初中数学二次函数与一元二次方程PPT
合集下载
2.5 二次函数与一元二次方程 第1课时 初中数学北师版九年级下册课件

学习目标
自主学习
合作探究
当堂检测
课堂总结
探究:二次函数和一元二次方程的关系
活动1:如图,以40m/s的速度将小球沿与地面成30°角的方向击出 时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的 飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系: h=20t-5t2,考虑以下问题:
学习目标
自主学习
合作探究
当堂检测
课堂总结
问题1:球的飞行高度能否达到15m?如果能,需要多少飞行时间?
h
h=20t-5t2
15
O1
3
t
解:解方程 15=20t-5t2, t2-4t+3=0, t1=1,t2=3.
你能结合上图,指出 为什么在两个时间求
的高度为15m吗?
∴当球飞行1s或3s时,它的高度为15m.
(1)解:当y=0时,x2+x-2=0,解得x1=-2,x2= 1 ∴与 x 轴有交点,有两个交点.
(2)当y=0时,4x2-4x+1=0,解得x1=x2=0.5 ∴与 x 轴有一个交点.
(3)当y=0时,2x2–2x+1=0 ∵(-2)2-4×2×1=-4<0 ∴与 x 轴没有交点.
学习目标
自主学习
学习目标
自主学习
合作探究
当堂检测
课堂总结
练一练: 下列二次函数的图象与 x 轴有交点吗? 若有,求出交点横坐标.
(1) y = x2+x-2 (2) y =4x2 -4x +1 (3) y = 2x2 – 2x+ 1
y
o
x
令 y= 0,解一元二次方程的根
学习目标
自主学习
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
《二次函数与一元二次方程》二次函数PPT教学课件

情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1
两
(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,
九年级数学上册教学课件《二次函数与一元二次方程》

解:
t2 - 4t+4=0.
t1 =t2 =2.
当小球飞行2s时,它的飞行高度为20m.
你能结合图指出为什么只在一个时间小球的高度为20m吗?
2s
20m
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
h=20t-5t2.
20.5=20t-5t2.
解:
t2 - 4t+4.1=0.
因为(-4)2 – 4×4.1<0,
有两个不同实根有两个相同实根没有根
有两个交点有一个交点没有交点
△ > 0
△ = 0
△ < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系(2)
ax2+bx+c = 0 的根
抛物线 y=ax2+bx+c与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
无公共点
先画出函数图象:
公共点的函数值为 。
0
对应一元二次方程的根是多少?
x1 =-2,
x2 =1.
x1 =x2 =3.
方程无解
有两个不等的实根
有两个相等的实根
没有实数根
由上述问题,你可以得到什么结论呢?
方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x轴公共点的横坐标。当抛物线与x轴没有公共点时,对应的方程无实数根.
综合应用
解:(1)如图所示.(2)由图象可知,铅球推出的距离为10.
拓展延伸
7.把下列各题中解析式的编号①②③④与图象的编号A、B、C、D对应起来.①y=x2+bx+2; ②y=ax(x-3); ③y=a(x+2)(x-3); ④y=-x2+bx-3.
t2 - 4t+4=0.
t1 =t2 =2.
当小球飞行2s时,它的飞行高度为20m.
你能结合图指出为什么只在一个时间小球的高度为20m吗?
2s
20m
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
h=20t-5t2.
20.5=20t-5t2.
解:
t2 - 4t+4.1=0.
因为(-4)2 – 4×4.1<0,
有两个不同实根有两个相同实根没有根
有两个交点有一个交点没有交点
△ > 0
△ = 0
△ < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系(2)
ax2+bx+c = 0 的根
抛物线 y=ax2+bx+c与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
无公共点
先画出函数图象:
公共点的函数值为 。
0
对应一元二次方程的根是多少?
x1 =-2,
x2 =1.
x1 =x2 =3.
方程无解
有两个不等的实根
有两个相等的实根
没有实数根
由上述问题,你可以得到什么结论呢?
方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x轴公共点的横坐标。当抛物线与x轴没有公共点时,对应的方程无实数根.
综合应用
解:(1)如图所示.(2)由图象可知,铅球推出的距离为10.
拓展延伸
7.把下列各题中解析式的编号①②③④与图象的编号A、B、C、D对应起来.①y=x2+bx+2; ②y=ax(x-3); ③y=a(x+2)(x-3); ④y=-x2+bx-3.
二次函数与一元二次方程ppt课件

