初一有理数知识点大全一
七年级第一章有理数知识点总结

有理数知识点总结0的数叫做正数。
1.0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
⑵按整数、分数分类:正有理数正整数正整数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
三、数轴比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)1.概念:求n 个相同因数的积得运算,叫做乘方。
乘方的结果叫做幂。
一个数可以看做这个数本身的一次方。
2.法则:先确定幂的符号,然后再计算幂的绝对值。
十、乘方 正数的任何次幂都是正数负数的奇次幂是负数,负数的偶次幂是正数0的任何正整数次幂都是03.混合运算法则:⑴先乘方,再乘除,最后加减。
⑵同级运算,从左到右的顺序进行。
⑶如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。
在进行有理数的运算时,要分两步走:先确定符号,再求值。
10的数表示成a ×10n 的形式(其中 a是整数数位只有一位的数,n 为正整数)。
这种记数的方法叫做科学记数法。
﹙1≤|a|<10﹚注:一个n 为数用科学记数法表示为a ×10n -1⑴精确到某位或精确到小数点后某位。
⑵保留几个有效数字十一、科学记数法 注:对于较大的数取近似数时,结果一般用科学记数法来表示。
初一数学-有理数知识点(最全最细)

⑸互为相反数的两数的绝对值相等。
第2页共5页
即:|-a|=|a|或若 a+b=0,则|a|=|b|; ⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则 a=b 或 a=-b; ⑺若几个数的绝对值的和等于 0,则这几个数就同时为 0。
即|a|+|b|=0,则 a=0 且 b=0。 (非负数的常用性质:若几个非负数的和为 0,则有且只有这几 个非负数同时为 0) 4.有理数大小的比较 ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比 右边的小; ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的 反而小;异号两数比较大小,正数大于负数。 5.绝对值的化简 先判断绝对值号内是正是负,①当 a≥0 时, |a|=a ; ②当 a ≤0 时, |a|=-a 。 6.已知一个数的绝对值,求这个数 一个数 a 的绝对值就是数轴上表示数 a 的点到原点的距离。绝对值为 同一个正数的有理数有两个,它们互为相反数,绝对值为 0 的数是 0, 没有绝对值为负数的数。
等于原 数。即:⑴当 b>0 时,a+b>a ; ⑵当 b<0 时,a+b<a; ⑶当 b=0 时,a+b=a。
六.有理数减法
1. 法则:减去一个数,等于加上这个数的相反数。用字母表示为: a-b=a+(-b)。
2.有理数加减法统一成加法的意义 在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化 成加法后,再按照加法法则进行计算。 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省 略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5。 和式的读法:①按这个式子表示的意义读作“负 8、负 7、负 6、正 5 的和”;②按运算意义读作“负 8 减 7 减 6 加 5”。
有理数知识点总结

有理数知识点总结一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
整数可以看作是分母为 1 的分数。
正整数、0、负整数称为整数;正分数、负分数称为分数。
有理数的小数部分是有限或为无限循环的数。
二、有理数的分类1、按定义分类有理数可分为整数和分数。
整数包括正整数、0、负整数;分数包括正分数和负分数。
2、按性质分类有理数可分为正有理数、0、负有理数。
正有理数包括正整数和正分数;负有理数包括负整数和负分数。
三、数轴1、数轴的定义规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素原点、正方向、单位长度,缺一不可。
3、数轴上的点与有理数的关系所有的有理数都可以用数轴上的点表示,但数轴上的点不一定表示有理数。
在数轴上,右边的数总比左边的数大。
正数都大于 0,负数都小于0,正数大于负数。
四、相反数1、相反数的定义只有符号不同的两个数叫做互为相反数。
例如,5 和-5 互为相反数,0 的相反数是 0。
2、相反数的性质互为相反数的两个数的和为 0。
即若 a 和 b 互为相反数,则 a + b = 0。
五、绝对值1、绝对值的定义一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
2、绝对值的性质正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
即当 a > 0 时,|a| = a;当 a = 0 时,|a| = 0;当 a < 0 时,|a| = a 。
绝对值具有非负性,即|a| ≥ 0 。
六、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的反而小。
例如,比较-5 和-3 的大小。
因为|-5 |= 5 ,|-3 |= 3 ,5 > 3 ,所以-3 >-5 。
七、有理数的加法1、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
例如,-3 +(-2) =(3 + 2) =-5 。
(2)异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
人教版七年级数学上册 第一章《有理数》知识点归纳

