初一有理数知识点总结

合集下载

七年级第一章有理数知识点总结

七年级第一章有理数知识点总结

有理数知识点总结0的数叫做正数。

1.0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

有理数:整数和分数统称有理数。

概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

⑵按整数、分数分类:正有理数正整数正整数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

三、数轴比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)1.概念:求n 个相同因数的积得运算,叫做乘方。

乘方的结果叫做幂。

一个数可以看做这个数本身的一次方。

2.法则:先确定幂的符号,然后再计算幂的绝对值。

十、乘方 正数的任何次幂都是正数负数的奇次幂是负数,负数的偶次幂是正数0的任何正整数次幂都是03.混合运算法则:⑴先乘方,再乘除,最后加减。

⑵同级运算,从左到右的顺序进行。

⑶如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。

在进行有理数的运算时,要分两步走:先确定符号,再求值。

10的数表示成a ×10n 的形式(其中 a是整数数位只有一位的数,n 为正整数)。

这种记数的方法叫做科学记数法。

﹙1≤|a|<10﹚注:一个n 为数用科学记数法表示为a ×10n -1⑴精确到某位或精确到小数点后某位。

⑵保留几个有效数字十一、科学记数法 注:对于较大的数取近似数时,结果一般用科学记数法来表示。

初一数学-有理数知识点(最全最细)

初一数学-有理数知识点(最全最细)

⑸互为相反数的两数的绝对值相等。
第2页共5页
即:|-a|=|a|或若 a+b=0,则|a|=|b|; ⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则 a=b 或 a=-b; ⑺若几个数的绝对值的和等于 0,则这几个数就同时为 0。
即|a|+|b|=0,则 a=0 且 b=0。 (非负数的常用性质:若几个非负数的和为 0,则有且只有这几 个非负数同时为 0) 4.有理数大小的比较 ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比 右边的小; ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的 反而小;异号两数比较大小,正数大于负数。 5.绝对值的化简 先判断绝对值号内是正是负,①当 a≥0 时, |a|=a ; ②当 a ≤0 时, |a|=-a 。 6.已知一个数的绝对值,求这个数 一个数 a 的绝对值就是数轴上表示数 a 的点到原点的距离。绝对值为 同一个正数的有理数有两个,它们互为相反数,绝对值为 0 的数是 0, 没有绝对值为负数的数。
等于原 数。即:⑴当 b>0 时,a+b>a ; ⑵当 b<0 时,a+b<a; ⑶当 b=0 时,a+b=a。
六.有理数减法
1. 法则:减去一个数,等于加上这个数的相反数。用字母表示为: a-b=a+(-b)。
2.有理数加减法统一成加法的意义 在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化 成加法后,再按照加法法则进行计算。 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省 略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5。 和式的读法:①按这个式子表示的意义读作“负 8、负 7、负 6、正 5 的和”;②按运算意义读作“负 8 减 7 减 6 加 5”。

初一有理数数学知识点总结

初一有理数数学知识点总结

初一有理数数学知识点总结1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、整数和分数统称为有理数。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴。

5、在直线上任取一个点表示数0,这个点叫做原点。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7、由绝对值的定义可知:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

(2)正数大于0,0大于负数,正数大于负数。

(3)两个负数,绝对值大的反而小。

8、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

9、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

10、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

11、有理数减法法则:减去一个数,等于加上这个数的相反数。

12、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

13、有理数中仍然有:乘积是1的两个数互为倒数。

14、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

15、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

16、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

17、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫做底数,n叫做指数。

18、根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何次幂都是0。

19、做有理数混合运算时,应注意以下运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

有理数知识点总结

有理数知识点总结

有理数知识点总结1. 有理数的定义和性质1.1 有理数的定义有理数是可以表示为两个整数的比的数,包括整数、分数和零。

1.2 有理数的性质•有理数可以进行加、减、乘、除运算,并仍为有理数。

•有理数的加法和乘法满足交换律、结合律和分配律。

2. 有理数的表示和分类2.1 有理数的表示有理数可以用分数的形式表示,即分子和分母都是整数,并且分母不为零。

2.2 有理数的分类有理数可以分为以下几类: - 正数:大于零的有理数。

- 负数:小于零的有理数。

- 零:既不大于零也不小于零的有理数。

3. 有理数的比较和大小关系3.1 有理数的比较•对于同号的两个有理数,绝对值大的数较大。

•对于异号的两个有理数,正数较大。

3.2 有理数的大小关系•两个正数比较大小,数值大的较大。

•两个负数比较大小,数值小的较大。

•正数大于零,零大于负数。

4. 有理数的运算4.1 加法和减法有理数的加法和减法满足交换律和结合律,可以通过以下步骤进行: - 对于同号的两个有理数,将它们的绝对值相加(减),并保持符号不变。

