统计计算第一次作业
统计学原理作业答案(1).doc

宁大专科《统计学原理》作业第一次作业一、单项选择题1、社会经济统计学研究对象(C )。
A、社会经济现象总体B、社会经济现象个体C、社会经济现象总体的数量方面D、社会经济现象的数量方面2、统计研究在( B )阶段的方法属于大量观察法。
A、统计设计B、统计调查C、统计整理D、统计分析3、、研究某市工业企业生产设备使用状况,那么,统计总体为( A )。
A、该市全部工业企业B、该市每一个工业企业C、该市全部工业企业每一台生产设备D、该市全部工业企业所有生产设备4、下列标志属于品质标志的是( C )。
A、工人年龄B、工人工资C、工人性别D、工人体重5、下列变量中,属于连续变量的是( C )。
A、企业数B、职工人数C、利润额D、设备台数6、把一个工厂的工人组成总体,那么每一个工人就是( A )。
A、总体单位B、数量标志C、指标D、报告单位7、几位工人的工资分别为1500元、1800元和2500元,这几个数字是( C )。
A、指标B、变量C、变量值D、标志8、变异的涵义是( A )。
A、统计中标志的不同表现。
B、总体单位有许多不同的标志。
C、现象总体可能存在各种各样的指标。
D、品质标志的具体表现。
9、销售额和库存额两指标( D )。
A、均为时点指标B、均为时期指标C、前者是时点指标,后者是时期指标D、前者是时期指标,后者是时点指标10、下列指标中属于时期指标的有( B )。
A、机器台数B、产量C、企业数D、库存额11、不同时点的指标数值( B )。
A、具有可加性B、不具有可加性C、可加或可减D、以上都不对12、某企业计划规定劳动生产率比上年提高5%,实际提高8%,则该企业劳动生产率计划完成程度为( B )。
A、86%B、102.86%C、60%D、160%13、某市2004年重工业增加值为轻工业增加值的85%,该指标是( C )。
A、比较相对指标B、结构相对指标C、比例相对指标D、计划相对指标二、简答题1、什么是总体和单位,举例说明。
东北师范大学秋心理统计学第一次作业及答案

单选题(共10道试题,共30分。
)1.已知n=10的两个相关样本的平均数差是10.5,其自由度为 A.92.用从总体抽取的一个样本统计量作为总体参数的估计值称为 B.点估计3.双侧检验是关于()的检验 B.只强调差异而不强调方向性4.某一事件在无限测量中所能得相对出现的次数是 C.概率5.从变量的测量水平来看,以下数据与其他不同类的变量取值 D.1克6.在3×2×2的设计当中有多少个一级交互作用 A.37.方差分析的基本原理是 C.综合的F检验8.进行分组次数分布统计时,关键的一点是 A.确定每组的取值范围9.()表明了从样本得到的结果相比于真正总体值的变异量 D.取样误差10.关于独立组和相关组的说法错误的是A.独立组问题往往来自组内设计B.相关组问题往往来自组内设计C.独立组的两个样本的容量可以不同D.相关组的两个样本容量必然相同满分:3分多选题(共10道试题,共30分。
)1.统计分组需要注意的问题是A.分组以被研究对象本质特征为基础B.分组以被研究对象的具体特征为基础C.分组标志要明确D.分组要包含所有数据E.分组要适当剔除极端数据满分:3分2.对于HSD检验和Scheffe检验,以下说法正确的是A.两种检验都是事后检验B.HSD 检验比Scheffe 检验更加敏感C.HSD 检验只能用于n 相等的情况D.只有Scheffe 检验控制了族系误差E.以上说法均正确3.次数分布图可以清晰直观的给出数据的分布趋势,有不同的类型A.直方图B.棒图C.折线图D.茎叶图E.饼图4.二项分布涉及的问题中A.个体要么具有某种特征,要么不具有某种特征B.要么发生事件X ,要么发生事件YC.一个事件具有两个特征D.XY 时间可以同时发生E.XY 可以同时发生,也可不同时发生5.次数分布图包括:A.直方图B.圆形图C.次数多边形图D.累加次数分布图E.折线图6.下列属于非参数检验的方法有 A.卡方检验B.符号检验C.符号等级检验法D.秩和检验E.中位数检验等。
教育统计作业答案.(第一次)

一、请举例说明什么是称名、顺序、等距、等比数据及它们之间的区别。
答:根据数据所反映的变量的性质,可把数据分为称名变量数据、顺序变量数据、等距变量数据和比率变量数据。
1.称名变量。
称名变量只说明某一事物与其他事物在名称、类别或属性上的不同,并不说明事物与事物之间差异的大小、顺序的先后。
例如,人的性别分成男与女;人对衣服颜色的倾向性选择有红色、黄色、蓝色、白色、黑色等;人的气质可分为多血质型、胆汁质型、粘液质型和抑郁质型;而人的血型则可分为A 型、 B 型、 O 型等。
在资料管理与科学研究中,常需要采用一定的规则对称名变量的观察结果进行人为的赋值与编码,从而得到称名变量数据。
如前述的性别数据,用数字符号“1”表示男性,用数字符号“ 0”表示女性(当然也可以用其他数字符号表示);以及用 6 位数字组成全国各地的邮政编码等,皆是称名变量数据。
这些数据仅是类别符号而已,没有在量方面的实质性意义,一般不能对这类数据进行加、减、乘、除运算,但通常可对每一类别计算次数或个数等。
2.顺序变量。
顺序变量是指可以就事物的某一属性的多少或大小按次序将各事物加以排列的变量,具有等级性和次序性的特点。
例如,对学生的阅读能力可划分为好、中、差三个等级;态度等级可划分为“赞成、倾向赞成、中立、倾向反对、反对”这 5 个等级;对体育运动会中各个项目上的表现可以用名次“第1名、第 2名、第 3 名⋯⋯”来表示;还有,心理测验结果常用“拾点量表”或“玖点量表”来表示测验得分高低等级顺序;学校常采用“五级记分制”来评定学生的学习成绩等,皆是顺序变量的具体表现。
不难看出,顺序变量的观测结果有些是直接用序数等级来表示事物属性的多少与大小,另外有些观测结果则是用有序的类别来区分事物属性的差异。
在实际应用和研究中,常用有序的整数或自然数来表示顺序变量的各种观测结果,从而得到顺序变量数据。
例如,可用“ 5,4,3, 2, 1”来表示对某个问题所持赞成还是反对态度之间的5 个不同等级;可用“ 3, 2,1”或“ 5, 3,1”等数字序列来表示阅读能力的“好、中、差”三个等级。
生物统计与试验设计第一次作业

1.从某年某市12岁男孩中抽得81名的一个样本,求得身高的均数为143.05cm,标准误为0.55cm,试估计该市12岁男孩身高均数的95%置信区间。
