点B2的坐标为(2,2).故选C.【点睛】本题考查了坐标与图形变化﹣平移以及关于x轴、y轴对称的点的坐标,牢记“关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变”是解题的关键.7.在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,3) D.(2,﹣3)【答案】A【解析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),故选:A.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.8.(a,-6)关于x轴的对称点的坐标为()A.(-a,6)B.(a,6) C.(a,-6) D.(-a,-6)【答案】B【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:(a,-6)关于x轴的对称点的坐标为(a,6).故选:B。
人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。
部编数学八年级上册专题07轴对称及轴对称图形画法问题(解析版)含答案

2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题07 轴对称及轴对称图形画法问题一、选择题1.(2023深圳)下列图形中,为轴对称的图形的是()A. B. C. D.【答案】D【解析】根据轴对称图形的概念对各选项分析判断即可得解.A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查了轴对称图形,解决问题的关键是熟练掌握轴对称图形的概念,轴对称图形概念,一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形.2. (2023广东省)下列出版社的商标图案中,是轴对称图形的为()A. B. C. D.【答案】A【解析】根据轴对称图形的概念:一个图形沿一条直线折叠,直线两旁部分能够完全重合的图形;由此问题可求解.符合轴对称图形的只有A选项,而B、C、D选项找不到一条直线能使直线两旁部分能够完全重合;故选A.【点睛】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键.3. (2023湖南湘潭)中国的汉字既象形又表意,不但其形美观,而且寓意深刻,观察下列汉字,其中是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C【解析】根据轴对称图形的定义逐项判断即可.将选项A,B,D中的汉字沿某直线折叠后不能与本身重合,所以不符合题意;将图C中的汉字沿过中心的竖直方向的直线折叠直线两旁的部分能够重合,所以符合题意.故选:C.【点睛】本题主要考查了轴对称图形的判断,掌握定义是解题的关键.即将一个图形沿某直线折叠,直线两旁的部分能够重合,这样的图形是轴对称图形.4.(2023江苏连云港)在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是()A. B. C. D.【答案】C【解析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】选项A、B、D均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项C能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6. 下列图形中,对称轴最多是( )A. 等边三角形 B. 矩形C. 正方形D. 圆【答案】D【解析】因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.7. (2023山东聊城)如图,在直角坐标系中,ABC V 各点坐标分别为()2,1A -,()1,3B -,()4,4C -.先作ABC V 关于x 轴成轴对称的111A B C △,再把111A B C △平移后得到222A B C △.若()22,1B ,则点2A 坐标为( )A. ()1,5B. ()1,3C. ()5,3D. ()5,5【答案】B【解析】三点()2,1A -,()1,3B -,()4,4C -的对称点坐标为()12,1A --,()11,3B --,()4,4C --,结合()22,1B ,得到平移规律为向右平移3个单位,向上平移4个单位,计算即可.【详解】∵三点()2,1A -,()1,3B -,()4,4C -的对称点坐标为()12,1A --,()11,3B --,()4,4C --,结合()22,1B ,∴得到平移规律为向右平移3个单位,向上平移4个单位,的故2A 坐标为()1,3.故选B .【点睛】本题考查了关于x 轴对称,平移规律,熟练掌握轴对称的特点和平移规律是解题的关键.8. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.【答案】D【解析】利用轴对称图形的概念可得答案.A .不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.9.下列北京冬奥会运动标识图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】根据轴对称图形的定义进行逐一判断即可.A.不是轴对称图形,故A 错误;B.不是轴对称图形,故B 错误;C.是轴对称图形,故C 正确;D.不是轴对称图形,故D 错误.故选:C .【点睛】本题主要考查了轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.10.如图,△ABC 关于直线l 的对称图形是△DEF ,下列判断错误的是( )A. AB=DEB.BC ∥EFC.直线l ⊥BED.∠ABC=∠DEF 【答案】B【解析】轴对称图形的相关性质。
