七年级数学有理数5

合集下载

初中数学有理数教案5篇

初中数学有理数教案5篇

初中数学有理数教案5篇关于初中数学有理数教案5篇初中数学有理数教案(篇1)教学目标:1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

(2)精通有理数的减法。

2、过程与方法通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

重点、难点1.重点:有理数减法规则及其应用。

2.难点:有理数减法规则的应用改变了符号。

教学过程:一、创设情景,导入新课1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=—3+(+5)=2、-(-2)= -[-(+23)]=,+[-(-2)]=3、20__的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。

(出示课题)二、合作交流,解读探究1(-2)-(-10)=8=(-2)+82:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?3、通过以上列式,你能发现减法运算与加法运算的关系吗?(学生分组讨论,大胆发言,总结有理数的.减法法则)减去一个数等于加上这个数的相反数教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?三、应用迁移,巩固提高1、P.24例1 计算:(1) 0-(-3.18)(2)(-10)-(-6)(3)-解:(1)0-(-3.18)=0+3.18=3.18(2)(-10)-(-6)=(-10)+6=-4(3)-=+=12、课内练习:P.241、2、33、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。

最新人教版七年级上册数学第一章有理数第5课时 相反数

最新人教版七年级上册数学第一章有理数第5课时  相反数
返回目录
B组 7. 已知-a=8,则a=_____-_8____. 8. 化简下列各数:
(1)-(+2.7);
(2)
解:-(+2.7)=-2.7.
返回目录
(3)+(-701); 解:+(-701)=-701.
(4)-[+(-2)]; 解:-[+(-2)]=2.
(5)-{-[-(-2)]}; 解:-{-[-(-2)]}=2.
A. 和-0.5
B. 和3
C. -a和-(-a)
D. -(+a)和+(-a)
返回目录
4. 如图F1-5-1,在数轴上,若A,B两点表示一对互为相反数的 数,则原点的大致位置是( B )
A.点C C.点E
B.点D D.点F
返回目录
5. 若m与-4互为相反数,则m的值为_____4_____. 6. 若数轴上表示互为相反数的两个数的两点之间的距离是16, 则这两个数是__-__8_,__8___.
返回目录
谢谢
返回目录
分层作业本
第一章 有理数
第5课时 相反数
1. 2 021的相反数是( A. -2 021
C. 2 021
A组 A) B.
D.
返回目录
2. 下列说法正确的是( B ) A.-4与+(-4)互为相反数 B.0的相反数是0 C. 与 互为相反数
D. 本身是相反数
返回目录
3. 下面两个数互为相反数的是( C )
(6)-{+[-(-2)]}. 解:-{+[-(-2)]}=-2.
返回目录
C组 9. 如图F1-5-2,图中数轴的单位长度为1.请回答下列问题: (1)如果点A,B表示的数互为相反数,那么点C表示的数是多少 ? (2)如果点D,B表示的数互为相反数,那么点C,D表示的数是多 少?

苏教版七年级数学有理数知识点及习题

苏教版七年级数学有理数知识点及习题

根据有理数的定义,有理数可以进行如下的分类
正整数
整数 零
有理数
负整数
正分数 分数
负分数
正整数 正有理数
正分数 或 有理数 零
负整数 负有理数
负分数
无理数 问一问:是不是所有的数都是有理数呢? ※ 如果大正方形的边长为 a,那么 a2= 2.a 是有理数吗?
无理数定义 : 无限不循环小数叫做无理数.
3、用“<”或“>”填空:
(1) 12.3
12 ; (2) ( 2.75)
( 2.67) ;
(3)} 8
8;
(4) 0.4
( 0.4) .
五、有理数的加法与减法 1、有理数的加法 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,绝对值相等时,和为 0;绝对值不等时,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数.
(1) (-23)+(+ 58)+(- 17)
(2)(- 2.8)+(- 3.6)+(- 1.5)+3.6
(3) 1+ - 2 + - 5 + + 5
6
7
6
7
2、有理数的减法 如果某天最高气温是 5℃,最低气温是- 3℃,那么这天的日温差记作 [5-(- 3)]℃,怎样计算 [5-(- 3) ] 呢?
例 2 化简:-(+ 2),-(+ 2. 7),-(- 3),-(- 3). 4
练一练: 1.写出下列各数的相反数:
0,58,-4,3.14,- 2. 3
2.在数轴上画出表示下列各数以及它们的相反数的点: -4,0.5 ,3,-2.
3.填空: (1) ( 7) 是_____的相反数, ( 7) =_______; (2) ( 4) 是_____的相反数, ( 4) =______.

