在加热的脱脂脱脂牛奶中,PH值、钙络合剂和乳固体浓度对水溶性蛋白质聚集体形成的影响

合集下载

食品科学技术:蛋白质必看题库知识点(三)

食品科学技术:蛋白质必看题库知识点(三)

食品科学技术:蛋白质必看题库知识点(三)1、单选下列关于蛋白质的叙述中,正确的是()A、蛋白质溶液里加(NH4)2SO4溶液并不可提纯蛋白质。

B、在豆浆中加少量石膏,能使豆浆凝结为豆腐。

C、温度越高,酶对某(江南博哥)些化学反应的催化效率越高。

D、任何结构的蛋白质遇到浓HNO3都会变为黄色。

正确答案:B2、名词解释乳化容量正确答案:指乳状液发生相转变之前,每克蛋白质能够乳化油的体积。

3、名词解释氨基酸等电点正确答案:当一个特定的氨基酸在电场的影响下不发生迁移时,这个氨基酸所在溶液的氢离子浓度叫氨基酸的等电点,通常用pI表示。

氨基酸的等电点是由羧基和氨基的电离常数来决定的。

4、单选下列过程中可能为不可逆的是()。

A、H3PO4在水中的电离B、蛋白质的变性C、蛋白质的盐析D、Na2S的水解正确答案:B5、名词解释食品泡沫正确答案:气泡在连续的液相或含可溶性表面活性剂的半固相中形成的分散体系。

6、问答题蛋白质的功能性质的概念及其分类?正确答案:蛋白质的功能性质指在食品加工、保藏、制备和消费期间影响蛋白质对食品需宜特征作出贡献的那些物理和化学性质。

可分为4个方面(1)水化性质,取决于蛋白质与水的相互作用,包括水的吸收保留、湿润性、溶解粘度、分散性等;(2)表面性质,包括蛋白质的表面张力、乳化性、发泡性、气味吸收持留性;(3)结构性质,蛋白质相互作用所表现的特性,弹性、沉淀作用等。

(4)感观性质,颜色、气味、口味等。

7、单选不属于蛋白质起泡的必要条件是()A、蛋白质在气-液界面吸附形成保护膜B、蛋白质充分伸展和吸附C、在界面形成黏弹性较好的蛋白质膜D、具有较高的蛋白质浓度正确答案:D8、单选关于蛋白质变性的叙述错误的是()A、溶解度降低B、一级结构变化C、活性丧失D、蛋白质分子空间结构改变正确答案:B9、填空题在pH等于氨基酸的等电点时,该氨基酸()。

正确答案:呈电中性10、单选pH值为()时,蛋白质显示最低的水合作用。

食品化学考研

食品化学考研

一、名词解释(每题2.5分,共10分)1.结合水在食品中与组织结合而不能自由流动的水2.蛋白质组织化蛋白质在酸或者碱或者添加剂的情况下发生的组织化的过程3.味觉相乘某物质的味感会因为另一味感物的存在而显著加强,这种现象叫味的相乘作用4.淀粉 化又称淀粉的老化,在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质二、填空题(每空1分,共30分)1.结冰会引起水分活度显著下降。

2.霉菌生长所需的水分活度比细菌高。

3.风味结合能力最强的糖是蔗糖。

4.使蔗糖甜味显著增强的取代蔗糖为三氯蔗糖。

5.列出食品胶的三种主要功能胶凝剂,乳化剂,稳定剂。

6. 列出两种能改善肠道菌群平衡的低聚糖两种低聚木糖和低聚果糖7.牛奶所含的主要蛋白质为乳蛋白,乳酸菌能产生凝乳酶酶使之凝固。

8.具有增香作用的物质有麦芽酚和异麦芽酚等。

9.果胶的主要组分为半乳糖醛酸。

10.纤维素改性后形成的一种热凝胶叫甲基纤维素。

11.油脂精炼步骤之一是脱胶,这里的胶体物质主要是指蛋白质和糖类。

12.天然色素花青素遇碱呈金黄色。

13.含非金属元素较多的食物称成酸食物。

14.目前使用较多的油溶性抗氧化剂主要有TBHQ (至少1种)。

15.最容易被氧化破坏的水溶性维生素为 VC 。

16.新鲜大蒜和葱的组织被破坏后会产生刺激性气味,这些物质的共同特点是含有硫元素。

17.食物中降低钙生物有效性的成分主要有植酸草酸18.既有苦涩感又能引起植物组织褐变的物质是多酚类19.除多酚氧化酶外,还有脂肪氧化酶和过氧化物酶可引起食品褐变。

20.甜味和苦味的基准物质分别为蔗糖和奎宁。

21.新鲜豆粉对面粉具有漂白作用,是因为前者含有脂肪氧化酶的缘故。

22. 2005年引起全球恐慌、在辣椒等食品中违法使用的红色素为苏丹红。

三、简答题(每题10分,共50分)1.油脂的同质多晶现象对油脂在食品中的应用有何影响?相同的化学组成,在不同的热力学条件下却能形成不同的晶体结构,表现出不同的物理、化学性质。

食品分析智慧树知到答案章节测试2023年华南理工大学

食品分析智慧树知到答案章节测试2023年华南理工大学

第一章测试1.我国的法定分析方法有中华人民共和国国家标准(GB)、行业标准和地方标准等。

其中行业标准为仲裁法。

A:错B:对答案:A2.国际组织中与食品质量安全有关的组织主要有国际标准化组织(ISO)、世界卫生组织(WHO)、食品法典委员会(CAC)、国际制酪业联合会(IDF)、国际辐射防护委员会(ICRP)、国际葡萄与葡萄酒局(IWO)。