八年级数学轴对称知识点整理及练习

教学课题 轴对称 教学目的1、会推断哪些是轴对称图形,知道轴对称图形和轴对称的区分2、会用坐标表示轴对称重点难点 用坐标表示轴对称【学问点梳理】 一、学问框架:二、学问概念: 1.根本概念:⑴轴对称图形:假如一个图形沿一条直线折叠,直线两旁的部分可以互相重合,这个图形就 叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,假如它可以及另一个图形重合,那么 就说这两个图形关于这条直线对称. 3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指( )具有特殊形状的图形,只对( )图形而言;(2)对称轴( )只有一条(1)轴对称是指( )图形的位置关系,必须涉及( )图形;(2)只有( )对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCAC'B'A'AB C 一个一个不一定两个两个一条知识回顾:⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分C BAy x13.点P 关于x 轴对称的点的坐标是〔1,2-〕,那么点P 关于y 轴对称的点的坐标是〔 〕. A .〔1,2〕 B .〔1-,2〕 C .〔1-,2-〕 D .〔1,2-〕 14.点(,2)P a b a b +-及点(2,3)Q --关于x 轴对称,那么a b +=〔 〕A . 13B . 23C . 2D . 2-15. 如图3,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 及△ABC 全等,那么点D 坐标可以是 。
16、在Rt △ABC 中,CD 是斜边AB 上的高,假设∠A =30°,BC =2㎝,那么BD = ㎝,AD = ㎝17.〔此题6分〕如图,点A 、B 、C 的坐标分别为(2,0)-,(22,0),(0,2). 〔1〕求ABC ∆的面积;〔2〕把ABC ∆向左平移2个单位,写出此时三角形三个顶点的坐标.18、,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接 D E F ,,,得到DEF △为等边三角形.〔1〕求证:AEF CDE △≌△;〔2〕求证:ABC △为等边三角形. AB Cxy DCBAABCDEF〔第18题〕。
人教版八年级上册数学-13《轴对称》知识点及典型例题

⼈教版⼋年级上册数学-13《轴对称》知识点及典型例题第⼗三章《轴对称》⼀、知识点归纳(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。
连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。
5.画⼀图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)所以线段的垂直平分线能够看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹⾓平分线对称点P(x,y)关于第⼀、三象限坐标轴夹⾓平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第⼆、四象限坐标轴夹⾓平分线y=-x对称的点的坐标是(-y,-x)(六)关于平⾏于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三⾓形1、等腰三⾓形性质:性质1:等腰三⾓形的两个底⾓相等(简写成“等边对等⾓”)性质2:等腰三⾓形的顶⾓平分线、底边上的中线、底边上的⾼相互重合。
八年级数学上册《第十三章轴对称》练习题及答案
八年级数学上册《第十三章轴对称》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列4个时刻中,是轴对称图形的有()A.3个B.2个C.1个D.0个3.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列图形均为表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,△ABC 与A B C '''关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .AA P '△是等腰三角形B .MN 垂直平分AA ',CC ' C .△ABC 与A B C '''面积相等D .直线AB 、A B ''的交点不一定在MN 上6.如图,在△ABC 纸片中,△ABC =90°,将其折叠,使得点C 与点A 重合,折痕为DE ,若AB =3cm ,AC =5cm ,则△ABE 的周长为( )A .4 cmB .6 cmC .7 cmD .8 cm7.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,如果将△ABC 先沿x 轴翻折,再向右平移3个单位长度,得到△A ′B ′C ′,那么点B 的对应点B ′的坐标为( )A .(2,﹣3)B .(4,3)C .(﹣1,﹣3)D .(4,0)8.下列轴对称图形中,对称轴最多的是( )A .等腰三角形B .等边三角形C .正方形D .线段9.