- 对于异号的两个有理数,将它们的绝对值相减,结果的符号由绝对值较大的数决定。

4.2 乘法和除法有理数的乘法和除法满足交换律、结合律和分配律,可以通过以下步骤进行: -两个有理数的乘积的符号由乘数的符号决定。

- 两个有理数的商的符号由被除数和除数的符号决定。

5. 有理数的进一步思考5.1 有理数的无穷性有理数是无穷的,可以无限接近但无法达到某些无理数,如圆周率π和自然对数的底数e。

5.2 有理数的应用有理数在实际生活中有广泛的应用,如计算、测量、金融等领域。

在金融中,有理数可以表示货币的数量,进行利息计算等。

5.3 有理数的拓展有理数是数的一个重要分支,还有其他类型的数如无理数、实数、复数等。

无理数是无法表示为两个整数的比的数,实数是有理数和无理数的统称,而复数是实数和虚数的组合。

结论有理数是可以表示为两个整数的比的数,包括整数、分数和零。

初一数学知识点总结归纳(5篇)

初一数学知识点总结归纳(5篇)

初一数学知识点总结归纳第一章有理数1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n表示一个数。

(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。

【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。

初中数学有理数知识点总结(精华)

初中数学有理数知识点总结(精华)

初中数学有理数知识点总结(精华) 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且。

初一第二章有理数知识点总结(良心出品必属精品)

初一第二章有理数知识点总结(良心出品必属精品)

①不带负号的数都是正数 是正数,也不是负数A.0 个B.1 个C.2个 D3个知识点归纳一、 正数和负数的定义回:大于0的数叫做正数。

根据需要,有时在正数前面加上正号“ +”,但是正数前面 的正号“ +”,一般省略不写。

四在正数前面加上负号“-”的数叫做负数。

负数前面的负号“-”不能省略。

注:对于正数和负数的概念,不能简单地理解为带“ +”的数就是正数,带“-”的数就 是负数。

eg : -a 不一定是负数,因为字母a 可以表示任何数,当a 是正数时,-a 是负数;当a 表示负数时,-a 则是一个正数,而不是负数;当 a 表示0时,-a 就是在0前面加上一 个负号,仍是0,0不分正负。

二、 具有相反意义的量正数和负数表示具有相反意义的量。

若用正数表示某种意义的量,则负数就表示与 其相反的量,反之亦然。

常见的表示相反意义的量:零上和零下、前进和后退、海平面以上和海平面以下、 收入和支出、向南和向北、盈利和亏损、升高和下降。

三、 0的意义(重点理解)数0既不是正数,也不是负数。

0是正数和负数的分界线。

| 0C 是一个确定的温度,海 拔0表示海平面的平均高度。

0的意义已经不仅是表示“没有”。

1A. 0不是正数,也不是负数B .负数是带有“-”的数,正数是带有“ +”的数C.非负数是正数或0 D . 0是一个特殊的整数,它并不只是表示“没有” 2、 水位上升-0.5cm 的意义是()A.水位上升0.5cm B .水位下降0.5cm C .水位没有变化 D .水位下降了 5cm 3、 下列说法错误的是( )A. -5 一定是负数 B.在正数前面加上“-”就成了负数C.白然数一定是正数D . -a 不一定是负数 4、 下列说法正确的有()②带负号的数不一定是负数 ③0C 表示没有温度 ④0既不1.1正数和负数5、在跳远测验中,合格标准是3.96m,应记作6、-1,2 , -3,4 , -5,—7、峨眉山上某天的最高气温为温高() 4.00m,小明跳出了4.18m,记作+0.18m,小华跳出了—,…第81个数是,第2005个数是—。

初一数学上册知识点:有理数

初一数学上册知识点:有理数

初一数学上册知识点:有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数知识点总结
正数:大于0的数叫做正数。

1..
注:0既不是正数也不是负数,是正数和负数的分界线,是整
数,
一、正数和负数自然数,有理数.
(不是带“-”号的数都是负数,而是在正数前加“-”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

有理数:整数和分数统称有理数。

概念整数:正整数、0、负整数统称为整数.
分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数.)
注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称
为非负整数,负整数和零统称为非正整数。

分类:两种
⑵按整数、分数分类:
正有理数正整数正整数
有理数正分数整数0
零有理数负整数
负有理数负整数分数正分数
负分数负分数
3.数集内容了解
1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度
2。

对应关系:数轴上的点和有理数是一一对应的。

三、数轴
比较大小:在数轴上,右边的数总比左边的数大 .
3。

应用
求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法.
(注意不带“+”“—”号)
代数:只有符号不同的两个数叫做相反数.
1.概念(0的相反数是0)
几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,
若a+b=0,则a与b互为相反数。