A:错B:对答案:B3.CAC制定的9项限量标准,包括了食品中农药残留最大限量标准、兽药最大限量标准、农药再残留最大限量,但不包括有害元素和生物毒素的限量标准。

A:错B:对答案:A4.按照标准的具体内容可将CAC的标准分为商品标准、技术规范标准、限量标准、分析与取样方法标准、一般准则及指南五大类。

A:错B:对答案:B5.国际AOAC是世界性的会员组织,但不属于标准化组织。

A:对B:错答案:A第二章测试1.测定样品中挥发性酸含量时,可用水蒸汽蒸馏样品,将馏出的蒸汽冷凝,测定冷凝液中酸的含量即为样品中挥发性酸的含量。

A:错B:对答案:B2.灭酶法预处理样品中常用的温度是100℃左右。

A:错B:对答案:A3.皂化法是利用热碱溶液处理样品提取液,以除去脂肪等干扰杂质。

其原理是利用盐酸-乙醇溶液将脂肪等杂质皂化除去,以达到净化目的。

A:对B:错答案:B4.对样品进行理化检验时,采集样品必须有。

A:随意性B:适时性C:代表性D:典型性答案:C5.常压干法灰化的温度一般是。

A:100℃~150℃B:200℃~300℃C:300℃~400℃D:500℃~600℃答案:D第三章测试1.误差的计算结果值可能有正数也可能有负数。

A:错B:对答案:B2.真实值是指某物理量本身具有的客观值或实际值。

随着科学技术的进步,检测结果能逼近真值并达到真值。

A:错B:对答案:A3.误差和偏差是两个不同的概念,误差是以真实值作为标准,偏差是以多次测量值的平均值作为标准。

A:对B:错答案:A4.系统误差可以进行修正,随机误差无法进行修正。

分享食品工艺学二十套试题

分享食品工艺学二十套试题

食品工艺学试题一一、填空题(每空1分,共20分)1、果胶的存在形式有、、。

2、在果蔬原料中,会与铁发生反应的物质有、、,所以一般果蔬加工中,可用铝制品而不用铁制品。

3、大豆蛋白的溶解度常用表示。

4、在小麦中,含有使小麦粉可夹持气体,所形成强韧性粘合面团的。

5、在肉中,决定持水性的重要因素是和。

6、在乳中,乳糖溶解度可区分为、和三种。

7、罐头生产中,排气方法有、和。

8、在速冻食品中,蔬菜类一般不采用,而是将同时进行。

9、在果脯蜜饯加工中,蔗糖含量过高而转化糖不足,会引起现象,在高潮湿和高温季节就容易吸潮而形成现象。

二、选择题(每题1.5分,共12分)1、在鱼贝类中,形成肌肉甜味的原因是含有。

A、丙氨酸B、氧化三甲胺C、甜菜碱D、肌苷酸2、高温短时杀菌法用下列英文缩写名称。

A、UTHB、LT LTC、HTSTD、LTST3、在奶粉生产中,一般选用法干燥,具有良好的速溶性。

A、滚筒干燥B、真空干燥C、空气对流干燥D、喷雾干燥4、适合于大部分果蔬贮存的条件为。

A、高温、高湿B、低温、高湿C、高温、低湿D、低温、低湿5、韧性饼干烘烤条件一般采用。

A、低温长时B、高温短时C、高温长时D、低温短时6、软罐头容器中,下列容器能保存期在2年以上。

A、透明普通型蒸煮袋B、透明隔绝型蒸煮袋C、铝筒隔绝型蒸煮袋D、直立袋7、面筋的贮气能力取决于。

A、可塑性B、延伸性C、粘性D、弹性8、罐藏技术的发明者是。

A、美国人BigelowB、法国人Nichols AppertC、美国人EstyD、英国人Peter Durand三、名解释解释(每题3分,共12 分)1、局部腐蚀2、市乳3、食品工艺学4、无菌包装四、简答题(每题5分,共25分)1、简述单宁的加工特性?2、罐头杀菌工艺条件表达式是什么?如何合理选择杀菌工艺条件?3、冰淇淋生产中,产生收缩的原因是什么?4、真空封罐时,在什么情况下要补充加热?5、生产甜酥性饼干和面包用油有什么要求?五、计算题(每题8分,共16分)1、食品干制前的水分含量为87.8%,干制品水分含量4.2%,干制品和复水后的干制品沥干重为3.3kg和14.8kg,计算它的干燥率和复水率?2、今有1000kg含脂率为3.1%的原料乳,欲使其脂肪含量为3.5%,应加脂肪含量为32%的稀奶油多少?六、综合题(15分)生产面包对面粉有什么要求?如不符合如何改良?试设计一次发酵法生产主食面包的工艺流程及工艺条件?食品工艺学试题二一、填空题(每空1分,共20分)1、果蔬中含有多种有机酸,主要是、和。

食品分析(肇庆学院)知到章节答案智慧树2023年

食品分析(肇庆学院)知到章节答案智慧树2023年

食品分析(肇庆学院)知到章节测试答案智慧树2023年最新第一章测试1.()提供政府法规和研究机构所需的分析方法,这些方法在普通实验室条件下能达到一定准确性和精密度,为食品行业提供了大量可靠的、先进的分析方法。