解:已知n=81,⎺x=143.05,S⎺x=0.55,1-α=0.95,tα/2(80)=1.989143.05-0.55×1.989=141.972=141.956 143.05+0.55×1.989=144.128=144.144所以该市12岁男孩身高均数的95%置信区间(141.956,144.144)。
2.用高蛋白和低蛋白两种饲料饲养大白鼠,在三个月时,测定两组大白鼠的增重量(g),两组的数据分别为:高蛋白组:135,140,108,119,124,166,107,83,110,129,99,133;低蛋白组:70,120,105,86,107,132,96,100,88,92,106.假设两样本所在的正态总体方差相同,但未知。
对以上数据进行置信度为95%时两种蛋白饲料饲养的大白鼠增重差数的区间估计。
解:由题意知:两样本所在的正态总体方差相同,但未知高蛋白组:n1=12,⎺x=121.0833,S12=474.2652低蛋白组:n2=11,⎺x=100.1818,S22=285.3636n1+n2-2=21 tα/2(22)=2.08 S w2=(11×474.2652+10×285.3636)÷21=384.3121S w=19.6于是两种蛋白饲料饲养的大白鼠增重差数在置信度为95%时的区间是:121.0833-100.1818-19.6×2.08×√(1/12+1/11)=3.9012121.0833-100.1818+19.6×2.08×√(1/12+1/11)=37.9018即所求置信区间为(3.9012,37.9018)。
概率论与数理统计作业及解答

概率论与数理统计作业及解答概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U或;AB ACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B U ,当,A B 互斥即AB φ=时,A B U 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m MC C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C == 5. 从1~9九个数字中, 任取3个排成一个三位数, 求: (1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1)()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-U 0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}.21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+U U1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-U 47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i =1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率. 记事件A ={甲中靶},B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3)()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k n nna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭(3) 1111().()rk rr k rr r k k ka b a b P C C Ca b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j ij ki i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑U LI证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂L L L 只计算1次概率.(1,,n i i L 是1,,n L 的一个排列,1,2,,.k n =L )分块概率重数为1,,k i i A A L 中任取1个-任取2个1(1)k -++-L 任取k 个,即121(1)1k k k k k C C C --++-=⇔L121(1)(11)0.k k k k k k C C C -+++-=-=L将,U I 互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i i j ijk i i i i ji j kP A P A P A A P A AA P A -===<<<=-+++-∑∑∑IU U U L U☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立.证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+-U U ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-U 代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C =U 即,A B C U 独立. 必要性:⇒(())()()P A B C P A P B C =U U ()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=U U U[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+== 当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+==(2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A ===(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+U U10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}.