七年级数学上册教学课件《有理数》

七年级数学上册教学课件《有理数》

巩固练习
归纳总结
1.2 有理数
小学里学过的数除0外都是正数;正数前面添上“-” 号的数是负数;0既不是正数,也不是负数,它表示正 数、负数的界限.
有理数的分类方法不是唯一的,可以按整数和分数分成 两大类,也可以按正有理数、零、负有理数分成三大类.
探究新知
1.2 有理数
素养考点 2 把有理数按要求分类
拓广探索题
某中学对九年级男生进行引体向上的测试,以能做10个为标 准,超过的次数用正数表示,不足的次数用负数表示,其中 8名男生的成绩如下:+2,-5,0,-2,+4,-1,-1,+3.
(1)达到标准的男生占百分之几?
(2)他们共做了多少个引体向上? 解:(1)48 100%=50% ,达到标准的男生占50%.
课堂检测
1.2 有理数
2. 下列各数:
-2,5,
1 3
,0.63,0,7,-0.05,-6,9,
11 5

5 4
.
其中正数有_6___个,负数有__4__个,正分数有__3__个,
负分数有__2__个,自然数有__4__个,整数有__6__个.
课堂检测
3. 判 断: (1)0是整数.( √ ) (2)自然数一定是整数.( √ ) (3)0一定是正整数.( × ) (4)整数一定是自然数.( × )
C.12
D.1
2. 四个数-3, 0, 1, 2,其中负数是( A )
A. -3
B. 0
C. 1
D. 2
课堂检测
基础巩固题
1. 下列说法中,正确的是( B ) A. 正整数、负整数统称为整数 B. 正分数、负分数统称为分数 C. 零既可以是正整数,也可以是负整数 D. 一个有理数不是正数就是负数

七年级数学有理数教案5篇

七年级数学有理数教案5篇

七年级数学有理数教案5篇七年级数学有理数教案篇1教学目标1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.2、能力目标:能应用正负数表示生活中具有相反意义的量.3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点重点:理解有理数的意义.难点:能用正负数表示生活中具有相反意义的量.教学过程一、创设情境、提出问题某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.二、分析探索、问题解决分组讨论扣的分怎样表示用前面学的数能表示吗数怎么不够用了引出课题.讲授正数、负数、有理数的定义.用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习1、用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.2、下面说法中正确的是().a.“向东5米”与“向西10米”不是相反意义的量;b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.三、小结回顾、纳入体系学生交流回顾、讨论总结,教师补充如下:概念:正数、负数、有理数.分类:有理数的分类:两种分法.应用:有理数可以用来表示具有相反意义的量.七年级数学有理数教案篇2一、知识与技能理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、二、过程与方法经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、三、情感态度与价值观体会数学与现实生活的联系,提高学生学习数学的兴趣、教学重点、难点与关键1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、2、难点:省略括号和加号的加法算式的运算方法、3、关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数加法形式、教具准备投影仪、四、教学过程一、复习提问,引入新课1、叙述有理数的加法、减法法则、2、计算、(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);(4)(—8)—6;(5)5—14、五、新授我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、六、巩固练习1、课本第24页练习、(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、原式=1+3—4—0。

人教版七年级数学上册《有理数》教学反思(精选5篇)

人教版七年级数学上册《有理数》教学反思(精选5篇)

人教版七年级数学上册《有理数》教学反思(精选5篇)七年级数学上册《有理数》教学反思1有理数乘方是初中数学教学的重点之一, 也是初中数学教学的一个难点。

所以我在教这一节课的教学中要从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学。

一、要求学生深刻理解有理数乘方的意义。

即求n个相同的因数相乘的简便记法。

在教学上应该抓住以下几点: 乘方是一种运算。

相当于“+、-、×、÷”。

教师在教学时要让学生明白这一点, 同时要求学生掌握其书写方法, 及格式。

强调幂的意义, 幂的意义与“和、差、积、商”一样。

如2的3次方的结果是8。

所以说2的3次方的幂是8。

与2×4一样, 2×4=8。

所以不能说8是幂, 说成2的3次方的幂是8。

同时强调a的n次方具有两个意义, 它既表示n个a相乘。

又表示乘方的运算结果二、在有理数乘方的教学中主要强调它的`运算, 所以特别注意有理数乘方符号法则的教学。

法则是:正数的任何次幂是正数, 0的任何正整数次幂是0, 负数的正数次幂是负数, 负数的偶数次幂是正数, 教师在教学时强调做乘方时先确定符号再计算, 如(-2)的平方等于+2的平方等于4。