参考答案:AOAC2.()是联合国粮农组织(FAO),和世界卫生组织(WHO)在1962年组建的,是目前制定国际食品标准最重要的一个国际性组织。

参考答案:CAC3.牛乳中脂肪含量的测定是属于食品分析中的营养成分分析。

()参考答案:对4.食品的质量标准中都有感官指标,感官分析是食品分析中不可缺少的一项重要内容。

()参考答案:对5.对于食品成品质量鉴定或营养标签的产品分析,可以采用快速分析方法。

()参考答案:错6.行业标准是全国食品行业都必须共同遵守的统一标准,其他各级标准都不能和它相抵触。

()参考答案:错7.DB表示地方标准。

()参考答案:对8.食品分析国际标准方法多采用ISO制定的标准。

()参考答案:错9.已经有国家标准或者行业标准的,企业不允许另外制定企业标准。

()参考答案:错10.商业行业标准用SB表示。

()参考答案:对第二章测试1.对新鲜蔬菜水果样品进行制备,可以采用()。

参考答案:高速组织捣碎机2.用蒸馏法进行样品预处理时,当被蒸馏物常压下受热易分解或沸点太高的时候,可采用()的方法。

参考答案:减压蒸馏3.在采样必须遵循的原则中,典型性是最重要的一个原则。

()参考答案:错4.检测污染或怀疑污染的样本,必须采集接近污染源的食品或易受污染的那部分样品进行检验,即为遵循采样的代表性原则。

()参考答案:错5.将许多份从整批被检测对象中所抽取的少量样品综合在一起,称为原始样品。

()参考答案:对6.简单随机抽样就是随意抽样。

()参考答案:错7.散装的散粒状均匀固体物料可以按堆形和面积大小分区,按高度分层,在每区或每层的4角和中心设点采样。

()参考答案:对8.对肉、禽罐头进行制备时,应开启包装后将内容物全部捣碎混匀。

食品化学模拟习题含参考答案

食品化学模拟习题含参考答案

食品化学模拟习题含参考答案一、单选题(共85题,每题1分,共85分)1.人造奶油要有良好的涂布性和口感,这就要求人造奶油的晶型为细腻的型。

A、β’B、βC、αD、α’正确答案:A答案解析:易结晶为β型的脂肪有:大豆油、花生油、椰子油、橄榄油、玉米油、可可脂和猪油。

易结晶为β’型的脂肪有:棉子油、棕榈油、菜子油、乳脂、牛脂及改性猪油。

β’型的油脂适合于制造人造起酥油和人造奶油。

2.当向水中加入哪种物质,不会出现疏水水合作用?()A、烃类B、脂肪酸C、氨基酸类D、无机盐类正确答案:D答案解析:疏水水合(向水中添加疏水物质时,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,水分子排列紧密而有序。

)非极性物质指:烃类、长链脂肪酸、氨基酸和蛋白质的非极性基团3.自然界中的油脂多为混合三酰基甘油酯,构型为( )型。

A、E-B、R-C、Z-D、L-正确答案:D4.虾青素与( )结合时不呈现红色,与其分离时则显红色A、蛋白质B、脂肪酸C、糖D、糖苷正确答案:A5.相同浓度的糖溶液中,冰点降低程度最大的是( )。

A、蔗糖B、葡萄糖C、麦芽糖D、淀粉糖浆正确答案:B答案解析:溶液浓度越高,分子量越小,冰点降低越多葡萄糖 > 蔗糖 > 淀粉糖浆6.关于水分活度描述有误的是()。

A、AW能反应水与各种非水成分缔合的强度。

B、AW比水分含量更能可靠的预示食品的稳定性、安全性等性质。

C、食品的AW值总在0~1之间。

D、不同温度下AW均能用P/P0来表示。

正确答案:D7.以下属于基本味觉的是( )?A、辣B、涩C、苦D、淡正确答案:C8.焙烤食品的主香成分是( )?A、吡咯啉B、吡嗪C、咪唑D、吡咯正确答案:B9.以下指标用于衡量某种香气物质对整个食品香气的贡献程度的是( )?A、香气值B、绝对阈值C、差别阈值D、阈值正确答案:A10.下列过程中可能为不可逆的是( )?A、蛋白质的盐析B、Na2SC、H3PO4D、蛋白质的变性正确答案:D11.油脂精炼时脱色处理使用的是 ( )?A、氢氧化钠B、热水C、活性炭D、真空加热正确答案:C答案解析:脱色在毛油中加入一定量的活性白土和活性碳而吸附除去色素的过程12.水果中的游离糖多为( )。

“质量大比拼”知识竞赛题库

液态奶事业部“质量大比拼”知识竞赛题库质量管理部题库说明:本题库分为四大类型,共267道题(一选择(88)、二判断(105)、三简答(50)、四问答(24),每类型分为五个环节(㈠原料奶环节质量管控、㈡采购/储存环节质量管控、㈢生产/制造环节质量管控、㈣运输/销售环节质量管控、㈤其他)应用规则:可类型序号、环节序号进行数字组合,抽取试题应用。

一、选择题(88)(一)原料奶环节质量管控(20):1、牛奶全脂乳固体的计算公式是(B )A、T=0.25F+1.2L+KB、T=0.25L+1.2F+KC、F=0.25K+1.2T+LD、F=0.25L+1.2T+K (F代表脂肪,L代表比重,K代表常数)2、牛乳冰点一般为-0.525~ -0.565℃,牛乳掺水后冰点将(A )。

A 上升B下降C不变 D 三者都有可能。

3、酒精测试机理在于酒精可使蛋白质颗粒( A )而失去稳定性。

A、脱水;B、收缩;C、变性4、嗜热菌的最适合生长温度是:(C )A、25 O C -40 O CB、40 O C -45 O CC、50 O C -60 O CD、70 O C -85 O C5、奶牛的泌乳期约为( C )A、8个月B、9个月C、10个月D、11个月6、冷接触面在收奶中非连续使用:停用间隔时间小于(B )小时,进行热水冲洗;停用间隔时间大于()小时,进行碱冲洗;A、12 48B、12 24C、24 48D、247、乳中的(A)是一种胶体溶液,而()是一种胶体悬浊液A、乳清蛋白酪蛋白B、酪蛋白乳清蛋白C、胶原蛋白乳清蛋白D、酪蛋白胶原蛋白8、牛乳的(C)导致一种“金属味道”,而在奶油中则导致一种油腻味A、蛋白变性B、乳糖分解C、脂肪氧化D、维生素氧化9、牛乳的冰点是检测是否掺水的唯一可信的参数。

来自个体母牛的乳,其冰点值约在(B)℃之间。

A、0.54℃~0.59℃B、-0.54℃~-0.59C、-0.54℃~0.59℃D、-0.59℃~0.54℃10、挤奶后,牛奶应立即冷却至(A)℃以下,并且一直保持这一温度直至送到乳品厂。