如图,ABC ∆中40A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,点C 恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B 的度数为( )A .57︒B .60︒C .63︒D .70︒10.ABC ∆和A B C '''∆关于直线l 对称,若ABC ∆的周长为12cm ,则A B C '''∆的周长为( )A .24cmB .12cmC .6cmD .6cm11.如图,边长为a 的等边△ABC 中,BF 是AC 上中线且BF =b ,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,则△AEF 周长的最小值是( )A .12a 23+bB .12a +b C .a 12+b D .23a二、填空题12.线段是轴对称图形,它的一条对称轴是_______________,线段本身所在的直线也是它的一条对称轴. 13.如图,在平面直角坐标系中,等腰直角三角形△沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形△;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形△;第三次滚动后点A 3变换到点A 4(10),得到等腰直角三角形△;第四次滚动后点A 4变换到点A 5(0),得到等腰直角三角形△;依此规律…,则第2020个等腰直角三角形的面积是_____.14.轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_____________. (2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的_______________.15.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B'C交AD于点E,若△1=25°,则△2的度数为_____.⨯的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形16.如图,在34组成轴对称图形,选择的位置共有______处.三、解答题17.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证:DE A F '∥;(2)求证:2A C A B '='.18.已知二次函数21312y x x =-+, (1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x 轴翻折,求所得图象的表达式.19.你设计的游戏一游戏规则:游戏背后的数学原理:游戏操作后同组学生的评价:20.数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)参考答案:1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴对各选项一一进行分析即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.解决轴对称图形的关键是寻找对称轴.2.B【分析】根据轴对称图形的概念分别对各个图形进行判断即可.【详解】解:第1个,不是轴对称图形,故本选项不合题意;第2个,是轴对称图形,故本选项符合题意;第3个,是轴对称图形,故本选项符合题意;第4个,不是轴对称图形,故本选项不合题意;故选:B.【点睛】本题考查轴对称图形,能根据轴对称的概念找出图形的对称轴是解决此题的关键.3.D【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.B【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、既是轴对称图形又是中心对称图形,则此项符合题意;C、是轴对称图形,不是中心对称图形,则此项不符合题意;D、既不是轴对称图形又不是中心对称图形,则此项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记定义是解题关键.5.D【分析】根据轴对称的性质即可解答.'''关于直线MN对称,P为MN上任意一点,【详解】解:由题意△ABC与A B C△对称轴上的任何一点到两个对应点之间的距离相等,'=,△PA PA△是等腰三角形,选项A正确,不符合题意;△AA P'△轴对称图形对应点所连的线段被对称轴垂直平分,△MN垂直平分AA',CC',选项B正确,不符合题意;△轴对称图形对应的角、线段都相等,△△ABC与A B C'''是全等三角形,面积也必然相等,选项C选项正确,不符合题意;△直线AB、A B''关于直线MN对称,因此交点一定在MN上.△选项D错误,符合题意.故选D.【点睛】本题考查轴对称的性质与运用,轴对称图形对应的角、线段都相等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.6.C【分析】先利用勾股定理求出BC,利用折叠得出AE=CE,然后△ABE的周长转化为AB+BC即可.【详解】解:△ABC纸片中,△△ABC=90°,AB=3cm,AC=5cm,△BC4=cm,△△DEC沿DE折叠得到△ADE,△AE=CE,△△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故选C.【点睛】本题考查勾股定理,折叠轴对称性质,三角形周长,掌握勾股定理,折叠轴对称性质,三角形周长是解题关键.7.A【分析】根据轴对称的性质和平移规律求得即可.【详解】解:由坐标系可得B(﹣1,3),将△ABC先沿x轴翻折得到B点对应点为(﹣1,﹣3),再向右平移3个单位长度,点B的对应点B'的坐标为(﹣1+3,﹣3),即(2,﹣3),故选:A.【点睛】此题考查了翻折变换的性质、坐标与图形的变化--对称和平移,解题的关键是掌握点的坐标的变化规律.8.C【分析】根据等腰三角形、等边三角形、正方形、线段的轴对称性质,依次解题.