三、注意教学生的书写格式。

注意负数与分数作底数都要加括号。

四、注意讲清有理数乘方中的常见错误。

如2的平方前面带负号, 表示2的平方的相反数, -2加括号后再平方是表示–2的平方, 写法不同计算的结果不同。

有理数乘方是在乘法的基础之上的一种运算, 要结合乘法来教乘方。

同时讲清楚区别与联系。

七年级数学上册《有理数》教学反思2有理数加减混合运算是学生在此之前已经掌握了有理数的加法和减法运算后进行的。

通过本节课的教学结合学生正确掌握本节课的知识的反馈情况, 进行反思。

一、让学生在自主中学习, 培养学生能力由于本节课的教学内容是有理数加减混合运算, 而在这节课之前, 学习的是有理数加、减计算。

苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。

七年级数学上册第二章 5有理数的减法(典型例题)

典型例题例1 计算:(1)5.2-(-3.6);(2).分析计算有理数减法问题的关键是根据减法法则把减法变成加法去做.但需注意的是加上的数是原减数的相反数,如5.2-(-3.6),因为-3.6的相反数是3.6,所以原式就变为5.2+3.6.解(1)5.2-(-3.6)=5.2+3.6=8.8;(2)注意(1)当把减法变成加法时,被减数没变,减数变成了原来数的相反数;(2)法则对两个正数相减也是适用的,但当被减数不小于减数时我们就可以和小学学的减法一样做.例2 计算:(1);(2);(3);(4);(5);(6);(7);(8).分析:按减法法则,把减法转化为加法计算.解:(1);(2);(3);(4);(5);(6);(7);(8).说明:1.有理数的减法是有理数加法的逆运算,即减法运算可以转化为加法运算.2.减法运算的步骤是:(1)将减法转化为加法:-= +(- );(2)按有理数的加法法则运算.将减法转化为加法时,既改变了运算符号,又改变了减数本身的符号.例3 判断题:(正确的入T,错误的入F)(1) 两个数相减,就是把绝对值相减. ( )(2) 减去一个数,等于加上这个数. ( )(3) 零减去一个数仍得这个数. ( )(4) 若两数的差为0,则这两数必相等. ( )(5) 两数的差一定小于被减数. ( )(6) 两数的差是正数时,被减数一定大于减数. ( )(7) 两个负数之差一定是负数. ( )(8) 两个数的和一定大于这两个数的差. ( )(9) 任意不同号的两个数的和一定小于它们的差的绝对值. ( )(10) 两个数的差的绝对值一定不小于这两个数的绝对值的差. ( )分析:按减法法则和加法法则判断.解:(1) F.异号两数相减时,绝对值应当相加.(2) F.减去一个数,等于加上这个数的相反数.(3) F.零减去一个数,等于这个数的相反数.(4) T.(5) F.当减数为负数或0时,它们的差大于或等于被减数.(6) T.当->0时,必有>.(7) F.由(6)知,若,都是负数,只要>,就有->0,即-是正数.(8) F.异号两数之和就不一定大于这两个数的差.例:(+5)+(-2)=+ 3,(+ 5)-(-2)=+ 7,(+5)+(-2)<(+5)-(-2).(9) T.(10) T.对于任意两个有理数,,|-|≥||-||恒成立.例4 矿井下A、B、C三处的标高分别是A(-37.5m)、B(-129.7m)、C(-73.2m),哪处最高?哪处最低?最高处与最低处相差多少?分析:比较A、B、C三处的高低,就是比较这三个负数的大小,并求出最大数与最小数的差.解:∵-37.5>-73.2>-129.7又(-37.5)-(-129.7)=(-37.5)+(+129.7)=92.2∴矿井下A处最高,B处最低,A处与B处相差92.2m.例5 计算:(1);(2).分析:按照有理数减法法则,先把减法化成加法,然后按照有理数的加法法则运算.解:(1)(2)说明:1.一个数减去零比较容易,而零减去一个数,一定要按照法则,写成加上这个数的相反数(千万不要把零丢掉).2.在有理数范围内减法运算总可以进行,小学遇到的小数减大数不能减的问题解决了.在有理数的减法中,当被减数和减数都是正数,而且被减数大于减数时,即为小学学过的算术减法.例6 如图:的位置由下图所定.试比较三个数的大小.分析由图可知,所以可得.又因为,所以,且有.所以而所以解.说明:在解决这类问题时我们结合图首先来确定和的正负,然后再确定和的大小,应用有理数的加法、减法法则把要求的式子用和表示出来,就容易比较了.。