乳制品工艺学期末复习供参习

一、名词解释1、乳—乳是哺乳动物为哺育幼儿从乳腺分泌的一种白色或稍带黄色的不透明液体。

2、滴定酸度——取一定量的牛乳,以酚酞做指示剂,用一定浓度的碱液进行滴定,以消耗碱液的毫升数来表示的酸度。

3、初乳——-乳牛产犊后七天之内所产的乳称为初乳。

4、吉尔涅尔度——取100ml牛乳,用酚酞作指示剂,以0.1mol/L的氢氧化钠来滴定,按所消耗的氢氧化钠的毫升数来表示。

消耗1ml为10T5、再制奶——所谓再制奶,就是把几种乳成分,主要是脱脂乳和无水黄油经加工制成液态奶的过程。

6、消毒乳——是指以新鲜牛乳为原料,经过净化、杀菌或灭菌、均质、灌装后,直接供应消费者饮用的商品乳。

7、发酵乳——以牛乳、水牛乳、羊乳及马乳为原料,经乳酸菌或酵母发酵制成的产品。

8、凝乳酶——哺乳动物胃液中有凝乳酶,能使乳中蛋白质凝聚成乳酪,乳酪易为各种蛋白质酶所消化。

凝乳酶只是提高酶的效率,9、稀奶油——乳经离心分离后得到的含脂肪30-35%的部分。

10、乳粉——它是以新鲜牛乳为原料,或以新鲜牛乳为主要原料,添加一定数量的植物或动物蛋白质、脂肪、维生素、矿物质等配料,除去其中几乎全部水分而制成的粉末状乳制品。

11、乳的比重——是指牛乳在15℃时的质量与同容积水在15℃时的质量比。

灭菌乳——是指牛乳在密闭系统连续流动中,受135~150 ℃的高温及不少于1s的灭菌处理,杀灭乳中所有的微生物,然后在无菌条件下包装制得的乳制品。

12、离心喷雾——借助于离心力的作用,使预先浓缩的浓奶,在特制的干燥室内喷成雾滴,而后用热空气干燥成粉末的过程叫喷雾干燥。

13、淡炼乳——淡炼乳是将牛乳浓缩到原体积的1/2.5后,装罐、密封,并经灭菌的制品。

14、乳酸菌制剂——所谓乳酸菌制剂,即将乳酸菌培养后,再用适当的方法制成带活菌的粉剂、片剂、丸剂、胶囊剂或直接是液态形式等,服用后能起到整肠和防治胃肠疾病作用的制品15、嗜冷菌——凡在0~20℃下能够生长的细菌统称低温菌,而7℃以下能生长繁殖的细菌称为低温菌;在20℃以下能繁殖的称为嗜冷菌。

食品科学技术:乳制品工艺学试题及答案(题库版)

食品科学技术:乳制品工艺学试题及答案(题库版)1、单选牛乳中酪蛋白的等电点是()。

A.6.6B.5.2C.4.6D.3.2正确答案:C2、问答题简述牛乳产生蒸煮味的原因?正确答案:由于β–乳球蛋白和脂肪球膜蛋(江南博哥)白的热变性而产生巯基(–SH)。

甚至产生挥发性的硫化物和硫化氢(H2S)。

3、多选乳粉包装过程中影响产品质量的因素有()。

A.乳粉温度B.包装室温度C.除去空气的程度D.包装量E.储藏时间正确答案:A, B, C4、名词解释中性含乳饮料正确答案:以鲜乳、乳粉或其它乳蛋白为原料,加入饮用水、糖,也可添加果汁、茶、植物提取液等其它辅料,配制而成的中性饮料制品。

5、名词解释发酵乳的后成熟期正确答案:冷藏温度一般在2~7℃,冷藏过程在24h内,风味物质继续产生,而且多种风味物质相互平衡形成酸乳的特征风味,通常把这个阶段称为后成熟期。