【详解】A、等腰三角形1条对称轴;B、等边三角形3条对称轴;C、正方形有4条对称轴;D、线段2条对称轴.故选:C.【点睛】本题考查轴对称图形的对称轴,是基础考点,难度较易,掌握相关知识是解题关键.9.C【分析】由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,依据△BDG是△BDF是外角,即可得到△DBA=△BDG﹣△A=82°﹣40°=42°,进而得到原三角形的△B为63°.【详解】解:如图,由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,△△BDG是△BDA是外角,△△DBA=△BDG﹣△A=82°﹣40°=42°,△△ABE=△DBE=21°,△△ABG=3×21°=63°,即原三角形的△B为63°,故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形外角性质的应用,能够根据折叠的性质发现△FBE=△ABE=△ABG是解答此题的关键.10.B【分析】根据关于成轴对称的两个图形是全等形和全等三角形的性质填则可.【详解】△△ABC和△A′B′C′关于直线l对称,△△ABC△△A′B′C′,△△A′B′C′的周长为12,故填12.【点睛】本题考查轴对称的性质和全等三角形的性质,解题的关键是熟练掌握轴对称的性质和全等三角形的性质.11.B【分析】先证明点E在射线CE上运动,由AF为定值,所以当AE+E F最小时,△AEF周长的最小,作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.【详解】解:△△ABC、△ADE都是等边三角形,△AB=AC,AD=AE,△BAC=△DAE=60°,△△BAD=△CAE,△△BAD△△CAE,△△ABD=△ACE,△AF=CF,△△ABD=△CBD=△ACE=30°,△点E在射线CE上运动(△ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的值最小,此时AE+FE=MF,△CA=CM ,△ACM =60°,△△ACM 是等边三角形,△△ACM △△ACB ,△FM=FB=b ,△△AEF 周长的最小值是AF+AE+EF =AF+MF =12a +b ,故选:B .【点睛】此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.12.线段的垂直平分线【详解】分析:线段的对称轴为线段的中垂线.详解:线段是轴对称图形,它的一条对称轴是线段的垂直平分线,线段本身所在的直线也是它的一条对称轴.点睛:本题主要考查的是轴对称图形的对称轴,属于基础题型.这个题目的关键就是理解轴对称图形的性质.13.22020【分析】根据A 1(0,2)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,根据A 2(6,0)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,…,同理,确定规律可得结论.【详解】△点A 1(0,2), △第1个等腰直角三角形的面积=1222⨯⨯=2, △A 2(6,0),△第2=△第2个等腰直角三角形的面积=12⨯=4=22,△A4(10,,△第3个等腰直角三角形的边长为10−6=4,△第3个等腰直角三角形的面积=1442⨯⨯=8=32,…则第2020个等腰直角三角形的面积是20202;故答案为:20202.【点睛】本题主要考查坐标与图形变化以及找规律,熟练掌握方法是关键.14.垂直平分线垂直平分线【解析】略15.50°【分析】根据折叠的性质可得△BCE的度数,再由矩形对边平行的性质即可求得△2的度数.【详解】由折叠的性质得:△ACE=△1=25°△△BCE=△1+△ACE=50°△四边形ABCD是矩形△AD△BC△△2=△BCE=50°故答案为:50°【点睛】本题考查了矩形的折叠,掌握矩形的性质及折叠的性质是关键.16.7【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有△下1;△下2;△中3;△中4;△上5;△上6;△上7.如图:选择的位置共有7处.故答案为:7.【点睛】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(1)见解析(2)见解析【分析】(1)设DE 与AG 的交点为O ,根据题意可得AE EF BF ==,AO A O '=,即可求证; (2)先证明ADE BAG ∆≅∆,可得AE BG =,DEA AGB ∠=∠,从而得到DEF A FB A GC ∠=∠='∠',再过点B 作BH AG ⊥,连接A D ',可得AO BH =,再由DE A F BH ∥∥,可得AO A O A H '==',从而得到45BA F ∠='︒,再根据四边形的性质可得135AA C ∠='︒,从而得到45CA G ∠='︒,可证得△A FB '∽△A GC ',从而得到A C CG A B BF='',再根据AE BG =,可得2GC BF =,即可求证. (1)证明:设DE 与AG 的交点为O ,E ,F 为边AB 上的两个三等分点,AE EF BF ∴==,AA DE '⊥,点A 关于DE 的对称点为A ',AO A O '∴=,//DE A F '∴;(2)解:AA DE '⊥,90AOE DAE ABG ∴∠=︒=∠=∠,90ADE DEA DEA EAO ∴∠+∠=︒=∠+∠,ADE EAO ∴∠=∠,在ADE ∆和BAG ∆中,90ADE EAOAD AB DAE ABG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ADE