比较低碳钢和铸铁的机械性能有何不同
说明铸铁和低碳钢断口的特点

说明铸铁和低碳钢断口的特点铸铁和低碳钢是常见的金属材料,在工业生产和日常生活中都有广泛应用。
在使用这些材料时,经常需要对它们的断口进行分析,以了解其特点和性能。
本文将从断口的形态、颜色、纹理等方面详细说明铸铁和低碳钢断口的特点。
一、铸铁断口特点1. 断口形态铸铁的断口形态通常呈灰白色或深灰色,呈片状或贝壳状。
这是因为铸造过程中,铸件内部存在气孔、夹杂物等缺陷,导致其强度较低。
当受到拉伸力时,这些缺陷会在断裂面上形成明显的裂纹,最终导致片状或贝壳状的断口。
2. 断口颜色铸铁的断口颜色通常为灰白色或深灰色。
其中灰白色断口是由于表面氧化而形成的;深灰色则是由于碳化物晶体在断裂面上反射光线而形成的。
3. 断口纹理铸铁的断口纹理通常呈现出明显的晶粒状结构。
这是由于铸造过程中,液态金属在冷却过程中形成了不同大小的晶粒,断裂时这些晶粒会在断口上形成明显的纹理。
二、低碳钢断口特点1. 断口形态低碳钢的断口形态通常呈现出光滑平整的贝壳状或韧窝状。
这是因为低碳钢具有较高的韧性和塑性,在受到拉伸力时,其分子间结合力会先逐渐减弱,而不是突然断裂,最终导致贝壳状或韧窝状的断口。
2. 断口颜色低碳钢的断口颜色通常为银白色或灰白色。
其中银白色是由于表面氧化而形成的;灰白色则是由于金属内部晶粒在断裂面上反射光线而形成的。
3. 断口纹理低碳钢的断口纹理通常呈现出细密均匀的晶粒结构。
这是由于低碳钢具有较高的纯度和均匀性,在冷却过程中形成了细密均匀的晶粒,断裂时这些晶粒会在断口上形成均匀的纹理。
三、铸铁和低碳钢断口特点对比1. 形态对比铸铁的断口形态通常呈片状或贝壳状,而低碳钢的断口形态通常呈贝壳状或韧窝状。
这是由于两者材料性质不同,在受到拉伸力时产生了不同的变化。
2. 颜色对比铸铁和低碳钢的断口颜色都为灰白色或深灰色,但是在具体颜色上还是存在差异。
其中铸铁的灰白色更加明显,而低碳钢则更加接近银白色。
3. 纹理对比铸铁和低碳钢的断口纹理也存在差异。
工程力学实验报告

工程力学实验报告自动化12级实验班§1-1 金属材料的拉伸实验一、试验目的1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度R eH,下屈服强度R eL和抗拉强度R m 。
2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。
3.测定铸铁的抗拉强度R m。
4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。
5.学习试验机的使用方法。
二、设备和仪器1.试验机(见附录)。
2.电子引伸计。
3.游标卡尺。
三、试样(a)bhl0l(b)图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。
为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。
我国国标GB/T228-2002 “金属材料 室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。
它们均由夹持、过渡和平行三部分组成。
夹持部分应适合于试验机夹头的夹持。
过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。
平行部分中测量伸长用的长度称为标距。
受力前的标距称为原始标距,记作l 0,通常在其两端划细线标志。
国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。
四、实验原理低碳钢(Q235 钢)拉伸实验(图解方法)将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F-ΔL 曲线),如图(1-2)。
观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。
屈服阶段反映在F-ΔL 曲线图上为一水平波动线。
上屈服力eH F 是试样发生屈服而载荷首次下降前的最大载荷。
下屈服力eL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。
最大力R m 是试样在屈服阶段之后所能承受的最大载荷。
低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告
实验目的:
通过对低碳钢和铸铁的扭转实验,比较两种材料的扭转特性差异。
实验装置:
1. 扭转试验机
2. 低碳钢样件
3. 铸铁样件
4. 数据采集仪器
实验步骤:
1. 根据样件尺寸和试验要求,制作低碳钢和铸铁样件。
2. 将样件安装到扭转试验机上,并连接数据采集仪器。
3. 调整实验参数,如扭转角度、扭矩等。
4. 开始进行扭转实验,记录数据,包括扭矩和转角。
5. 完成实验后,对数据进行分析和处理。
实验结果:
1. 低碳钢的扭转特性:记录低碳钢样件在不同扭转角度下的扭矩和转角数据,并绘制相应的扭转曲线图。
2. 铸铁的扭转特性:记录铸铁样件在不同扭转角度下的扭矩和转角数据,并绘制相应的扭转曲线图。
结果讨论:
1. 通过对低碳钢和铸铁的扭转特性进行比较,可以得出它们的扭转强度以及变形能力的差异。
2. 分析低碳钢和铸铁的扭转曲线,可以了解其材料性能的优劣。