人教版七年级数学上册第一章《有理数》知识点归纳一、有理数的有关概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
对任意有理数a ,总有0a ≥。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
初一数学有理数知识点的归纳

初一数学有理数知识点的归纳一.知识框架二.知识概念1.有理数:1凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:1只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;2相反数的和为0a+b=0a、b互为相反数.4.绝对值:1正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:1正数的绝对值越大,这个数越大;2正数永远比0大,负数永远比0小;3正数大于一切负数;4两个负数比大小,绝对值大的反而小;5数轴上的两个数,右边的数总比左边的数大;6大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3一个数与0相加,仍得这个数.8.有理数加法的运算律:1加法的交换律:a+b=b+a;2加法的结合律:a+b+c=a+b+c.9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+-b.10.有理数乘法法则:1两数相乘,同号为正,异号为负,并把绝对值相乘;2任何数同零相乘都得零;3几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11.有理数乘法的运算律:1乘法的交换律:ab=ba;2乘法的结合律:abc=abc;3乘法的分配律:ab+c=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:1正数的任何次幂都是正数;2负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:-an=-an或a-bn=-b-an,当n为正偶数时:-an=an或a-bn=b-an.14.乘方的定义:1求相同因式积的运算,叫做乘方;2乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
初一上期数学第一章 有理数 知识归纳

第一章有理数1.1正数和负数1.正负数正数:大于0的数叫做正数.负数:小于0的数叫做负数.0:非正非负【注】①符号:一个数前面的“+”“-”号叫做它的符号.②正数前面的“+”号可以省略,负数前面的“-”号不可以省略.2.相反意义的量用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.【注】“相反意义的量”包括两个方面的含义:一是相反意义;二是要有量.3.“O”的特征(1)0既不是正数,也不是负数,是正数与负数的分界;(2)0是自然数;(3)0的意义:①有时表示没有,如文具盒中有0支铅笔,表示没有铅笔;②有时是一个数,如0度是一个确定的温度;③有时也作为基准,如零上3度.1.2有理数知识点一有理数1、有理数的定义:整数和分数统称为有理数(小数可以化为分数,所以看为为分数)2、有理数的分类:1):按定义⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫数有限小数或无限循环小负分数正分数分数负整数自然数正整数整数有理数0 2):按正负分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04、四非正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数(自然数);负整数和零统称为非正整数;【技巧】读的时候,在非正、非负后面加一个“的”知识点二 数轴1、数轴的定义:用一条直线上的点表示数,这条直线叫做数轴。
2、数轴三要素原点、正方向、单位长度称为数轴的三要素,三者缺一不可.【注】单位长度:指所取度量单位的名称,是一条人为规定的代表"1"的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,不能再改变.3、数轴画法首先:画一条水平的直线;其次:在直线上选取一点为原点;再次:确定向右为正方向,用箭头表示出来;最后:根据实际情况,选取适当的长度作为单位长度.4、与有理数的关系(1)有理数和无理数都可以用数轴上的点表示出来.(2)正有理数表示的点位于原点的右边,负有理数表示的点位于原点的左边5、利用数轴比较大小数轴可以用来比较大小,左<右﹔负数<0<正数.知识点三相反数1、定义只有符号不同的两个数叫做互为相反数.【注】①一般地,a和a-互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.②0的相反数是0③“只有符号不同”应与“只要符号不同”区分开﹒④相反数必须成对出现,不能单独存在.2、几何意义一对相反数表示的点在数轴上应分别位于原点两侧;到原点的距离相等;这两点是关于原点对称的.3、求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.4、相反数的性质(1)若a与b互为相反数,则0=a,则a与b互为相反数.+b=+ba;反之,若0(2)任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数; 0的相反数仍是0.五、多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“―”号,也可以把“―”号全部去掉;一个正数前面有奇数个"―"号,则化简后只保留一个"―"号,即“奇负偶正”(其中“奇偶”是指正数前面的“―"号的个数的奇偶数,“负正"是指化简的最后结果的符号).知识点四 绝对值1、绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a (a 可以是正数、负数和0)2、绝对值性质:()()()⎪⎩⎪⎨⎧<-=>=0000a a a a a a3、绝对值具有非负性(1)若有几个非负数的和为0,则这几个非负数均为0。
七年级有理数知识点小结与练习