四、相反数
两个符号:符号相同是正数,符号不同是负数。

3.多重符号的化简
多个符号:三个或三个以上的符号的化简,看负号的个数,
当“—”号的个数是偶数个时,结果取正号
当“—”号的个数是奇数个时,结果取负号
1.概念:乘积为1的两个数互为倒数。

(倒数是它本身的数是±1;0没有倒数)
五、倒数
2。

性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。

若a与b互为负倒数,则a·b=-1;反之,若a·b=-1则a与b互为负倒数。

1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值.
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)
2。

代数意义一个负数的绝对值是它的相反数
0的绝对值是0
a 〉0,|a|=a反之,|a|=a,则a≥0
六、绝对值代数意义的符号语言a= 0,|a|=0 |a|=﹣a,则a≦0
a<0,|a|=‐a
注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。

3。

性质:绝对值是a (a>0)的数有2个,他们互为相反数.即±a。

4.非负性:任意一个有理数的绝对值都大于等于零,即|a|≥0。

几个非负数
之和等于0,则每个非负数都等于0.故若|a|+|b|=0,则a=0,
b=0
1。

数轴比较法:在数轴上,右边的数总比左边的数大.
七、比较大小
2.代数比较法:正数大于零,负数小于零,正数大于一切负数。

两个负数比较大小时,绝对值大的反而小。

1.加法法则⑴同号两数相加,取相同的符号,并把绝对值相加.
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并
用较大的绝对值减去较小的绝对值.互为相反数的两个数相
加得0。

⑶一个数同0相加,仍得这个数。

八、加减法 2。

加法运算律:两个
加法交换律:两数相加,交换加数的位置,和不变.即a+b=b+a
加法结合律:在有理数加法中,三个数相加,先把前两个数相加或者先把后
两个数相加,和不变.即a+b+c=(a+b)+c=a+(b+c)
3.减法法则:减去一个数,等于加上这个数的相反数。

即a-b=a+(﹣)b
⑴两数相乘,同号得正,异号得负,并把绝对值相乘。

⑵任何数同0相乘,都得0。

1。

乘法法则⑶多个不为0的数相乘,负因数的个数是偶数时,积为正数;负因
数的个数是奇数时,积为负数,即先确定符号,再把绝对值相
乘,绝对值的积就是积的绝对值.
⑷多个数相乘,若其中有因数0,则积等于0;反之,若积为0,则至
少有一个因数是0。

2。

乘法运算律:三个
⑴乘法交换律:两数相乘,交换因数的位置,积相等。

即a×b=ba 。

九、乘除法 ⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,
积相等。

即a ×b×c =﹙a ×b ﹚×c=a ×﹙b ×c﹚。

⑶乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相
乘,在把积相加。

即a ×﹙b+c ﹚=a ×b+a×c。

3。

除法法则:三个
⑴除以一个(不等于0)的数,等于乘这个数的倒数。

⑵两个数相除,同号得正,异号得负,并把绝对值相除。

⑶0除以任何一个不等于0的数,都得0。

4.四则运算法则:先乘除,后加减,有括号先算括号里的。

1。

概念:求n 个相同因数的积得运算,叫做乘方.乘方的结果叫做幂。

一个数可以 看做这个数本身的一次方。


2.法则:先确定幂的符号,然后再计算幂的绝对值。

十、乘方 正数的任何次幂都是正数
负数的奇次幂是负数,负数的偶次幂是正数
0的任何正整数次幂都是0
3.混合运算法则:
⑴先乘方,再乘除,最后加减。

⑵同级运算,从左到右的顺序进行.
⑶如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。

在进行
有理数的运算时,要分两步走:先确定符号,再求值.
1.科学记数法概念:把一个大于10的数表示成a ×10n的形式(其中a
是整数数位只有一位的数,n 为正整数)。

这种记数的方法叫做科
学记数法。

﹙1≤|a|<10﹚
注:一个n为数用科学记数法表示为a×10n-1
2.近似数的精确度:两种形式
⑴精确到某位或精确到小数点后某位。

⑵保留几个有效数字
十一、科学记数法注:对于较大的数取近似数时,结果一般用科学记数法来表示。

例如:256000(精确到万位)的结果是2。

6×105
3。

有效数字:从一个数的左边第一个非0数字起,到末尾数字止,所有
的数字都是这个数的有效数字。

注:⑴用科学记数法表示的近似数的有效数字时,只看乘号前面
的数字.例如:3.0×104的有效数字是3,0。

⑵带有记数单位的近似数的有效数字,看记数单位前面的数字。

例如:2。

605万的有效数字是2,6,0,5。

相关文档
最新文档