BAG ASA ∴∆≅∆,AE BG ∴=,DEA AGB ∠=∠,A GC DEF '∴∠=∠,△DE A F '∥,DEF A FB A GC ∴∠=∠='∠',如图,过点B 作BH AG ⊥,连接A D ',ADE BAG ∆≅∆,DE AG ∴=,ΔΔADE BAG S S =, ∴1122DE AO AG BH ⨯⨯=⨯⨯,AO BH ∴=,BH AG ⊥,DE AG ⊥,A F AG '⊥,△DE A F BH ∥∥, ∴AO OA AHAE EF BF =''=,又AE EF BF ==,AO A O A H ='∴=',BH A H ∴=',45HBA BA H ∴∠=︒∠'=',45BA F ∴='∠︒,点A 关于DE 的对称点为A ',DA DA ∴=',DA DA DC '∴==,DAA DA A ∴∠='∠',DCA DA C ∠='∠',360ADC DAA DA A DA C DCA ∠+∠+∠+∠+∠=''︒'',236090AA C ∴∠=︒-'︒,135AA C ∴='∠︒,45CA G ∴='∠︒,CA G FA B ∴∠='∠',又A GC A FB ∠='∠',∴△A FB '∽△A GC ', ∴A C CG A B BF='', AE BG =,AB BC =,BE GC ∴=,2BE BF =,2GC BF ∴=, ∴2A C A B''=, 2A C A B ''∴=.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轴对称的性质,相似三角形的判定和性质等知识,求出45FA CA B G ∠'∠='=︒是解题的关键.18.(1)213422y x x =-+ (2)21382y x x =-+- (3)21312y x x =-+-【分析】(1)先将二次函数化为顶点式,然后根据平移规律即可得出答案.(2)将图象绕顶点旋转180︒,则顶点不变,开口向下,据此可直接得出答案.(3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,由此可得出答案. (1)2211731(3)222y x x x =-+=--,∴向右平移1个单位,向下平移3个单位得:2217113(13)3(4)2222y x x =----=--213422x x =-+.(2)2211731(3)222y x x x =-+=--, ∴二次函数顶点坐标为7(3,)2-,12a =, 将图象绕顶点旋转180︒,则顶点不变为7(3,)2-,开口向下12a =-, 217(3)22y x ∴=---=21382x x -+-. (3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,所以2211(31)3122y x x x x =--+=-+-.【点睛】本题考查二次函数的性质及函数平移翻折的规律,解题的关键是熟练掌握相关内容并能灵活运用.19.见解析【分析】先设计一个游戏规则,再利用整式的加减进行计算说明游戏背后的数学原理,最后得到同组学生的评价.【详解】解:游戏规则:组员把自己的年龄加上10,结果乘以10,再减去10,再减去自己的年龄,结果除以9,将自己计算的结果告诉组长,组长就知道你的实际年龄.游戏背后的数学原理:设自己的年龄为x ,根据题意可得:10(10)10109x x x +--=-, 这说明结果总比自己的年龄大小10, 所以组长只需要将计算结果加上10,就等于组员的年龄,游戏操作后同组学生的评价:这类游戏规则的设计使得计算的结果为常数或含有未知数的较为简单的代数式.【点睛】本题考查了列代数式及整式的加减,解决本题的关键得到相应的代数式,找到数学的联系.20.见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可【详解】解:如下图所示:【点睛】本题考查利用轴对称设计图案,中心对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.。
人教版八年级下册数学专题复习及练习(含解析):轴对称
专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。
这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。
4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。
知识点2:轴对称的性质(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。
八年级数学《第二章 轴对称图形--轴对称与轴对称图形》专项复习汇总
OBAP八年级数学《第二章 轴对称图形------轴对称与轴对称图形》专项复习汇总一、知识回顾【知识点1】轴对称和轴对称图形1、在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是【 】2、下列说法中:①成轴对称的2个图形全等;②2个全等的图形一定关于某条直线成轴对称;③如果点A 、B 关于直线l 成轴对称,那么线段AB 被直线l 垂直平分;④如果线段AB 与A ′B ′关于直线l 成轴对称,那么AB=A ′B ′且AB ∥A ′B ′;⑤如果线段AB 与A ′B ′关于直线l 成轴对称,那么AA ′=BB ′且AA ′∥BB ′;正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个3.已知:如图所示:(1)画出△ABC 关于y 轴对称的△A′B′C′, 并写出△A′B′C′三个顶点的坐标.(2)在x 轴上画出点P ,使PA+PB 最小(保留画图痕迹)4、如图:由四个小正方形组成的图形中,请你添加一个小正方形,使它成为一个轴对称图形 【知识归纳1】1、如果把一个图形沿着某一条直线折叠后,能够与 重合,那么这两个图形关于这条直线成轴对称,这条直线叫做 ,两个图形中的对应点叫做对称点。