3. 根据实验结果,可以选择合适的材料应用于不同领域,以满足对扭转强度和变形能力的不同要求。
结论:
通过对低碳钢和铸铁的扭转实验,我们可以得出它们的扭转特性有所不同。
通过对实验结果的分析,可以选择合适的材料用于相关领域,以满足不同的扭转要求。
低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时地力学性能根据材料在常温,静荷载下拉伸试验所得地伸长率大小,将材料区分为塑性材料和脆性材料.它是由试验来测定地.工程上常用地材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时地力学性能..低碳钢拉伸实验在拉伸实验中,随着载荷地逐渐增大,材料呈现出不同地力学性能:()弹性阶段在拉伸地初始阶段,σε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段.线性段地最高点则称为材料地比例极限(σ),线性段地直线斜率即为材料地弹性摸量.线性阶段后,σε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失.卸载后变形能完全消失地应力最大点称为材料地弹性极限(σ),一般对于钢等许多材料,其弹性极限与比例极限非常接近.(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服.使材料发生屈服地应力称为屈服应力或屈服极限(σ).当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成°斜纹.这是由于试件地°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成地,故称为滑移线.()强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料地抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程地应力应变曲线为一条斜线,其斜率与比例阶段地直线段斜率大致相等.当载荷卸载到零时,变形并未完全消失,应力减小至零时残留地应变称为塑性应变或残余应变,相应地应力减小至零时消失地应变称为弹性应变.卸载完之后,立即再加载,则加载时地应力应变关系基本上沿卸载时地直线变化.因此,如果将卸载后已有塑性变形地试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化.在硬化阶段应力应变曲线存在一个最高点,该最高点对应地应力称为材料地强度极限(σ),强度极限所对应地载荷为试件所能承受地最大载荷.()局部变形阶段试样拉伸达到强度极限σ之前,在标距范围内地变形是均匀地.当应力增大至强度极限σ之后,试样出现局部显著收缩,这一现象称为颈缩.颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在点断裂.试样地断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏地原因不仅有拉应力还有切应力.()伸长率和断面收缩率试样拉断后,由于保留了塑性变形,标距由原来地变为.用百分比表示地比值δ()*称为伸长率.试样地塑性变形越大,δ也越大.因此,伸长率是衡量材料塑性地指标.原始横截面面积为地试样,拉断后缩颈处地最小横截面面积变为,用百分比表示地比值Ψ()*称为断面收缩率.Ψ也是衡量材料塑性地指标.所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有度茬口,由于该方向上存在最大剪应力τ造成地,属于剪切破坏力..铸铁拉伸实验铸铁是含碳量大于并含有较多硅,锰,硫,磷等元素地多元铁基合金.铸铁具有许多优良地性能及生产简便,成本低廉等优点,因而是应用最广泛地材料之一.铸铁在拉伸时地力学性能明显不同于低碳钢,铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象.断口垂直于试样轴线,这说明引起试样破坏地原因.铸铁拉伸破坏断口与正应力方向垂直说明由拉应力拉断地,属于拉伸破坏,正应力大于了许用值.三、低碳钢和铸铁在拉伸和压缩时力学性质地异同点综述在工程建设中,低碳钢是典型地塑性材料,铸铁是典型地脆性材料.塑性材料和脆性材料在力学性能上地主要特征是:塑性材料在断裂前地变形较大,塑性指标(断后伸长率和断面收缩率)较高,抗拉能力较好,其常用地强度指标是屈服强度,一般地说,在拉伸和压缩时地屈服强度相同:脆性材料在断裂前地保存较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度.但是,材料不管是塑性地还是脆性地,将随材料所处地温度、应变速率和应力状态等条件地变化而不同.。
低碳钢和铸铁拉伸实验报告

低碳钢和铸铁拉伸实验报告一、实验目的。
本实验旨在通过对低碳钢和铸铁的拉伸实验,了解两种材料的机械性能,探究它们在受力过程中的表现及性能差异。
二、实验原理。
拉伸实验是通过对材料施加拉力,观察其受力变形情况,从而得出材料的拉伸性能参数。
在实验中,我们将对低碳钢和铸铁进行拉伸实验,通过拉伸试验机施加拉力,测量其应力-应变曲线,得出材料的屈服强度、抗拉强度、断裂伸长率等参数,从而对两种材料的性能进行比较分析。
三、实验步骤。