(1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯=(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成, 每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -=== X0 1 2 P 22/35 12/35 1/35☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X 的概率分布律和分布函数.0,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==:8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭L3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =:11()0.350.65,1,2.k k P X k pq k --===⨯=L ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++B 偶 4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==:(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==:(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==:2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!,nn n e ⎫⎪⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2=402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭B0.1262.=B其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率. 受损瓷器件数(2000,0.002),X B n p ==:近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭★8. 设随机变量X求:X 的分布函数, (||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.52320111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) .补分布()()|,0.x x xx xS x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰@ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e B28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率.(1) 1312008002(1200)0.2231301602,P X ee-⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ-0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-=(4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4,19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y :贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它.证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y XP X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得'21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+ '21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0.Y y y f y ->=⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y ==''21122()(())|()|(())|()|,0.yY X X f y f x y x y f x y x y y -=+=> 6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫===-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X x f x dy x x ==<<边缘Y的密度为22()),0 1.Y y f y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立?(1) 2220()(,),11,y y X f x f x y dy Ax e dy Axe dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y y y Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X 的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩ 试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,zz z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min(X , Y )的分布函数.(1) 1,01,()10,x X e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,yY e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1x xx x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩. min{,1}1(1)(1),0.1x x e e x e -----=>- (3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩@.min{,1}111,0,,01x x e e x e ---≤⎧⎪=⎨->⎪-⎩. 1,0,()1(),0Y Y yy S y F y e y -≤⎧-=⎨>⎩@.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e e x ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩. 1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N :180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π). (1) 22222()();3bax E D ED dx a ab b b a ππππ===++-⎰(2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4.求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑g20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑g3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0,1.y Y e y f y y --⎧>=⎨≤⎩ (1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-:指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-= (2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=g22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑g 220.9.DX EX E X =-=(2) Y 的分布列为(,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑g222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑g22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p ==10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B n p ==5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯= 根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1315⎛⎫⎛≈Φ-Φ=Φ+Φ- ⎪ ⎪ ⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -:10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N :15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001|ii P X =⎧⎪=>=⎨⎪⎪⎩⎭∑2222(1.34)220.90990.1802.≈-Φ=-Φ=-⨯=⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==(0.8)P X n≥3P ⎛⎫=≥==-⎪⎪⎭0.95,3⎛≈Φ≥ ⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n≥-≥解得1637.65,n≥因此n至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X=的概率.正面次数(40,1/2),X B n p==:400.520,400.50.510.EX np DX npq==⨯===⨯⨯=离散值20X=近似为连续分组区间19.520.5,X<<(20)(19.520.5)P X P X=<<B0.16P⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-=第十二次作业★1. 设X1,X2,⋅⋅⋅,X10为来自N(0, 0.32)的一个样本,求概率1021{ 1.44}iiP X=>∑.标准化变量(0,1),1,2, (10)0.3iXN i=:由卡方分布的定义,10222211~(10).0.3iiXχχ==∑10211.44iiP X=⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3iiP Xχ=⎧⎫==>=≈⎨⎬⎩⎭∑略大,卡方分布上侧分位数20.1(10)15.9872.χ=★2. 设X1,X2,X3,X4,X5是来自正态总体X~(0, 1)容量为5的样本,试求常数c,使得统计量t分布,并求其自由度.由独立正态分布的可加性,12(0,2),X X N+:标准化变量(0,1),U N=:由卡方分布的定义,22222345~(3),X X Xχχ=++U与2χ独立.由t分布的定义,(3),T t===:因此c=自由度为3.★3.设112,,,nX X XL为来自N(μ1,σ2)的样本,212,,,nY Y YL为来自N(μ2,σ2)的样本,且两样本相互独立,2212,S S分别为两个样本方差,222112212(1)(1)2pn S n SSn n-+-=+-.试证明22().pE Sσ=证由221112(1)~(1),n Snχσ--及()211(1)1E n nχ-=-得()2211112(1)(1)1,n SE E n nχσ⎛⎫-=-=-⎪⎝⎭221.ESσ=类似地222.ESσ=222112212(1)(1)2pn S n SES En n⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n nES ESn n n nσ--=+=+-+-★4.设1,...,nX X为总体2(,)Nμσ的简单样本,样本均值和样本方差依次为2,.X S求满足。