2、如果把一个图形沿着一条直线折叠,直线 能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3、成轴对称的两个图形 。
如果两个图形成轴对称,那么对称轴是对称点连线的 ________4、学过的图形中,轴对称图形有 它们有几条对称轴? 【知识点2】线段、角的对称性1、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E,AE=3cm, △ADC 的周长为9cm,则△ABC 的周长是( )A.10cmB.12cmC.15cmD.17cm2、如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B . 下列结论中不一定成立的是( )A.PA PB =B.PO 平分APB ∠C.OA OB =D.AB 垂直平分OPPM Qllll P QP QPQPQAB CDl 3、到三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点 变式:到△ABC 的三条边距离相等的点是△ABC 的( ) 【知识归纳2】1、线段是轴对称图形,线段的 是它的对称轴。
轴对称与轴对称图形复习题
轴对称与轴对称图形复习题1一、判断题( )1.全等的两图形必关于某一直线对称.( )2.关于某一条直线对称的两个图形叫轴对称图形.( )3.等腰三角形底边中线是等腰三角形的对称轴.( )4.若两个三角形三个顶点分别关于同一直线对称则两个三角形关于该直线轴对称.( )5.轴对称图形的对称轴有且只有一条.( )6.正方形的对称轴有四条.二、选择1.下列说法错误的是()A.关于某条直线对称的两个三角形一定全等;B.轴对称图形至少有一条对称轴C.全等三角形一定能关于某条直线对称;D.角是关于它的平分线对称的图形2.在角、线段、等边三角形、钝角三角形中,轴对称图形有( )A.1个B.2个C.3个D.4个3.如图,其中是轴对称图形的是()4.如图所示的图案中,是轴对称图形且有两条对称轴的是()5.下列说法正确的是( )A.等边三角形只有一条对称轴B.等腰三角形对称轴为底边上的高C.直线AB不是轴对称图形D.等腰三角形对称轴为底边中线所在直线6.下列图不是轴对称图形的是( )A.圆B.正方形C.直角三角形D.等腰三角形7.O为锐角△ABC的∠C平分线上一点,O关于AC、BC的对称点分别为P、Q,则△POQ一定是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形8.下列各命题的逆命题成立的是( )A.若两图形关于某直线对称,那么对称轴是对应点连线的中垂线B.两图形若关于某直线对称,则两图形全等.C.等腰三角形是轴对称图形D.线段对称轴有二条三、填空(5分×6=30分)1.两图形关于直线对称,则两个图形一定 .2.若两图形关于直线对称,则图形上的对应点连线段被对称轴 .3.等边三角形的对称轴有条.4.轴对称图形是对个图形而言的,而轴对称是对个图形而言的.5.两图形关于某直线对称,若它们的对应线段相交,交点必在上.6.线段的对称轴除了它的中垂线外,还有 .四【生活实际运用】1.上图中的图形都是轴对称图形,请你试着画出它们的对称轴.2.以树干为对称轴,画出树的另一半如图(3.15-9)图3.15-93.草原上两个居民点A、B在河流l的同旁(如图3.15-10)汽车从A点出发到B,途中需要到河边加水,汽车在哪一点加水,可使行驶路程最短,在图中画出该点.轴对称与轴对称图形复习题2一、选择题1.如图所示的标志中,是轴对称图形的有( )A .1个B .2个C .3个D .4个2.如图是用纸折叠成的图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个3.剪纸是中国的民间艺术,剪纸的方法很多,下面是一种剪纸方法的图示(•如图1,先将纸折叠,然后再剪,展开即得到图案):图2中的四个图案,不能用上述方法剪出的是( )(1)(2)二、填空题:4.轴对称图形中任意一组对应点的连线段的__________________是该图形的对称轴.5.如果两个图形关于某条直线对称,•那么对称轴是对应点连线的__________.•6.角是轴对称图形,其对称轴是________________________所在的直线.7.平面内两点A 、B 关于____________________________对称.三、解答题:8.如图,已知△ABC ,请用直尺与圆规作图,将三角形的面积两等分.(•不写作法,但要保留作图痕迹)C AB9.已知图中的图形都是轴对称图形,请你画出它们的对称轴.10.如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等. AB 0M N四、探究题11.如图,△ABC 和△A ′B ′C ′关于直线m 对称.(1)结合图形指出对称点.(2)连接A 、A ′,直线m 与线段AA ′有什么关系?(3)延长线段AC 与A ′C ′,它们的交点与直线m 有怎样的关系?其它对应线段(•或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.C A B m C 'A 'B '轴对称与轴对称图形复习题3一、选择题1、下列图案中,轴对称图形的个数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学轴对称与轴对称图形复习题
【同步达纲练习】
一、判断题(4分×6=24分)
( )1.全等的两图形必关于某一直线对称.
( )2.关于某一条直线对称的两个图形叫轴对称图形.
