初一年级奥数知识点总结:有理数
七年级知识点有理数

七年级知识点有理数有理数是数学中重要的一部分,也是应用最为广泛的一种数。
在七年级数学课程中,学生们需要学习有理数的概念、运算、比较以及应用等知识点。
本文将从以下几个方面进行介绍:一、有理数的概念及表示方法有理数包括正整数、负整数、零、正分数和负分数等。
可以通过分数表示有理数,例如3/4、-2/5等。
同时,有理数可以用小数表示,例如0.125、-1.5等,还可以通过整数和分数的结合表示,例如3 1/2、-4 2/5等。
二、有理数的加、减、乘、除加法:同号相加,留号不变,异号相加,绝对值大的留号不变,绝对值小的留号改为它们的差的符号。
例如:3+4=73+(-4)=-1(-3)+(-4)=-7减法:转化为加上相反数,例如:3-4=3+(-4)=-1(-3)-(-4)=(-3)+4=1乘法:同号得正,异号得负,例如:3×4=123×(-4)=-12(-3)×(-4)=12除法:除以一个有理数相当于乘以它的倒数,例如:3÷4=3×(1/4)=3/43÷(-4)=(-3/4)(-3)÷(-4)=3/4三、有理数的大小比较当两个数有相同的符号时,绝对值大的数大;当两个数符号相反时,正数大于负数。
例如:3>-2-3<2-3<-2四、有理数的应用:有理数应用广泛,例如:1、在度量中,正数表示到基准点右,负数表示到基准点左。
2、在温度计中,正数表示高于基准温度,负数表示低于基准温度。
3、在盈亏分析中,正数表示盈利,负数表示亏损。
4、在借贷、欠款、贷款等方面,正数表示贷款,负数表示欠款。
总之,在七年级数学课程中,有理数是一个非常重要的知识点,需要认真学习。
这些知识点的掌握对学生的数学成绩和以后的生活都有着重要的影响。
希望学生们能够认真学习,掌握有理数的知识。
初一有理数知识点总结及易错点

稿子一嘿,小伙伴们!咱们一起来瞅瞅初一有理数的那些事儿哈。
先说知识点,有理数包括正整数、零、负整数和正分数、负分数。
整数和分数统称有理数哟。
数轴可重要啦,它像一条带方向的线,上面的点能表示有理数。
正数在原点右边,负数在原点左边,越往右数越大,越往左数越小。
相反数也得知道,只有符号不同的两个数叫相反数,零的相反数还是零。
绝对值呢,就是一个数到原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
有理数的加法,同号相加符号不变,把绝对值相加;异号相加取绝对值大的符号,用大的绝对值减小的绝对值。
减法可以变成加法,减去一个数等于加上它的相反数。
乘法就简单啦,同号得正,异号得负,再把绝对值相乘。
除法也类似,除以一个数等于乘以它的倒数。
再来说说易错点。
哎呀,符号问题可容易出错啦,比如计算的时候一不注意符号就错啦。
还有绝对值,别搞混了正数和负数的绝对值算法。
运算顺序也得注意,先乘除后加减,有括号先算括号里的。
小伙伴们,有理数不难,只要咱们细心,都能学好哒!加油哟!稿子二亲爱的小伙伴们,今天来聊聊初一有理数哈。
有理数的概念得清楚,整数分数都在有理数的大家庭里。
数轴这个工具可好用啦,能帮咱们直观地看到有理数的位置。
说到加法,同号相加别慌张,异号相加要小心,符号可别弄错啦。
减法的时候,记住变成加法来算,这样就不容易出错。
乘法和除法里,正负号的判断要准确,不然答案就跑偏喽。
还有相反数,就是符号相反的一对数,像 3 和 3 就是相反数。
绝对值呢,不管是正数负数还是 0,都要算对距离。
易错点来啦!计算的时候,千万别马虎,一不留神符号就错啦,那可就惨喽。
做混合运算时,一定要按照顺序来,先算乘除后算加减,有括号先算括号里面的。
还有哦,绝对值的计算要细心,别把正数负数的算法搞混。
有时候,分数的运算也容易出错,约分通分要认真。
小伙伴们,有理数的世界很有趣,只要咱们用心学,就一定能搞定它!一起加油吧!。
奥数知识点总结初中