统计学第一次作业(工商专升本)

一.单选题(共20题,48.0分)1一个研究者应用有关车祸的统计数据估计在车祸中死亡的人数,在这个例子中使用的统计属于( )。
•A、推断统计学;•B、描述统计学;•C、既是描述统计学,又是推断统计学;•D、既不是描述统计学,有不是推断统计学。
我的答案:A得分:2.4分2某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
这项研究的总体是( )。
•A、2000个家庭•B、200万个家庭•C、2000个家庭的年人均收入•D、200万个家庭的总收入我的答案:B得分:2.4分3对某地区5000个企业的企业注册类型、产值和利润总额等调查数据进行分析,下列说法中正确的是( )。
•A、企业注册类型是定序变量•B、利润总额是品质标志•C、产值是定类变量•D、产值和利润总额都是连续变量我的答案:D得分:2.4分4为了了解居民对小区物业服务的意见和看法,管理人员随机抽取了50户居民,上门通过问卷进行调查。
这种数据收集方法称为( )。
•A、面访式问卷调查•B、实验调查•C、观察式调查•D、自填式问卷调查我的答案:A得分:2.4分5对同一总体选择两个或两个以上标志重叠起来进行分组,称为( )。
•A、简单分组•B、平行分组•C、一次性分组•D、复合分组我的答案:D得分:2.4分6统计表的横行标题表明( )。
•A、全部统计资料的内容•B、研究总体及其组成部分•C、总体特征的统计指标的名称•D、现象的具体数值我的答案:B得分:2.4分7下列指标属于比例相对指标的是( )。
•A、2000年北京市失业人员再就业率为73%•B、三项社会保险统筹基金收缴率95%•C、北京人口性别比为103•D、北京每百户居民拥有电脑32台我的答案:C得分:2.4分8一组数据排序后处于25%和75%的位置上的值称为( )。
•A、众数•B、中位数•C、四分位数•D、算术平均数我的答案:C得分:2.4分9权数对加权算术平均数的影响作用,决定于( )。
数理统计第一次大作业——回归分析
北京市农业经济总产值的逐步回归分析姓名:学号:摘要:农业生产和农村经济是国民经济的基础,影响农村经济总产值的因素有多种,主要包括农林牧渔业。
本文以北京市农业生产和农村经济总产值为对象,首先分析了各种因素的线性相关性,建立回归模型,再利用逐步回归法进行回归分析,得到最符合实际情况的回归模型。
以SPSS 17.0为分析工具,给出了实验结果,并用预测值验证了结论的正确性。
关键词:农业生产和农村经济,线性回归模型,逐步回归分析,SPSS1.引言农林牧渔业统计范围包括辖区内全部农林牧渔业生产单位、非农行业单位附属的农林牧渔业生产活动单位以及农户的农业生产活动。
军委系统的农林牧渔业生产(除军马外)也应包括在内,但不包括农业科学试验机构进行的农业生产。
在近几年中国经济快速增长的带动下,各地区农林牧渔业也得到了突飞猛进的发展。
以北京地区为例,2005年的农业总产值为1993年的6倍。
因此用统计方法研究分析农业总产值对指导国民经济生产,合理有效的进行产业布局,提高生产力等有着重要意义。
表1 北京市农业经济产值及各产品产量统计数据本文以北京市农生产为对象,分析了农业经济总产值与粮食产量、棉花产量、油料产量、蔬菜产量、干鲜果品产量、猪牛羊肉产量、禽蛋产量、水产品产量的关系,并建立农业经济总产值的回归模型。
表1中列出了1999年至2008年间的统计数据(数据来源于北京统计信息网)。
2.线性回归模型的建立2.1 线性回归模型的假设为了研究农业经济总产值与各种农生产量的关系,必须要建立二者之间的数学模型。
数学模型可以有多种形式,比如线性模型,二次模型,指数模型,对数模型等等。
而实际生活中,影响农业经济总产值的因素很多,并且这些因素的影响不能简单的用某一种模型来描述,所以要建立农业经济总产值的数学模型往往是很难的。
但是为了便于研究,我们可以先假定一些前提条件,然后在这些条件下得到简化后的近似模型。
以下我们假定两个前提条件:1) 农产品的价格是不变的。
西南大学《数理统计》作业及答案
数理统计第一次1、设总体X 服从正态分布),(2σμN ,其中μ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是( )。
(A )∑=-ni i X n122)(μσ是统计量 (B )∑=ni i X n122σ是统计量(C )∑=--ni iX n 122)(1μσ是统计量 (D )∑=ni iX n12μ是统计量2、设两独立随机变量)1,0(~N X ,)9(~2χY ,则YX 3服从( )。
)(A )1,0(N )(B )3(t )(C )9(t )(D )9,1(F3、设两独立随机变量)1,0(~N X ,2~(16)Y χ)。
)(A )1,0(N )(B (4)t )(C (16)t )(D (1,4)F4、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ).)(A ∑-=-1111n i i X n )(B ∑=-n i i X n 111 )(C ∑=n i i X n 21 )(D ∑-=111n i i X n 5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是( ).(A )3/X σ; (B )414ii X=∑; (C )σ-1X ; (D )4221/ii Xσ=∑6、设总体),(~2σμN X ,1,,n X X 为样本,S X ,分别为样本均值和标准差,则下列正确的是( ).2() ~(,)A X N μσ 2() ~(,)B nX N μσ22211()()~()ni i C X n μχσ=-∑)()~()X D t n Sμ-7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ⋅⋅⋅是来自总体的简单随机样本,则下列随机变量不是统计量为( )( A ) . 12X X +( B ){}max ,15i X i ≤≤( C ) 52X p +( D )()251X X -8、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。