6、填空题在超高温产品中,主要引起杀菌不彻底的微生物主要为()。

正确答案:耐热芽孢总数7、名词解释ESL乳正确答案:是介于巴氏消毒奶和超高温奶之间的一种高品质液态奶。

在低温下(7℃)能保质30天左右。

8、判断题稀奶油和冰淇淋物理成熟的实质相同。

()正确答案:错9、名词解释甜炼乳正确答案:也称加糖炼乳,是在鲜乳中加入约16%的蔗糖,并浓缩到40%左右的一种乳制品。

10、单选从初乳中提取的免疫球蛋白时要采用()进行杀菌。

A、低温B、高温C、超高温D、冷冻正确答案:D11、多选下列属于水解酶的是()。

A.醛缩酶B.脂酶C.淀粉酶D.乳糖酶E.蛋白酶正确答案:B, C, D, E12、单选下列牛乳成分中含量低于母乳的是()。

A.酪蛋白B.无机盐C.饱和脂肪酸D.不饱和脂肪酸正确答案:D13、问答题乳清蛋白的特点有哪些?正确答案:①属全价蛋白质,富含硫,含硫量为酪蛋白的2.5倍。

②加热时易暴露–SH、–S–S–,易产生H2S,形成蒸煮味。

③不被凝乳酶或酸凝固,被钙凝固;④初乳中含量高达10%-12%,常乳中仅有0.5%。

食品生产技术复习题

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Effects of pH,calcium-complexing agents and milk solids concentrationon formation of soluble protein aggregates in heated reconstituted skim milkJayani Chandrapala a ,b ,*,Mary Ann Augustin b ,Ian McKinnon a ,Punsandani Udabage ba School of Chemistry,Monash University,VIC 3800,AustraliabCSIRO Division of Food and Nutritional Sciences,671Sneydes Road,Werribee,VIC 3030,Australiaa r t i c l e i n f oArticle history:Received 31August 2009Received in revised form 30April 2010Accepted 17May 2010a b s t r a c tThe proportion of protein present in the supernatant after centrifugation and the formation of soluble protein aggregates in heated (90 C for 10min)reconstituted skim milk were investigated as a function of (a)pH,(b)milk concentration 9e 21%,w/w (milk solids non-fat,MSNF )and (c)addition of calcium-complexing agents (orthophosphate or EDTA).Compositional changes in milk,resulting from pH adjustment or salt addition,altered the distribution of caseins between the serum and micellar phases of milk prior to heating,and in fluenced the amount and composition of soluble aggregates formed during heat treatment.Although milk pH was a good predictor of the aggregation behaviour of the proteins during heating of milk of different solids concentrations,neither the proportion of protein in the supernatant prior to heating nor the pH alone could predict the aggregation behaviour when the composition was adjusted with mineral salts.Crown Copyright Ó2010Published by Elsevier Ltd.All rights reserved.1.IntroductionThermal processing of milk changes the composition and properties of milk proteins and alters the physical properties of the milk.Whilst some changes,such as those used to improve the texture of yoghurt products,are desirable,others,such as gel formation during the manufacture of Ultra-High Temperature milk are highly undesirable.These heat-induced changes are dependent on heating conditions (temperature e time pro file)as well as on pH,milk concentration and other aspects of milk composition (Anema,2000;Law &Leaver,1997).The pH,temperature of heating,duration of heat treatment and the composition of milk play dominant roles in determining the extent of casein solubilization upon heating.Low levels of k -casein were dissociated from the casein micelles on heating at pH 6.6,whereas about 50%was soluble on heat treatment at pH 7.1at 120 C;most dissociation of casein processes occur rapidly,with the majority occurring during the initial stages of heating,with little further changes on prolonged heating (Anema &Klostermeyer,1997).The in fluence of milk concentration on the dissociation behaviour of casein micelles during heating is depen-dent on temperature and pH (Anema,1998).Changes in the parti-tioning of caseins between the two phases occur on the addition ofsalts;the addition of phosphates and 10mmol kg À1of EDTA to milk did not alter the effective diameter of the micelles,whereas the addition of higher levels of EDTA resulted in complete disintegra-tion of the micelles (Udabage,McKinnon,&Augustin,2000).During thermal processing,sulphydryl e disul fide interchange reactions between the cysteine residues of k -casein (and some-times a S2-casein)and the whey proteins are denatured,resulting in the formation of aggregates (Law &Leaver,1997).Aggregates can also be formed between the whey proteins themselves (Guyomarc ’h,Law,&Dalgleish,2003;Old field,Singh,&Taylor,2005).Non-covalent interactions such as hydrophobic,ionic and van der Waals forces are also involved in aggregation of proteins (Law &Leaver,1997;Old field et al.,2005)with non-covalently bonded complexes being formed prior to intermolecular disulphide formation (Guyomarc ’h et al.,2003).Vasbinder and de Kruif (2003)suggested that heating at pH >6.6leads to a partial coverage of the casein micelles,whereas heating at pH <6.6leads to an attachment of almost all of the denatured whey proteins to casein micelles.At pH 6.55,the coverage is homogeneous,but decreasing or increasing the pH further leads to inhomogeneous coverage of the casein micelles.The dissociation of k -casein from the casein micelle upon heating has been linked to the formation of aggregates in the serum (Anema,2007),but whether the formation of serum aggregates is a cause or a consequence of the dissociation of k -casein is unclear.The formation of soluble aggregates as affected by changes in (a)pH at 25 C (del Angel &Dalgleish,2006;Donato &Dalgleish,2006;Jean,Renan,Famelart,&Guyomarc ’h,2006;Menard,Camier,&*Corresponding author.Tel.:þ61383446488;fax:þ61393475180.E-mail address:jayanic@.au (J.Chandrapala).Contents lists available at ScienceDirectInternational Dairy Journaljou rn al homepage :/locate/idairyj0958-6946/$e see front matter Crown Copyright Ó2010Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.idairyj.2010.05.008International Dairy Journal 20(2010)777e 784Guyomarc’h,2005;Renan et al.,2006;Singh&Latham,1993),(b) casein micelle structure(del Angel&Dalgleish,2006;Renan, Guyomarc’h,Chatriot,Gamerre,&Famelart,2007),(c)genetic variants(Donato,Guyomarc’h,Amiot,&Dalgleish,2007)and(d) protein composition(Donato et al.,2007;Guyomarc’h et al.,2003) have been extensively examined.A molar ratio of1e5whey proteins to1k-casein was found for the soluble complexes heated at90 C(Anema,2007).The size of these complexes was found to be w20e50nm(del Angel&Dalgleish,2006).The soluble aggre-gate formation on heating increases with increase in pH prior to heating(del Angel&Dalgleish,2006;Donato&Dalgleish,2006; Jean et al.,2006;Menard et al.,2005;Renan et al.,2006).It is also known that pH affects the distribution of the caseins between the serum and micellar phase of milk(del Angel&Dalgleish,2006; Donato&Dalgleish,2006).The concentration and speciation of proteins in milk are affected by concentration(Anema,1998)and the addition of calcium-complexing agents(Udabage et al.,2000). In addition,concentration of milk reduces pH.The manner in which these factors interact and influence aggregate formation when milk is heated is not yet known.This study examined the formation and the composition of the soluble aggregates in heated(90 C for10min)reconstituted skim milk as a function of milk solids concentration,in the range9e21%, w/w,milk solids non-fat(MSNF),over a range of pH.The effect of addition of