1. 将低碳钢和铸铁试样分别固定在拉伸试验机上;2. 施加拉力,记录应力-应变曲线;3. 测量材料的屈服强度、抗拉强度、断裂伸长率等参数;4. 对实验结果进行分析和比较。
四、实验数据及分析。
经过拉伸实验,我们得到了低碳钢和铸铁的应力-应变曲线,通过对曲线的分析,得出了以下数据:低碳钢:屈服强度,250MPa。
抗拉强度,400MPa。
断裂伸长率,25%。
铸铁:屈服强度,150MPa。
抗拉强度,300MPa。
断裂伸长率,5%。
通过对比两种材料的拉伸性能参数,可以得出以下分析:1. 低碳钢的屈服强度和抗拉强度均高于铸铁,表明低碳钢具有更好的抗拉性能;2. 低碳钢的断裂伸长率远高于铸铁,表明低碳钢具有更好的延展性,更适合用于受力较大、需要一定延展性的场合;3. 铸铁的屈服强度和抗拉强度较低,但硬度较高,适合用于一些对硬度要求较高的场合。
五、实验结论。
通过本次实验,我们对低碳钢和铸铁的拉伸性能进行了比较分析,得出了以下结论:1. 低碳钢具有较好的抗拉性能和延展性,适合用于需要抗拉性能和延展性的场合;2. 铸铁具有较高的硬度,适合用于对硬度要求较高的场合;3. 不同材料具有不同的机械性能,需要根据具体使用场合选择合适的材料。
六、实验总结。
本次拉伸实验使我们更加深入地了解了低碳钢和铸铁的机械性能,对于工程材料的选择和应用具有一定的指导意义。
在今后的工程实践中,我们应根据具体的使用场合和要求,选择合适的材料,以确保工程质量和安全。
材料力学实验指导书(正文)
实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。
2.测定铸铁在拉伸以及压缩时的强度极限σb。
3.观察拉压过程中的各种现象,并绘制拉伸图。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、设备及仪器1.电子万能材料试验机。
2.游标卡尺。
图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。
它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。
由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。
图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。
图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。
(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。
由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。
上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。
当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。
移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。
(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。
(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。
可即时打印出完整的试验报告和试验曲线。
低碳钢铸铁的扭转破坏实验报告
低碳钢铸铁的扭转破坏实验报告低碳钢和铸铁是常见的金属材料,在工业生产和日常生活中广泛应用。
本次实验旨在通过扭转破坏试验比较两种材料的力学性能和强度差异。
1.实验目的:(1)了解低碳钢和铸铁的力学性能;(2)比较低碳钢和铸铁在扭转加载下的强度差异。
2.实验仪器和试件:(1)扭转试验机:用于施加扭转力;(2) 低碳钢试件:长度为200mm,直径为10mm;(3) 铸铁试件:长度为200mm,直径为10mm。
3.实验步骤:(1)准备两组试件,分别为低碳钢和铸铁试件;(2)将试件固定在扭转试验机上,保证试件端部垂直于扭转轴线;(3)施加扭转负荷,并记录扭转力和扭转角度;(4)当试件出现破坏时停止加载,记录破坏负荷和扭转角度。
4.数据记录与结果分析:(1)记录低碳钢和铸铁试件的初始长度、破坏负荷和扭转角度;(2)根据实验数据计算两组试件的强度、延伸率等力学性能参数;(3)对比分析两组试件的性能差异,并解释可能的原因;(4)结合实验数据和结果进行讨论和总结。
5.实验注意事项:(1)在加载过程中,避免超过试件的承载能力,以防止试件破坏过程过快或损坏设备;(2)实验后及时清理和维护实验设备,确保下次实验的可靠性。
6.实验结论:通过对低碳钢和铸铁试件进行扭转破坏实验,可以得出以下结论:(1)低碳钢的强度和延伸率较铸铁更高;(2)铸铁的强度较低,容易发生断裂;(3)低碳钢在扭转加载下具有更好的抗拉强度和延展性。
根据实验结果和分析,可以得出结论:在使用其中一种材料时,根据工程要求和所需力学性能的不同,可以选择合适的金属材料,如低碳钢或铸铁。
低碳钢和铸铁拉伸时破坏原因
低碳钢和铸铁拉伸时破坏原因
低碳钢和铸铁是两种常见的材料。
在进行拉伸测试时,它们可能会出现破坏现象。
那么,这些破坏现象是什么原因引起的呢?本文将从以下几个方面进行探讨。
1. 材料强度
低碳钢和铸铁的强度是决定其拉伸破坏的关键因素。