《统计学》第一次作业题答案
第一章绪论练习题一、填空题:1.统计总体的特征可概括成同质性、大量性和差异性。
2.现实生活中,“统计”一词有三种涵义,即统计工作、统计资料及统计学。
3.统计的作用主要体现在它的三大职能上,即信息职能、咨询职能及监督职能。
4.从认识的特殊意义上看,一个完整的统计过程,一般可分为三个阶段,即统计调查、统计整理及统计分析。
5. 当某一标志的具体表现在各个总体单位上都相同时,则为不变标志。
6. 当某一标志的具体表现在各个总体单位上不尽相同时,则为可变标志。
7. 同一变量往往有许多变量值,变量按变量值是否连续可分为离散变量和连续变量。
8. 凡是客观存在的,并在某一相同性质基础上结合起来的许多个别事物组成的整体,我们称之为总体。
二、单项选择题:1. 要了解某市工业企业的技术装备情况,则统计总体是()。
A、该市全部工业企业B、该市每一个工业企业C、该市全部工业企业的某类设备D、该市工业企业的全部设备2. 对交院学生学习成绩进行调查,则总体单位是()。
A、交院所有的学生B、交院每一位学生C、交院所有的学生成绩D、交院每一位学生成绩3. 对全国城市职工家庭生活进行调查,则总体单位是()。
A、所有的全国城市职工家庭B、所有的全国城市职工家庭生活C、每一户城市职工家庭D、每一户城市职工家庭生活4. 对全国机械工业企业的设备进行调查,则统计总体是()。
A、全国所有的机械工业企业B、全国所有的机械工业企业的设备C、全国每一个机械工业企业E、全国每一个机械工业企业的设备5. 对食品部门零售物价进行调查,则总体单位是()。
A、所有的食品部门零售物B、每一个食品部门零售物C、所有的食品部门零售物价D、每一个食品部门零售物价6. 港口货运情况调查,则统计总体是()。
A、所有的港口货运B、每一个港口货运C、所有的港口货运情况D、每一个港口货运情况7. 某班学生数学考试成绩分别为65分、71分、80分和87分,这四个数字是()。
A、指标B、标志C、变量D、变量值8. 下列属于品质标志的是()。
统计学第一次作业答案
统计学第一次作业答案问题1 统计一词包含统计工作、统计资料、统计学等三种涵义。
对错问题2 全面调查和非全面调查是根据调查结果所取得的资料是否全面来划分的对错问题3 重点调查中的重点单位是标志值较大的单位对错问题4 所谓组距是指每个组变量值中的最大值与最小值之差,也就是组的上限与下限之差对错问题5 某企业计划产值比上年提高10%,实际比上年提高15%,则其计划完成程度为150%5%4。
56% 104.55%问题6 某厂生产了三批产品,第一批产品的废品率为1%,第二批产品的废品率为1。
5%,第三批产品的废品率为2%;第一批产品数量占这三批产品总数的25%,第二批产品数量占这三批产品总数的30%,则这三批产品的废品率为1.50% 1。
60% 4.50%1。
48%问题7 在全国人口普查中男性是品质标志人的年龄是变量人口的平均寿命是数量标志某家庭的人口数是统计指标问题8 指标是说明总体特征的,标志是说明总体单位特征的,所以标志和指标之间的关系是固定不变的标志和指标之间的关系是可以变化的标志和指标都是可以用数值表示的只有指标才可以用数值表示问题9 属于数量指标的是粮食总产量粮食平均亩产量人均粮食生产量人均粮食消费量问题10 重点调查中的重点单位是指这些单位举足轻重这些单位是工作重点这些单位的数量占总体全部单位的很大比重这些单位的标志总量在总体标志总量中占绝大比重问题11 对全国各铁路交通枢纽的货运量、货物、种类等进行调查,以了解我国铁路的货运量的基本情况和问题,这种调查方式属于普查抽样调查典型调查重点调查问题12 抽样调查与重点调查的主要区别是作同不同组织方式不同灵活程度不同选取调查单位的方法不同问题13 统计整理阶段最关键的问题是对调查资料的审核统计分组统计汇总编制统计表问题14某管理局对其所属企业的生产计划完成百分比采用如下分组,请指出哪项是正确的80—89% 90—99%100—109%110%以上80以下80.1—90% 90.1-100% 100。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一次作业
1. 以下数据是调查15个学生是否学过四门课程(记为A、B、C、D)的资料,0表示没有学过,1表示已学过。
0 0 0 1 m 1 1 0 0 f
0 0 1 0 m 0 0 0 1 f
0 1 1 0 f 1 1 0 0 m
1 0 1 1 m 0 0 0 0 m
0 1 1 0 f 1 1 1 1 f
1 0 0 1 f 0 0 1 1 m
1 0 1 1 m 1 0 1 1 f
1 0 1 0 f
(1)对这组资料创建一SAS数据集,然后按男女分别生成两个SAS数据集。
(2)建立一新变量NEW:先把是否学过4门课程的资料看成4 个元素的向量,并作为一个4位二进制数,然后转换为十进制数
作为NEW的值。
比如:(1011)可化为1*23+0*22+1*21+1*20=11。
然后创建一个包含新变量和四门课得分的SAS数据集;并按NEW值从小到大的次序排列后输出。
(3)请统计一下15个学生中学过A、B、C、D四门课的各有多少人,并把结果存为SAS数据集后并打印输出。
程序:
data m f;/*将男女生的数据分别输入到数据集m、f*/
input A B C D S$@@;
if S='m'then output m;
if S='f'then output f;
cards;
0 0 0 1 m 1 1 0 0 f
0 0 1 0 m 0 0 0 1 f
0 1 1 0 f 1 1 0 0 m
1 0 1 1 m 0 0 0 0 m
0 1 1 0 f 1 1 1 1 f
1 0 0 1 f 0 0 1 1 m
1 0 1 1 m 1 0 1 1 f
1 0 1 0 f
;
run;
data a;/*产生数据集放NEW变量*/
set m f;
NEW=A*2**3+B*2**2+C*2**1+D*2**0;
proc sort data=a;by NEW;/*按NEW变量排序*/
proc print;
run;