calcium-complexing agents(orthophosphate or EDTA; 10e30mmol kgÀ1)to9%(w/w)MSNF milk on formation of soluble aggregate was also examined.The aim was to determine if the observed effect of pH on the formation of soluble aggregates is due to changes in the concentration of protein and protein distribution rather than pH per se.2.Materials and methods2.1.MaterialsA commercial low-heat(72 C for20s)skim milk powder(SMP) was obtained from Tatura Milk Industries(PO Box213,Tatura,VIC 3616,Australia).The composition of the SMP(w/w)was36.5% protein,48.45%lactose,3.5%moisture,8.8%ash and0.525%fat.The extent of whey protein denaturation of the SMP was measured using the method reported by Parris and Baginski(1991),and showed that5.4%of the total whey protein present in the SMP was denatured.Ultra-pure(MilliQ)water was used at all times.2.2.Preparation of reconstituted skim milk solutionsReconstituted skim milk(either180g kgÀ1MSNF or300g kgÀ1 MSNF)were prepared as described by Chandrapala(2009).The reconstituted skim milk samples were kept overnight at4 C and then equilibrated at25 C for1h.Minor pH adjustments were carried out as necessary and small amounts(w0.5g)of MilliQ water were added to obtain milk solutions at the desiredfinal concentration9e21%,w/w,(MSNF)and pH(6.2e8.5).For the preparation of milk solutions with added salts(ortho-phosphate or EDTA),the salt solutions were added drop-wise with continuous stirring.The salt solutions used were100mmol kgÀ1of orthophosphate(equimolar mixture of Na2HPO4and NaH2PO4)and 200mmol kgÀ1of Na2H2EDTA.Calculated amounts of MilliQ water were added before the addition of the respective salt solution,such that,at the end of the addition andfinal pH adjustment,only a small amount of MilliQ water was required to obtain the9%(w/w) MSNF solution with the required amounts of the additive (10e30mmol kgÀ1orthophosphate or EDTA).The milk solutions were kept overnight at4 C.All amounts were measured by mass.All reconstituted milk samples were prepared in duplicate unless otherwise stated.2.3.Heat treatment and pH measurements of reconstitutedskim milk solutionsAliquots(50g)of milk were transferred to stainless steel tubes and heated in a water bath at90 C.The time to reach90 C was 8min,and the milk samples were held for a further10min at90 C. After heat treatment,the samples were cooled by immersion for 5min in a water bath held at25 C.All heat treatments were replicated at least in duplicate.The pH of the milk samples at25 C and at90 C was measured by an InPro2000liquid electrolyte pH electrode with an integrated temperature sensor(Mettler Toledo, PO Box173,Port Melbourne,VIC3207,Australia)connected to a Metrohm pH meter(Metrohm AG,Oberdorfstrasse68,9101 Herisau,Switzerland).2.4.Ultracentrifugation of skim milk samples and measurementof nitrogen contentThe heated and unheated milk solutions were ultracentrifuged at33,000Âg for60min at25 C using a Beckman LK90M ultra-centrifuge with a type55.2Ti rotor(Beckman Instruments Australia (Pty)Ltd,Gladesville,NSW2111,Australia).Approximately30min prior to ultracentrifugation,the concentrated milk solutions (12e21%,w/w,MSNF)were diluted to9%by weight with MilliQ water.In some samples(i.e.,21%(w/w)MSNF,pH at25 C<6.4), where soft gels were formed on heating,these were broken by vigorous shaking prior to dilution,using the method adopted by Anema(2000),to ensure redispersion.After centrifugation,the clear supernatant(excluding the opalescent layer)was carefully removed andfiltered using a0.45-m mfilter and stored at4 C until further analysis.These were generally used within1e2days after separation.Separate SEC(size-exclusion chromatography)experi-ments performed on fresh(0days)and stored(2days)superna-tants showed no change in the amounts and sizes of the soluble aggregates.A supernatant sample obtained from21%(w/w)MSNF undiluted skim milk was used to determine if there was an effect of dilution prior to centrifugation.The results indicated that dilution did not alter either the amount or the size of the soluble aggregates. In calculating the proportion of the total amount of a component in the supernatant,the mass of the opalescent layer was included as part of the total mass of supernatant.The total nitrogen content of selected supernatants of recon-stituted milk solutions before and after heating was determined using a LECO FP-2000Nitrogen Analyser(LECO Australia Pty Ltd, Castle Hill,NSW,Australia).The protein nitrogen content of the supernatant was calculated by subtracting the contribution from non protein nitrogen of the total milk.A factor of6.38was used to convert nitrogen to protein concentration(IDF,1993).2.5.Size-exclusion chromatographySize-exclusion chromatography(SEC)of the supernatants from different skim milk samples was conducted using a Shimadzu LC20 HPLC system equipped with a UV e vis detector operating at280nm (Shimadzu scientific instruments(Oceania)Pty Ltd,Mount Wav-erly,VIC3149,Australia).Samples(20m L)of thefiltered superna-tants were injected into a Phenomenex TSK GEL17u G5000PW 1000A column(Phenomenex Australia Pty LTD,PO box4084, Lane Cove,NSW2066,Australia)and run at0.5mL minÀ1in 100mmol LÀ1ammonium bicarbonate buffer at pH7.0;the total run time was35min.J.Chandrapala et al./International Dairy Journal20(2010)777e784 778SEC was also carried out on a larger scale to enable collection of sufficient sample for the determination of the composition of the aggregates.For this purpose,a40mL aliquot of supernatant was introduced to the column(5cm diameter and90cm long packed with Sephacryl S500HR,Amersham Bioscience Baulkham Hills, NSW,Australia)which had a nominal fractionation range of 40e100,000kDa.Ammonium bicarbonate(100mmol LÀ1,pH7)at aflow rate of3mL minÀ1was used as the running buffer.The column was run on a Pharmacia FPLC system(PO Box57,West Ryde,NSW2114,Australia)as described earlier(Chandrapala, 2009)The total elution time for each sample was1000min.Frac-tions were collected between270and470min(at5min intervals) using a LKB Superac2211Fraction Collector.Fractions were pooled in groups of three and freeze-dried before further analysis by SDS polyacrylamide gel electrophoresis.The elution profiles obtained from SEC carried out on the larger scale were similar to those obtained on the smaller scale(data not shown).All SEC experiments were performed at least in duplicate. Repeat measurements resulted in very similar elution profiles.2.6.Sodium Dodecyl Sulfate(SDS)polyacrylamide gelelectrophoresisMono-dimensional SDS-PAGE was used to determine the proportion of casein of the fraction collected from SEC corre-sponding to the soluble aggregates.The fractions were dissolved in ammonium bicarbonate buffer(100mmol LÀ1,pH7)to a crude total protein content of2.5mg mLÀ1.Precast4e12%acrylamide gels (NuPage Novex Bis Tris gels,Invitrogen Australia Pty Ltd,Mt.Wa-verley,Victoria,Australia)were