( )3.等腰三角形底边中线是等腰三角形的对称轴.
( )4.若两个三角形三个顶点分别关于同一直线对称则两个三角形关于该直线轴对称.
( )5.轴对称图形的对称轴有且只有一条.
( )6.正方形的对称轴有四条.
二、选择(5分×6=30分)
1.△ABC中∠C=Rt∠,有一点既在BC的对称轴上,又在AC对称轴上,则该点一定是( )
A.C点
B.BC中点
C.AC中点
D.AB中点
2.在角、线段、等边三角形、钝角三角形中,轴对称图形有( )
A.1个
B.2个
C.3个
D.4个
3.下列说法正确的是( )
A.等边三角形只有一条对称轴
B.等腰三角形对称轴为底边上的高
C.直线AB不是轴对称图形
D.等腰三角形对称轴为底边中线所在直线
4.下列图不是轴对称图形的是( )
A.圆
B.正方形
C.直角三角形
D.等腰三角形
5.O为锐角△ABC的∠C平分线上一点,O关于AC、BC的对称点分别为P、Q,则△POQ 一定是( )
A.等边三角形
B.等腰三角形
C.直角三角形
D.等腰直角三角形
6.下列各命题的逆命题成立的是( )
A.若两图形关于某直线对称,那么对称轴是对应点连线的中垂线
B.两图形若关于某直线对称,则两图形全等.
C.等腰三角形是轴对称图形
D.线段对称轴有二条
三、填空(5分×6=30分)
1.两图形关于直线对称,则两个图形一定__________.
2.若两图形关于直线对称,则图形上的对应点连线段被对称轴__________.
3.等边三角形的对称轴有__________条.
4.轴对称图形是对_____个图形而言的,而轴对称是对_____个图形而言的.
5.两图形关于某直线对称,若它们的对应线段相交,交点必在_____上.
6.线段的对称轴除了它的中垂线外,还有__________ .
四、解答(8分×2=16分)
1.如图3.15-7,线段AB的对称轴为直线MN.P、Q在MN上,求证△PAQ≌△PBQ.
2.如图
3.15-8,AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC
周长记为P A,△EBC周长P E.求证P E>P A.
【素质优化训练】
1.A、B为直线MN外两点,且在MN异侧,A、B到MN的距离不相等,试求一点P,满足下条件:①P在MN
上,②|PA-PB|最大.
2.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB
的周长取最小值时,求∠APB的度数.
【生活实际运用】
1.以树干为对称轴,画出树的另一半如图(3.15-9)
2.草原上两个居民点A、B在河流l的同旁(如图
3.15-10)汽车从A点出发到B,途中需要到河边加水,汽车在哪一点加水,可使行驶路程最短,在图中画出该点.
参考答案
【同步达纲练习】
一、×××√×√
二、D C D C B A
三、1.全等 2.垂直平分 3.三 4.两,一 5.对称轴 6.它本身
四、1.由已知可得PA=PB,QA=QB PQ=PQ ∴△PAQ≌△PBQ(SSS)
2.延长BA至C′使AC=AC′连C′E ∵∠BAD=∠DAC.AD⊥MN ∴∠BAD+∠C′AE=∠DAE=90°=∠DAC+∠CAE ∴∠CAE=∠C′AE 又C′A=CA AE=AE ∴△C′AE≌△CAE(SAS) ∴EC=EC′C′E+EB>BC′∴BE+EC>BA+AC. ∴P E >P A.
【素质优化训练】
1.作B关于MN的对称点B′再作直线AB′交MN于PP即为所求此时|PA-PB|=|PA-PB′|=PB′,另取MN上一点P′,连P′A,PB,P′B′∴P′B′=P′B. |P′B-P′A|=|P′B′-P′A|<|PA-PB′|(三角形两边之差小于第三边) ∴P为所求.
2.分别作P关于OM、ON的对称点P1,P2,连P1P2交OM于A,ON于B.则△PAB 为合条件的三角形.∠MON=40°
∴∠P1PP2=140°. ∠P1PA=二分之一∠PAB ∠P2PB=二分之一PBA. ∴二分之一(∠PAB+∠PBA)+ ∠APB=140°∠PAB+∠PBA+2∠APB=280°∴∠APB=100°
【生活实际运用】
1.(略)
2.作A关于l的对称点A′连A′B交l于C点,则C为所求的点.。