低碳钢的强度较高,因此其更难破坏。
与之相反,铸铁的强度较低,容易在拉伸过程中出现破坏。
2. 材料的韧性
韧性是一个材料在受力过程中承受塑性变形的能力。
在拉伸测试时,如果材料的韧性不足,很容易在受到极端应力时出现破坏。
低碳钢通常具有较高的韧性,因此其更难破坏。
而铸铁的韧性较差,拉伸时容易出现断裂等现象。
3. 金相结构
金相结构是指材料的微观结构。
不同的金相结构会影响材料的力学性能。
对于低碳钢而言,通常具有致密的奥氏体结构,因此其强度和韧性均较好。
而铸铁的金相结构通常是片状珠光体,这种结构在受到应力时容易产生裂纹,因此容易在拉伸测试时出现破坏。
4. 热处理工艺
热处理工艺是指对材料进行热处理以改变其金相结构和力学性能的过程。
不同的热处理工艺会对材料的拉伸性能产生不同的影响。
例如,
通过正火可以增加低碳钢的硬度和强度,提高其抗拉强度和韧性。
而
对于铸铁,热处理则主要通过调节其铸造温度和速度来改善其金相结
构和力学性能。
综上所述,低碳钢和铸铁在拉伸测试时出现破坏的原因主要有材料强度、韧性、金相结构以及热处理工艺等方面的差异。
了解这些差异,
可以帮助我们更好地选择适合的材料,从而提高产品的品质和可靠性。
铸铁与铸钢区别
钢铁中均含有少量合金元素和杂质的铁碳合金,按含碳量不同可分为:生铁――含C为2.0~4.5%钢――含C为0.05~2.0%熟铁――含C小于0.05%铸铁是含碳量在2%以上的铁碳合金。
工业用铸铁一般含碳量为2%~4%。
碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。
除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。
合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。
碳、硅是影响铸铁显微组织和性能的主要元素。
铸铁可分为:①灰口铸铁。
含碳量较高(2.7%~4.0%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。
熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。
用于制造机床床身、汽缸、箱体等结构件。
②白口铸铁。
碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。
凝固时收缩大,易产生缩孔、裂纹。
硬度高,脆性大,不能承受冲击载荷。
多用作可锻铸铁的坯件和制作耐磨损的零部件。
③可锻铸铁。
由白口铸铁退火处理后获得,石墨呈团絮状分布,简称韧铁。
其组织性能均匀,耐磨损,有良好的塑性和韧性。
用于制造形状复杂、能承受强动载荷的零件。
④球墨铸铁。
将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。
比普通灰口铸铁有较高强度、较好韧性和塑性。
用于制造内燃机、汽车零部件及农机具等。
灰口铸铁→球化→球墨铸铁⑤蠕墨铸铁。
将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。
力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。
用于制造汽车的零部件。
⑥合金铸铁。
普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。
合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。
用于制造矿山、化工机械和仪器、仪表等的零部件。
铸钢用以浇注铸件的钢。
铸造合金的一种。
铸钢分为铸造碳钢、铸造低合金钢和铸造特种钢3类。
①铸造碳钢。
以碳为主要合金元素并含有少量其他元素的铸钢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较低碳钢和铸铁的机
械性能有何不同
内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
1. 比较低碳钢和铸铁的机械性能有何不同
低碳钢是塑性材料,抗拉强度大,分为弹性阶段、屈服阶段、强化阶段、局部变
形阶段。而铸铁是脆性材料,抗拉强度小,没有屈服和缩颈现象,拉断前的应变
很小。
2试件的形状和尺寸对测定弹性模量有无影响
弹性模量之和零件的材料有关。
至于零件的形状和尺寸改变 不会影响弹性模量。
1为何低碳钢压缩时测不出破坏荷载,而铸铁压缩时测不出屈服荷载
低碳钢延伸率大,在承受压缩荷载时,起初变形较小,力的大小沿直线上升,载
荷进一步加大时,试件被压成鼓形,最后压成饼形而不破坏,故其强度极限无法
测定。也就是说低碳钢压缩时弹性模量E和屈服极限σS与拉伸时相同,不存在
抗压强度极限。
铸铁是脆性材料其情况正好与低碳钢相反,没有屈服现象,所以压缩时测不出屈
服载荷
3.通过拉伸与压缩实验,比较低碳钢的屈服极限在拉伸与压缩时的差别
屈服极限:屈服极限是使试样产生给定的永久变形时所需要的应力,金属材料试样
承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑
性变形,这种现象称为屈服.
低碳钢的拉伸屈服极限:有一个比较明显的点,即试件会比较明显的被突然拉长.
低碳钢的压缩屈服极限:没有有一个比较明显的点.因为它会随压力增加,截面积变
大.