used and electrophoresis was per-formed under both reducing and non-reducing conditions as described earlier(Chandrapala,2009).Commercial samples of sodium caseinate and whey protein isolate obtained from Murray Goulburn Co-operative Ltd(PO Box4307,Melbourne,VIC3001, Australia)were run as standards.The gels were stained using an Invitrogen Coomassie Blue staining kit following the manufac-turer’s instructions(Invitrogen Australia Pty Ltd,Mt.Waverley, Victoria,Australia).The stained gels were then photographed and the photographs were analysed using Scion Image software(Scion Corporation,82,Worman’s Mill Court,Suite H Frederick,Maryland 21701,USA).For reduced gels,the integrated intensities of each band were analysed to determine the relative proportions of the major proteins in the soluble aggregate fraction.All experiments were carried out at least twice as full replicates. All data were expressed as means with standard deviations.3.Results and discussion3.1.Protein content of supernatants of centrifuged milkk(9e21%,w/w,milk solids non-fat)at different pH valuesThe proportions of protein present in supernatants(expressed as%of total protein)as a function of initial pH at25 C for heated and unheated9%(w/w)MSNF milk are shown in Fig.1.For unheated milk at pH6.67and25 C,21.0Æ0.3%of the total protein was found in the supernatant.This value corresponds to1.6%of the caseins being present in the serum phase,somewhat lower than the value of6.5%found by Udabage et al.(2000)or the value of10% found by Griffin,Lyster,and Price(1988).This difference may be due to the inclusion(in both the previous studies)of the opalescent layer as part of the supernatant,use of different centrifugation speeds or to innate differences in the milk.As the milk pH was increased,the proportion of total protein in the supernatant of unheated milk increased linearly,to37.9%at pH8.52.The increased proportion of total protein present in supernatant with increasing pH implies an increase in the net dissociation of caseins (predominately k-casein)from the micelles,as reported by others (Anema,1998,2007;Anema&Klostermeyer,1997).In the present study,the changes in the proportion of total protein present in supernatant of heated milk were found to be dependent on pH(Fig.1).At pH<6.65,there was less protein in supernatant after heating than prior to heating,due to the removal of the large aggregates during centrifugation,which were formed on heating.At pH w6.65,heating caused little change in the proportion of protein remaining in the supernatant,suggesting that any removal of whey proteins by centrifugation was balanced by dissociation of caseins from the micelles.However,at pH>6.65, the proportion of protein in supernatant was higher after heating than prior to heating,which may be due to the dissociation of caseins from the micelles and/or to the formation of soluble aggregates.These results are in agreement with the model proposed by Vasbinder and de Kruif(2003).The trends towards increasing proportion of protein in super-natant of heated concentrated milk with increase in pH prior to heating are similar to those observed for that of9%(w/w)MSNF milk.The results demonstrate that,for a particular milk sample,the pH prior to heating is a good predictor of the proportion of protein in the supernatant,when milk is concentrated prior to heat treat-ment(Fig.2)and that the proportion of total protein in the supernatant is almost independent of the milk concentration. Anema(1998)observed considerable pH-and temperature-dependent dissociation behaviour of caseins from casein micelles of 10%and25%TS milk over the entire temperature range (20e120 C),irrespective of milk solids concentrations.These results are in line with those obtained by Anema(1998).3.1.2.Effect of addition of orthophosphate or EDTA to milk(9%,w/w,milk solids non-fat)The proportions of protein in supernatants(expressed as%of total protein)at different initial pH values at25 C for heated and unheated9%(w/w)MSNF milk containing different amounts of orthophosphate or EDTA are given in Table1.On addition of EDTA, the sequestration of calcium by EDTA resulted in the transfer of caseins from the micelles to the supernatant,and hence increased the proportion of total protein present in the supernatant,which also increased with increased pH,as reported by Udabage et al.(2000).In the present study,there was a small increase in the proportion of proteins in supernatant on addition of10mmol kgÀ1ortho-phosphate,with the effect decreasing as the level oforthophosphatepH at 25°CProteininsupernatantofmilk(%)Fig.1.Proportions of total protein present in supernatants(expressed as%of total protein in milk)of unheated(>)and heated(A)reconstituted9%(w/w)MSNF milk as a function of pH at25 C prior to heating.J.Chandrapala et al./International Dairy Journal20(2010)777e784779increased from 10to 30mmol kg À1,except at pH 7.2.Udabage et al.(2000)reported a decrease in level of supernatant casein on addi-tion of orthophosphate at pH 6.65,with the effect decreasing as the level of orthophosphate added increased from 10e 30mmol kg À1,while Gaucher,Piot,Beaucher,and Gaucheron (2007)found an increase in protein content of the supernatant on addition of milks with added orthophosphate at pH 6.8.Gaucher et al.(2007)demonstrated that the addition of high levels (>50mmol L À1)of orthophosphate result in the precipitation of calcium hydrogen phosphate with consequent dissociation of the casein micelles.EDTA chelates calcium without the precipitation of calcium phosphate,as EDTA is a strong chelating agent with 6co-ordination sites.On the other hand,the addition of phosphate results in calcium phosphate precipitation concurrently with the chelation of calcium.This effects a change in the dissociation of casein from the casein micelles.However,the exact mechanism for this increase in the amount of protein present in the supernatant on addition of orthophosphate is not yet known.In all samples containing EDTA,the proportion of proteins present in supernatants obtained after heating was considerably less than in supernatants obtained prior to heat treatment.For the example,with 20mmol L À1added EDTA at pH 7.11prior to heat treatment,w 96%of the protein,was present in the supernatant.Heat treatment resulted in aggregation of the proteins such that almost 40%was removed by the subsequent centrifugation after heating.It appears that the dissociated caseins tend to reassociate during heating and are then precipitated with the pelleted phase during centrifugation.3.2.Examination of the soluble aggregates in the supernatants of centrifuged milk by size-exclusion chromatography3.2.1.Supernatants of unheated and heated 9%(w/w)milk solids non-fat milk at pH 6.65To elucidate the nature of the soluble aggregates produced by the proteins on heating,the supernatants from