第一章《有理数》知识点有理数的分类分数:有限小数,无限循环小数,百分数。
特别的,π不是分数也不是有理数。
一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量:上升5米记为5; -8则表示下降8米。
③带“-”号的数并不都是负数,如-a可以是正数、负数或0.④0既不是正数也不是负数。
0是整数,也是自然数。
例.某圆形零件的直径要求是(30±0.1mm),下表中6个已生产出来的零件圆孔直径的检测结(2)哪些零件的误差最小?2、数轴(1)三要素:原点、正方向、单位长度;(2)数轴上的点与有理数:①数轴上的点与有理数一一对应②右边的数>左边的数;例1:数轴上的两点A、B分别表示-6和-3,那么A、B两点间的距离是()A、-6+(-3)B、-6-(-3)C、|-6+(-3)|D、|-3-(-6)|例2数轴上表示整数的点称为整点某数轴的单位长度为1cm,若在数轴上随意画出一条长2005cm长的线段AB,则线段AB盖住的的整点有()个A、2003或2004B、2004或2005;C、2005或2006;D、2006或20073、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a的相反数-a③a与b互为相反数:a+b=0 ④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b ⑥求一个数的相反数方法:在这个数的前面加“-”号.⎧⎨⎩⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
例:(- 2)2004+(- 2)2005=4、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。
几何意义:从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
a (a ≥0) 绝对值是它本身的数是非负数(正数和0)②|a |= -a (a ≤0) 绝对值是它相反的数是非正数(负数和0) 其它简单变形:|a+b |=a+b,则a+b 为正数 例 若|-2a |=-2a,则a 为:③|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|;例1:若ab ≠0,则ba ab +的取值不可能是( )A 0B 1C 2D -2例2:如果有理数a,b 满足∣ab -2∣+(1-b)2=0,试求1111(1)(1)(2)(2)(2007)(2007)ab a b a b a b ++++++++++的值。
初一数学知识点总结归纳(5篇)

初一数学知识点总结归纳第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。
(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一有理数知识点大全一
1、正数和负数的有关概念
(1)正数:比0大的数叫做正数;
负数:比0小的数叫做负数;
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类
有理数是整数和分数的统称。
通常有两种分类:
0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩
正整数整数负整数
有理数正分数分数负分数 0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正数正分数有理数负整数负数负分数 3、有关数轴
(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
4、绝对值与相反数
(1)绝对值:在数轴上表示数a 的点与原点的距离,叫做a 的绝对值,记作:a 。
一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.
即
(0)
0(0)
(0)
a a
a a
a a
>
⎧
⎪
==
⎨
⎪-<
⎩
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.
(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.
(3)一个数同零相加,仍得这个数.
加法的交换律:a+b=b+a
加法的结合律:(a+b)+c=a+(b+c)
7、有理数减法:减去一个数,等于加上这个数的相反数。
8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写. 例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”
9、有理数的乘法
两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号 第二步:绝对值相乘
交换律:
结合律:
分配律:
10、乘积的符号的确定
几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;
当负因数有偶数个时,积为正。
几个有理数相乘,有一个因数为零,积就为零。
11、倒数:乘积为1的两个数互为倒数,0没有倒数。
正数的倒数是正数,负数的倒数是负数。
(互为倒数的两个数符号一定相同)
a b b a ⨯=⨯()()a b c a b c ⨯⨯=⨯⨯()a b c a b a c ⨯+=⨯+⨯
倒数是本身的只有1和-1。
12、有理数的除法
除以一个不等于0的数,等于乘这个数的倒数;0除以任何一个不等于0的数,都得0。
13、有理数的乘方
(1)求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.
一般地,n a
a a a ⨯⨯⋅⋅⋅⨯个记作n a ,读作:a 的n 次方,表示n 个a 相乘;其中,a 是底
数,n 是指数,n a 称为幂。
(2)正数的任何次幂都是正数.
负数的奇数次幂是负数,
负数的偶数次幂是正数.
(3)一个数的平方为它本身,这个数是0和1;
一个数的立方为它本身,这个数是0、1和-1。
14、科学计数法
一般情况下,把大于10的数表示成10n a ⨯(n 为正整数)的形式时,为了统一标准,规定了a 的范围,(1≤a <10),这种记数方法叫做科学记数法。
15、有理数混合运算
有理数混合运算的顺序:先算乘方,再算乘除,最后算加减,有括号的先算括号里的。