奥数知识点总结初中一、整数和有理数1. 整数概念:整数包括正整数、负整数和0,记作Z。
2. 绝对值:一个数a的绝对值,记作|a|,是该数到0的距离,如果a>0, 则|a|=a;如果a<0, 则|a|=-a。
3. 相反数:如果a是一个整数,则-a是a的相反数,a + (-a) = 0。
4. 有理数:有理数是可以表示为两个整数比的数(分母不为0),例如:整数、分数、小数都是有理数。
5. 有理数比较大小:如果两个有理数a和b的差a-b为正数,则a大于b;a-b为负数,则a小于b;a-b=0,则a等于b。
二、分数1. 分数概念:一个整数和一个正整数比值的表达式叫做分数,分子表示被分割的份数,分母表示整体被分割的份数,分数也可表示小数。
2. 分数的加减法:分母相同,分子相加或相减;分母不同,先通分,再相加或相减。
3. 分数的乘除法:乘法,分子相乘,分母相乘;除法,取倒数后相乘。
4. 分数的化简:将分子和分母的公因数约去,成最简分数。
5. 分数与小数的转化:分数可以转化为小数,小数也可以转化为分数。
三、方程和不等式1. 方程概念:等式两边不等式,两个式子之间的关系叫做方程,包括一元方程和多元方程。
2. 一元一次方程:形如ax+b=0(a≠0),求出未知数的值。
3. 一元二次方程:形如ax^2+bx+c=0(a≠0),求出未知数的值。
4. 一元一次不等式:形如ax+b>0或ax+b<0, 求出未知数的取值范围。
5. 一元二次不等式:形如ax^2+bx+c>0或ax^2+bx+c<0, 求出未知数的取值范围。
四、数列1. 数列概念:按一定顺序排列的一列数叫数列,常用a1,a2,a3…表示。
2. 等差数列:相邻两项的差都相等,差叫公差,数列通项公式an=a1+(n-1)d。
3. 等比数列:相邻两项的比值都相等,比值叫公比,数列通项公式an=a1*q^(n-1)。
4. 总和公式:等差数列前n项和Sn=(a1+an)*n/2;等比数列前n项和Sn=a1*(q^n-1)/(q-1)。
七年级上册数学《有理数》知识要点整理

《有理数》知识要点一、有理数的概念1、正数和负数: (1)、大于0的数叫做正数. (2)、在正数前面加上负号“—”的数叫做负数.(3)、数0既不是正数,也不是负数 .(4)、在同一个问题中,分别用正数与负数表示具有相反的量 .2、有理数:(1)凡能写成分数形式的数,都是有理数。
整数和分数统称有理数.注意:0既不是正数,也不是负数;—a 不一定是负数,如:—(-2)=4,这个时候的a=—2. π不是有理数;(2)有理数的分类:①按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按性质分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)自然数<====>0和正整数;a >0 <====>a 是正数; a <0 <====>a 是负数;a ≥0<====>a 是正数或0<====>a 是非负数; a ≤0<====>a 是负数或0<====>a 是非正数。
3、数轴【重点】:(1)、规定原点、正方向和单位长度的直线叫做数轴。
它满足以下要求:(1)、数轴的三要素:原点、正方向、单位长度。
(2)、画数轴的步骤:一画(画直线);二取(取原点和正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上.注意:(1)所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
原点表示数0.(2)、正数在原点的右边,与原点的距离是|a|个单位长度; 负数在原点的左边,与原点的距离是|a |个单位长度。
4、相反数:(1)、只有符号不同的两个数叫做互为相反数。
注意:① a —b 的相反数是b —a ;a+b 的相反数是—a —b ;② 相反数的商为-1; ③ 相反数的绝对值相等。
(3)、a 和-a 互为相反数。
0的相反数是0,正数的相反数是负数,负数的相反数是正数。
相反数是它本身的数只有0。
(4)、在任意一个数前面添上“-”号, 表示原数的相反数。
初一年级奥数知识点:有理数的混合运算

初一年级奥数知识点:有理数的混合运算一、有理数:整数和分数统称为有理数。
正整数正整数整数0正有理数负整数正分数有理数正分数有理数0 负整数分数负有理数负分数负分数注意:正负数表示具有相反意义的量(具有相反意义的量,只要求意义相反,而不要求数量一定相等,负号“-”本身就表示意义相反的意思)。
0既不是正数也不是负数。
1、正数前面可以加“+”号,也可以不加“+”号。
2、判断一个数是不是负数,要看它是不是在正数的前面加“—”号,而不是看它是不是带有“—”号。
注意“—a”不一定是负数。
3、相反意义的量是成对出现的。
4、0是有理数,也是整数,也是最小的自然数。
5、奇数、偶数也可以扩充到负数,如—1,—21,—53?等都是奇数;—2,—22,—26^等都是偶数。
6、整数也可以看作分母为1的分数。
7、a的相反数是?a,但—a 不一定是负数。
8、求一个式子的相反数,一定要将整个式子加上括号,再在括号前面加上“—”号,例如x?y的相反数是—(x?y),即y?x。
9、多重符号的化简化简的结果取决与正数前面负号“—”的个数,“奇负偶正”。
二、数轴三要素:原点、单位长度、正方向。
1、两方向无限延伸;三要素缺一不可;原点的选定、正方向的取向、单位长度大小的确定,都是根据实际情况需要规定的。
2、画法:一条直线——取一点为原点——正方向,用箭头表示(一般规定向右)3、所有有理数都可以用数轴上的点来表示,但数轴上的点并不是都表示有理数数。
4、数轴上的点,右边的数左边的数。
正数0 负数3、任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
七年级数学 有理数知识点