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

七年级数学第二章有理数及其运算5有理数的减法教案

5 有理数的减法1.理解并掌握有理数的减法法则.2.熟练地进行有理数的减法运算.重点有理数减法法则的理解和应用.难点有理数的减法转化为加法时符号的改变.一、复习导入问题1:叙述有理数的加法法则.问题2:计算:(1)(-2)+(-6);(2)(-8)+(+6).问题3:在月球表面,“白天"的温度可达127 ℃,太阳落下后的“月夜”气温下降到-183 ℃,请问在月球上温差是多少摄氏度?学生思考后举手回答,教师讲评.通过分析启发学生,从而引出新课.二、探究新知(1)课件出示:4-(-3)=________ ;4+(+3)=________.教师引导学生发现:两式的结果相同,即4-(-3)=4+(+3).思考问题:减法可以转化成加法运算.但是,这是否具有一般性?(2)课件出示:(+10)-(-3)=________ ;(+10)+(+3)=________.教师:根据减法的意义,(+10)-(-3)就是要求一个数,使它与-3相加等于+10,这个数是多少?(+10)+(+3)的结果是多少?教师引导学生得到:(+10)-(-3)=(+10)+(+3).教师:通过上面的两道习题,你能总结出有理数减法法则吗?学生分小组讨论后分享结果,教师点评,并进一步讲解:有理数减法法则:减去一个数,等于加上这个数的相反数.如果用字母a,b表示有理数,那么有理数的减法法则可表示为:a-b=a+(-b).运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.三、举例分析例1(课件出示教材第41页例1)学生独立完成,提醒学生注意有理数减法计算的格式(①先变减为加,②变减数符号).引导学生发现:在小学里学习的减法,差总是小于被减数;在有理数减法中,差不一定小于被减数,只要减去一个负数,其差就大于被减数.例2(课件出示教材第41页例2)学生独立完成,教师点评.例3(课件出书教材第41页例3)学生独立完成,教师点评.四、练习巩固1.教材第42页“随堂练习”.2.哈尔滨市4月份某天的最高气温是5 ℃,最低气温是-3 ℃,那么这天的温差是()A.-2 ℃B.8 ℃C.-8 ℃D.2 ℃五、小结1.通过本节课的学习,你有什么收获?2.在使用有理数减法法则时需要注意什么?六、课外作业教材第42页习题2.6第1~4题.本节课内容为有理数的减法.在教学过程中,通过对比算式让学生思考有理数的减法计算,使学生在计算中发现、总结出有理数减法法则:减去一个数,等于加上这个数的相反数.使学生亲身体验知识的形成过程,感悟数学的转化思想.教师通过提问等方式,引导学生自主探究,体现教师的导向作用和学生的主体地位,改变了以往学生被动学习,被动接受知识的局面.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如 20 = 20,-30 =30 ,0 =0
8、绝对值表示的几何意义
8、绝对值表示的几何意义
因为正数可用a>0表示,负数可用a<0 表示,所以可表述成: (1)如果a>0,那么|a|=a
一个正数的绝对值是它本身
(2)如果a<0,那么|a|=-a 一个负数的绝对值是它的相反数 (3)如果a=0,那么|a|=0 0的绝对值是0。即 |0|=0
5、相反数的概念
只有符号不同的两个数叫做互为相反数.(因 为0没有符号问题,所以特别规定0的相反数是 0).
6、怎样的得到一个数的相反数
求一个数的相反数的方法是在这个数前面添加一个 “-”号,新的数就是原数的相反数.
7、绝对值的概念 一般地,数轴上表示数a的点到原点的 距离叫做a的绝对值,记做 a 。
而且 a 0
形成性检测: 1(1)绝对值是3的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么? (3)绝对值是-3的数是否存在?若存在,请说出来?