垂直于直线x=2于点E.
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
九年级上《22.2二次函数与一元二次方程》课件

2.自主探究:
问题1
以 40 m/s 的速度将小球沿与地面成 30°角的 方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度 h (单位 :m )与飞行时间t(单位:s)之间具有函数关 系 h = 20t - 5t 2. (2)小球的飞行高度能否达到 20 m? 如能,需 要多少飞行时间?
归纳 一般地,从二次函数 y = ax 2 + bx + c 的图象可知: (1)如果抛物线 y = ax 2 + bx + c 与 x 轴有公共点, 公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0, 因此 x = x0 是方程 ax 2 + bx + c = 0 的一个根. (2)二次函数 y = ax 2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax 2 + bx + c = 0 的根的三种 情况:没有实数根,有两个相等的实数根,有两个不等 的实数根.
y=ax2+bx+c的图 象和x轴交点
方程ax2+bx+c=0 的根
b2-4ac
函数的图象
y . o y o y o . x
有两个交点
方程有两个不相等 b2-4ac 的实数根
> 0
只有一个交点 方程有两个相等 b2-4ac = 0
的实数根
x
没有交点
方程没有实数根
b2-4ac
< 0
x
2.小组合作,类比探究
1.复习知识,回顾方法
问题1:一次函数y=kx+b与一次方程 kx+b=0之间有什么关系?
沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
二次函数与一元二次方程ppt
公式法
适用于任何一元二次方程,将方程化成一般形式后,找出系数代入求根公式即可求出方程 的解。
一元二次方程在现实生活中的应用
01 02
几何中的应用
已知三角形一边及其对角求其余两边时使用;已知圆的一般式方程求 圆心和半径时使用;已知圆锥曲线的一般式方程求它的焦点坐标时使 用等。
代数中的应用
已知一个数的平方与另外两个数的和,求这两个数时使用;已知三个 数中两个数的平方和与第三个数的值,求这三个数时使用等。
针对这些易错题进行深入解析,提出正确的解题思路和技巧,帮助学生有效 避免类似错误。
经典例题解析与拓展训练
经典例题分享
选取几道二次函数与一元二次方程的经典例题,进行详细解答与拓展训练,帮助 学生加深对知识点的理解和应用。
拓展训练
在经典例题的基础上进行变式训练,让学生自主探究和拓展思路,提高分析和解 决问题的能力。
抛物线的对称性与极值点
总结词
对称性、极值点、最值
详细描述
1.对称性:二次函数图像关于直线x=-b/2a对称。2.极 值点:二次函数图像有极大值点( -b/2a,f( -b/2a ) ) 和极小值点( -b/2a,f( -b/2a ) )。3.最值:当a>0时, 二次函数图像有最小值f( -b/2a )=4ac-b^2/4a;当 a<0时,二次函数图像有最大值f( -b/2a )=4acb^2/4a。
二次函数与一元二次方程ppt
xx年xx月xx日
目录
• 二次函数与一元二次方程的概述 • 二次函数的图像与性质 • 一元二次方程的解法与应用 • 二次函数与一元二次方程的关系探究 • 一元二次方程的根的判别式及其实验活动 • 复习与巩固
01
二次函数与一元二次方程的概述
适用于任何一元二次方程,将方程化成一般形式后,找出系数代入求根公式即可求出方程 的解。
一元二次方程在现实生活中的应用
01 02
几何中的应用
已知三角形一边及其对角求其余两边时使用;已知圆的一般式方程求 圆心和半径时使用;已知圆锥曲线的一般式方程求它的焦点坐标时使 用等。
代数中的应用
已知一个数的平方与另外两个数的和,求这两个数时使用;已知三个 数中两个数的平方和与第三个数的值,求这三个数时使用等。
针对这些易错题进行深入解析,提出正确的解题思路和技巧,帮助学生有效 避免类似错误。
经典例题解析与拓展训练
经典例题分享
选取几道二次函数与一元二次方程的经典例题,进行详细解答与拓展训练,帮助 学生加深对知识点的理解和应用。
拓展训练
在经典例题的基础上进行变式训练,让学生自主探究和拓展思路,提高分析和解 决问题的能力。
抛物线的对称性与极值点
总结词
对称性、极值点、最值
详细描述
1.对称性:二次函数图像关于直线x=-b/2a对称。2.极 值点:二次函数图像有极大值点( -b/2a,f( -b/2a ) ) 和极小值点( -b/2a,f( -b/2a ) )。3.最值:当a>0时, 二次函数图像有最小值f( -b/2a )=4ac-b^2/4a;当 a<0时,二次函数图像有最大值f( -b/2a )=4acb^2/4a。