七年级数学有理数知识点七年级数学--有理数知识点有理数是指带分数、正整数、负整数和0四种数的统称。
在学习有理数的概念、性质、运算等知识点中,初中数学的七年级是基础阶段,下面我们来逐一了解。
一、有理数定义有理数定义是指一些可以表示为分数形式的数,这些数皆可以用整数表示,在它们组成的集合中,0和平方不大于0的整数属于这个集合。
二、绝对值数轴被分为两段,以0为分界点,左侧全是负数,右侧全是正数;对于同一数轴上的任何两个点a,b,它们的距离就是|a-b|,也就是它们所代表的有理数的绝对值。
三、有理数的比较有理数可以使用大小关系符号进行比较。
对于两个不同的有理数a、b,如果a<b,我们说a小于b,同理,如果a>b,我们说a 大于b,a和b的大小关系有三种可能情况:a=b、a<b、a>b。
对于相等关系的判定,我们使用等于号“=”,对于大小关系的判定,只需看括号内的符号,如a<b,则a小于b。
四、有理数的负数- 一个正整数的相反数是用相反符号表示的数;- 零的相反数仍然是零;- 一个负整数的相反数是用相反符号表示的正整数。
五、有理数的加减法有理数的加减法运算是根据同号异号进行分类讨论,基本法则可以总结为:1. 同号相加,取相同符号,结果取绝对值之和;2. 异号相加,取较大数的符号,结果取较大数的绝对值减去较小数的绝对值;3. 同号相减,取相反符号,结果取绝对值之差;4. 异号相减,取前一个数的符号,结果取前一个数的绝对值加上后一个数的绝对值。
六、有理数的乘除法有理数的乘除法同样是根据同号异号进行分类讨论,基本法则可以归结为:1. 同号相乘,结果为正;异号相乘,结果为负;2. 分子分母同色,约掉后需保留符号;异色无需再约分,最终结果直接相乘即可。
七、有理数的混合运算有理数可以进行混合运算,包括加减乘除四种基本运算方法。
在实际应用中,混合运算更常见,需要注意转换运算法则为逐步化简,先乘除后加减。
初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
七年级上有理数的知识点

七年级上有理数的知识点一、有理数的概念有理数是指可以表示为分数形式的数,包括正整数、负整数、零、正分数和负分数。
有理数的集合用Q表示。
二、有理数的比较与大小关系1.相等关系:两个有理数相等,当且仅当它们表示的分数相同。
2.小于关系:当两个数的差为正数时,前者小于后者;差为负数时,前者大于后者;差为零时,两数相等。
3.绝对值:一个有理数的绝对值是它到0的距离,表示为|a|。
对于正数,绝对值等于这个数本身;对于负数,绝对值等于其相反数。
三、有理数的四则运算1.加法:同号相加,异号相减取它们的绝对值再加,符号取相同的符号。
2.减法:减去一个有理数等于加上这个有理数的相反数,即a-b=a+(-b)。
3.乘法:同号得正,异号得负。
4.除法:除以一个非零数等于乘以这个数的倒数。
四、有理数的加减乘除混合运算根据运算的优先级计算,最后结果符号由运算规则确定。
五、小数与分数的转化可以将小数化为分数,也可以将分数化为小数。
1.小数化分数:小数点后的数字作为分子,分母为10的幂次方。
2.分数化小数:分子÷分母,除不尽时,可在小数点后继续添加0再取商。
六、有理数在数轴上的表示1.有理数在数轴上的位置与它的大小关系有关,越靠近0,绝对值越小;越远离0,绝对值越大。
2.正数在数轴上的位置在0的右侧,负数在数轴上的位置在0的左侧。
七、应用题有理数的知识点在实际生活中有着广泛的应用,例如计算身高体重指数、温度变化问题等。
总结:有理数的概念、比较与大小关系、四则运算、加减混合运算、小数与分数的转化、有理数在数轴上的表示以及应用题都是七年级上有理数的重点知识。
我们需要掌握这些知识,从而在数学学习中更加得心应手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一年级奥数知识点总结:有理数
导读:本文初一年级奥数知识点总结:有理数,仅供参考,如果觉得很不错,欢迎点评和分享。
1、正数和负数的有关概念
(1)正数:比0大的数叫做正数;
负数:比0小的数叫做负数;
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类
3、有关数轴
(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧
4、绝对值与相反数
(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:有理数。
一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即
有理数
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
最小的正整数是1,的负整数是-1。
5、利用绝对值比较大小
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.
(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.
(3)一个数同零相加,仍得这个数.
加法的交换律:a+b=b+a
加法的结合律:(a+b)+c=a+(b+c)
7、有理数减法:减去一个数,等于加上这个数的相反数
8、在把有理数加减混合运算统一为最简的形式,负数前面的加
号可以省略不写.
例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”
9、有理数的乘法
两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号第二步:绝对值相乘
10、乘积的符号的确定
几个有理数相乘,因数都不为0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;
当负因数有偶数个时,积为正。
几个有理数相乘,有一个因数为零,积就为零。
11、倒数:乘积为1的两个数互为倒数,0没有倒数。
正数的倒数是正数,负数的倒数是负数。
(互为倒数的两个数符号一定相同)
倒数是本身的只有1和-1。