2判断
(1)+7的绝对值与-7的绝对值互为相反数。( ) (2)既不是正数也不是负数的有理数的绝对值是零。( ) (3)数a的绝对值就是数轴上表示数a的点与原点的距离。( )
外链代发/
将活似小号形态的手臂复原,但已无力再战,只好落荒而逃神怪最后一个校霸终于逃的不见踪影,战场上留下了满地的奇物法器和钱财珠宝……蘑菇王子正要收拾遍地的宝贝,忽然听四声怪响! 四个怪物忽然从四个不同的方向钻了出来……只见B.摩拉日勃木匠和另外四个校霸怪突然齐声怪叫着组成了一个巨大的橱窗五毛神!这个巨大的橱窗五毛神,身长六百多米,体重五百多万吨。 最奇的是这个怪物长着十分美丽的五毛!这巨神有着亮灰色猪肚模样的身躯和深灰色细小长笛般的皮毛,头上是土灰色娃娃一样的鬃毛,长着火橙色镜子模样的菜板飘帘额头,前半身是白杏仁色 钉子模样的怪鳞,后半身是破旧的羽毛。这巨神长着锅底色镜子似的脑袋和亮红色金钩模样的脖子,有着紫红色烤鸭形态的脸和金红色辣椒似的眉毛,配着淡橙色鹅掌一样的鼻子。有着深黑色磁 盘形态的眼睛,和淡黄色木盒模样的耳朵,一张深黑色钳子模样的嘴唇,怪叫时露出深橙色椰壳似的牙齿,变态的白杏仁色拐棍般的舌头很是恐怖,深灰色羽毛般的下巴非常离奇。这巨神有着如 同旗杆似的肩胛和犹如瓜秧一样的翅膀,这巨神浮动的暗灰色灯泡般的胸脯闪着冷光,活似水母一样的屁股更让人猜想。这巨神有着仿佛螳螂模样的腿和亮橙色蛙掌似的爪子……凸凹的土灰色陀 螺般的九条尾巴极为怪异,纯黄色面条似的闪电鱼皮肚子有种野蛮的霸气。暗灰色油条一样的脚趾甲更为绝奇。这个巨神喘息时有种淡橙色尾灯般的气味,乱叫时会发出粉红色奶糖形态的声音。 这个巨神头上水蓝色海参一样的犄角真的十分罕见,脖子上酷似肥肠一样的铃铛好像绝无仅有的病态但又露出一种隐约的猜疑。蘑菇王子和知知爵士见这伙校霸来者不善,急忙把附近的学生别墅 群甩到千里之外,然后快速组成了一个巨大的喷头蝶牙魔!这个巨大的喷头蝶牙魔,身长六百多米,体重五百多万吨。最奇的是这个怪物长着十分刺激的蝶牙!这巨魔有着浅橙色篦子形态的身躯 和烟橙色细小春蚕一般的皮毛,头上是亮黄色果冻般的鬃毛,长着天青色橘子形态的提琴水晶额头,前半身是暗橙色乌贼形态的怪鳞,后半身是多变的羽毛。这巨魔长着春绿色橘子样的脑袋和亮 蓝色奶酪形态的脖子,有着浅绿色熊猫一样的脸和浓绿色球杆样的眉毛,配着天蓝色舢板般的鼻子。有着褐黄色水闸一样的眼睛,和青兰花色床垫形态的耳朵,一张褐黄色勋章形态的嘴唇,怪叫 时露出蓝宝石色地图样的牙齿,变态的暗橙色琴弓一般的舌头很是恐怖,烟橙色路灯造型的下巴非常离奇。这巨魔有着仿佛螺栓样的肩胛和特像鼓锤般的翅膀,这巨魔瘦弱的银橙色熏鹅一般的胸 脯闪着冷光,如同馄饨般
第一节、有理数的小结
1、正数、负数的概念
2、有理数的概念
3、数轴的概念
4、如何画数轴 5、相反数的概念 6、怎样的得到一个数的相反数 7、绝对值的概念
8、绝对值表示的几何意义
1、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做

2)正数是大于0的数,负数是 0的数,0既不是正数也不是负数。
3)一般的我们把上升、运进、零上、收入、前进、高出等规定

数 ,那么相对应的什么定为负数
2、有理数的概念
整数和分数统称为有理数
3、数轴的概念
规定由原点、正方向和单位长度的直线叫做数轴。
Hale Waihona Puke 4、如何画数轴(1)取原点 (2)规定正方向,通常取向 右为正方向
(3)选取适当的长度为单位长度
-3 -2 -1 0 1 2 3
(4)绝对值最小的数是0。( )
(5)如果数a的绝对值等于a,那么a一定为正数。( ) (6)符号相反且绝对值相等的数互为相反数。( )
(7)一个数的绝对值越大,表示它的点在数轴上越靠右。 ()
(8)一个数的绝对值越大,表示它的点在数轴上离原点越 远。( )
相关文档
最新文档