data b;/*PA,PB,PC,PD分别表示分别通过A,B,C,D四门课的累积人数*/
set m f;
PA+A;PB+B;PC+C;PD+D;
drop A B C D;
proc print;
run;
(2)
(3)
则A B C D 各科通过人数分别为:8,5,9,8个人
2. 试用概率函数计算正态分布N(3,9)的分布函数F(X)。
X F(X)
0 0.158655254
0.1 0.166855348
0.2 0.175323945
0.3 0.184060125
0.4 0.193062337
0.5 0.202328381
0.6 0.211855399
0.7 0.221639864
0.8 0.231677575
0.9 0.241963652
1 0.252492538
1.1 0.263257995
1.2 0.274253118
1.3 0.285470336
1.4 0.296901429
1.5 0.308537539
1.6 0.320369191
1.7 0.332386313
1.8 0.344578258
程序:
data a;
do x=0to3by0.1; y=probnorm((x-3)/3); file print;put y; end;
run;
3.试用分位数函数计算F
程序:
data a;
do ndf=1to5;
do ddf=1to10;
do a=0.05,0.025,0.005;
F=finv(1-a,ndf,ddf);
file print;put F;
end;end;end;
run;
4. 以下四行数据是四次记录下来的数据,每次从4 个厂家(用A,B,C,D代表)生产的同类食品中,每个厂家抽取三包测量每包的数量。
每一行开头三个数值是厂家A生产,以后依次是B、C、D生产的。
72 74 69 61 61 65 62 65 70 85 76 61
67 52 62 60 55 59 64 65 64 67 72 60
57 66 72 72 43 43 63 66 72 56 75 92
57 56 78 60 63 58 61 79 68 73 86 71
(1)请按数据形式输入后生成外部数据文件DB25.TXT.
(2)用DATA步调入外部文件DB25.TXT(用INFILE和INPUT语句)生成包括变量:TIME(次数),N(包的序
号),FACTORY(厂家)和NUMBER(数量)的SAS数据集
(3)请按以下要求输出(2)产生的SAS数据集:
1.只包含变量TIME,FACTORY和NUMBER;
2.对每个厂家的资料分别输出报告,要求每包食品的数量按小到大的次序排好.
(4)计算每个厂家的12包食品的平均数量,标准差,极差和总和等描述统计量;然后存贮为一个SAS数据集(包含4 个观测)。
程序:
data test;/*输入数据到test数据集*/
do time=1to4;
do factory='A','B','C','D';
do n=1to3;
input number@@;
output;
end;
end;
end;
cards;
72 74 69 61 61 65 62 65 70 85 76 61
67 52 62 60 55 59 64 65 64 67 72 60
57 66 72 72 43 43 63 66 72 56 75 92
57 56 78 60 63 58 61 79 68 73 86 71
;
data_null_;/*将test数据集导出到外部文件DB25.TXT*/
set test;
file'D:\DB25.TXT';
put number;
data test2;/*导入外部文件的数据到test2数据集*/
infile'D:\DB25.TXT';
do time=1to4;
do factory='A','B','C','D';
do n=1to3;
input number @;
output;
end;
end;
end;
proc print;var time factory number; run;/*打印test2数据集中的数据,包含变量 time factory number*/
data a b c d;/*将A,B,C,D厂的数据分别输入到数据集a,b,c,d*/
set test2;
if factory='A'then output a;
if factory='B'then output b;
if factory='C'then output c;
if factory='D'then output d;
proc sort data=a;by number;proc print;
proc sort data=b;by number;proc print;
proc sort data=c;by number;proc print;
proc sort data=d;by number;proc print;
run;
proc summary data=a;var number;/*计算描述统计量*/
output out=aa mean=mean std=std range=range sum=sum; run;
proc summary data=b;var number;
output out=bb mean=mean std=std range=range sum=sum; run;
proc summary data=c;var number;
output out=cc mean=mean std=std range=range sum=sum; run;
proc summary data=d;var number;
output out=dd mean=mean std=std range=range sum=sum; run;
data factory;/*建立工厂名数据集*/
do factory='A','B','C','D';output;end;run;
data sta;/*将各个工厂的描述信息汇总到数据集sta*/
set aa bb cc dd;
data last;
merge factory sta;
proc print;run;
(3)1.
(3)2.A厂:
B厂
C厂
D厂
(4)
5、书上第28页,1.4题
说明:前四题给出SAS程序,并打印出来;第五题要求手写,直接写在打印出来的纸上,不要用本子写。