unheated and heated reconstituted skim milk (9%(w/w)MSNF pH 6.65)prepared by centrifugation were analysed by SEC e HPLC (Fig.3).The chro-matographic pro files obtained were similar to those obtained previously (del Angel &Dalgleish,2006;Donato &Dalgleish,2006;Donato et al.,2007;Guyomarc ’h et al.,2003;Menard et al.,2005;Renan et al.,2006,2007).The earliest eluting peak (Peak 1)was the excluded volume of the column.This peak does not contain proteinaceous material (Guyomarc ’h et al.,2003)and may be composed of very small fat globules (Donato &Dalgleish,2006).Peak 2has been attributed to soluble aggregates (whey proteins and k -casein)formed on heating (Guyomarc ’h et al.,2003).Previous studies have estimated that the sizes of these aggregates are 20e 50nm (del Angel &Dalgleish,2006).Peak 3was assigned to native whey proteins and mono-meric caseins,and decreased on heating due to the involvement of the whey proteins and monomeric caseins in the formationofpH at 25CP r o t e i n i n s u p e r n a t a n t s o f h e a t e d m i l k s (%)Fig.2.Proportions of total protein present in supernatants (expressed as %of total protein)of heated milk as a function of the pH at 25 C prior to heating:-,9%(w/w)MSNF;:,12%(w/w)MSNF;,,15%(w/w)MSNF;6,18%(w/w)MSNF;C ,21%(w/w)MSNF.Table 1The proportion of total protein present in supernatant and the casein component of the soluble aggregates (expressed as %of total protein in the soluble aggregates)for heated reconstituted 9%(w/w)MSNF solutions with/without added (a)ortho-Mean values and standard deviation of (n !2)replicates.Pooled standard deviation for pH ¼Æ0.02.Nd ¼Not determined.bThe amount of caseins present in soluble aggregates expressed as %of the total protein content in the soluble aggregate fraction collected through SEC.5101520253035Elution time/minA b s o r b a n c e /a r b i t o r y u n i t sPeak 1Peak 3Peak 4Peak 4Peak 3Peak 2abFig.3.SEC e HPLC pro files of supernatants obtained from (a)heated and (b)unheated 9%(w/w)MSNF milk at pH 6.65.The peaks were assigned as follows:Peak 1(w 9min)is the excluded volume of the column;Peak 2(w 11min)contains soluble aggregate peak;Peak 3(w 18min)contains native whey proteins and monomeric caseins;Peak 4(w 21min)includes orotic acid and other dialyzable solutes.J.Chandrapala et al./International Dairy Journal 20(2010)777e 784780aggregates.Peak4has been identified as being made up of small molecules such as orotic acid and other dialyzable solutes and has been used as an internal standard(Guyomarc’h et al.,2003).3.2.2.Supernatants of heated milk(9e21%,w/w,milksolids non-fat)The SEC e HPLC elution profiles of supernatants of heated milk (9e21%(w/w)MSNF)at their unadjusted pH values and at a constant pH at25 C of 6.65are given in Fig.4(a)and(b), respectively.Increasing milk concentration(9e21%(w/w)MSNF), which decreased the natural pH from pH6.65to6.43,decreased the level of soluble aggregates formed on heating,as reflected by the reduced area of the soluble aggregate peak.A higher proportion of micelle-bound denatured whey protein aggregates is expected at lower pH(Vasbinder&de Kruif,2003),but it is not possible to distinguish between the contributions,due to the lower pH and the effect of milk concentration,as the unadjusted pH of the milk is reduced with increasing total solids.The decrease in pH before heating as a result of increasing solids concentration alters the distribution of proteins within the phases and,in addition,the pH decreases on heating.The decrease in pH with increasing temper-ature is mainly due to the decreased solubility of calcium phos-phate resulting re-equilibration of phosphate species within the serum phase and increased production of Hþions.Both these factors will contribute to a change in dissociation of casein from the casein micelles,and hence the distribution of the proteins within the phases.Further experiments were carried out with milk at varying concentrations,but adjusted to the same pH prior to heating in order to discriminate between effects of pH and total solids.The profiles for milk with9e21%(w/w)MSNF at pH 6.65prior to heating(Fig.4(b))were very similar to each other.The formation of soluble aggregates was almost similar in size and amounts,although slight changes were observed at higher concentrations. For18and21%(w/w)MSNF milk,there were increased amounts of soluble aggregates formed during heating and slight shifts towards shorter elution times as milk concentration increased,indicating the formation of larger aggregates at higher milk solids concen-tration.Similar trends were obtained for other pH values in the range of6.2e7.2(data not shown).Overall,it can be concluded that pH plays a predominant role in determining the soluble aggregate formation behaviour,whereas milk concentration plays a very minor role.3.2.3.Supernatants of unheated and heated milk(9%,w/w,milk solids non-fat)with added orthophosphate or ethylene diamine tetraacetic acid(EDTA)Fig.5shows the SEC e HPLC profiles of supernatants obtained from unheated and heated9%(w/w)MSNF milk with or without various amounts of added EDTA at pH7.2at25 C.In supernatants from unheated milk with added calcium-complexing agents,there was a peak eluting at w13e14min(denoted as Peak A in Fig.5(a)). SDS-PAGE analysis of this region in milk without additives has shown that this peak contains small quantities of caseins,a signif-icant amount of b-lactoglobulin and traces of a-lactalbumin (Donato&Dalgleish,2006).However,the area of Peak A increased with addition of orthophosphate or EDTA,and with increasing amounts of added calcium-complexing agents,in the present study. Hence,Peak A can be attributed to caseins,which dissociate from the micelle on addition of calcium-complexing agents.The increase in the area of Peak A was more pronounced with the addition of EDTA than with orthophosphate,because EDTA is the more powerful complexing agent and chelates calcium more strongly than orthophosphate.Total protein level in the supernatantof 05101520253035Absorbance/arbitoryunits05101520253035Elution time/minElution time/minAbsorbance/arbitoryunitsbaFig.4.SEC e HPLC profiles of supernatants obtained from heated milk(a)at theirunadjusted pH values at25 C(1,21%(w/w)MSNF,pH6.43;2,18%(w/w)MSNF,pH6.46;3,15%(w/w)MSNF,pH6.50;4,12%(w/w)MSNF,pH6.55;5,9%(w/w)MSNF,pH6.65)and(b)at pH6.65at25 C prior to heating(1,21%(w/w)MSNF;2,18%(w/w)MSNF;3,15%(w/w)MSNF;4,12%(w/w)MSNF;5,9%(w/w)MSNF).05101520253035Elution time/minAbsorbance/arbitoryunits05101520253035Elution time/minAbsorbance/arbitoryunitsControl10mmol kg-120mmol kg-1Control10mmol kg-120mmol kg-1Peak B**Peak AabFig.5.SEC e HPLC profiles of unheated and heated supernatants obtained from9%(w/w)MSNF milk with or without added EDTA(10or20mmol kgÀ1)at pH7.2at25 Cprior to heating.J.Chandrapala et al./International Dairy Journal20(2010)777e784781。

相关文档
最新文档