二次函数与一元二次方程ppt
xx年xx月xx日
目录
• 二次函数与一元二次方程的概述 • 二次函数的图像与性质 • 一元二次方程的解法与应用 • 二次函数与一元二次方程的关系探究 • 一元二次方程的根的判别式及其实验活动 • 复习与巩固
01
二次函数与一元二次方程的概述
《二次函数与一元二次方程》参考PPT课件
有两个不相 等的实数根
b2 – 4ac > 0
只有一个交点 有两个相等的 实数根
b2 – 4ac = 0
没有交点
没有实数根
b2 – 4ac < 0 16
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
7.一元二次方程 3 x2+x-10=0的两个根是x1-2 , x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交点坐
标是__(_-2_,_0)_(_5/_3,. 0)
19
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
20.5 m
6
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4 当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
7
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
2.若抛物线 y = ax2+bx+c= 0,当 a>0,c<0时,图
象与x轴交点情况是( C )
A. 无交点
B. 只有一个交点
C. 有两个交点 D. 不能确定
17
3. 如果关于x的一元二次方程 x2-2x+m=0有两
个相等的实数根,则m=_1__,此时抛物线 y=x2- 2x+m与x轴有_1_个交点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
C
).
3个 D.
(2).若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与 x轴交点情况是( C ) A 无交点 C 有两个交点 B 只有一个交点 D不能确定
(5)已知抛物线 y=x2 – 8x +c的顶点在 x轴 16 上,则c=____ .
( 6)关于x的一元二次方程 x x n 0没有实数根, 则
例题精讲 2. 判断下列二次函数与x轴的交点情况 (1)y=x2-1; (2)y=-2x2+3x-9; (3)y= x2-4x+4 ; (4)y=-ax2+(a+b)x-b(a、b为常数, a≠0) 解:(2) ∵ b2-4ac=32 -4× (- 2)×( -9) < 0 ∴函数与x轴没有交点
例题精讲 2. 判断下列二次函数与x轴的交点情况 (1)y=x2-1; (2)y=-2x2+3x-9; (3)y= x2-4x+4 ; (4)y=-ax2+(a+b)x-b(a、b为常数, a≠0) 解:(3) ∵ b2-4ac=42 -4× 1×4 =0
(1)证明 : 令y 0, 得2 x m x m 0 (m) 4 2 m 9m 0
2 2 2 2 2
不论m取何值, 抛物线与x轴总有公共点 .
(2) A(1,0)在抛物线y 2 x m x m 上 0 2 1 m 1 m
二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点有 三种情况: b2 – 4ac > 0 (1)有两个交点 b2 – 4ac= 0 (2)有一个交点 (3)没有交点 b2 – 4ac< 0
若抛物线y=ax2+bx+c与x轴有交点, 则 b2 – 4ac ≥0
二次函数y=ax2+bx+c的图象和x轴交点
Y
△<0
△=0
△>0
O
X
判别式: b2-4ac
二次函数 y=ax2+bx+c (a≠0)
与x轴有两个不 同的交点 (x1,0) (x2,0)
与x轴有唯一个 交点 ( b ,0)
图象
y
O
一元二次方程 ax2+bx+c=0 (a≠0)的根
有两个不同的 解x=x1,x=x2 有两个相等的 解 b x1=x2=
y=x2-x-3 y=x+b
消元,得 x2-x-3 =x+b 整理,得x2-2x -(3 + b) =0 ∵有唯一交点 ∴(-2)2 +4( 3 + b) =0 解之得,b =-4
用图象法求一元二次方程的近 似解
练习:根据下列表格的对应值:
x y=ax2+bx+c 3.23 3.24 3.25 0.03 3.26 0.09
2 y x 2 x 3 的顶点坐标, 写出二次函数
对称轴,并画出它的图象. x y
…
…
(1,-4)
2 3 -3 0 4 7
…
…
-2 7
-1 0 1 0 -3 -4
观察
当x为何时,y=0?
N M
x=-1, x=3
x 2x 3 0
2
x=-1, x= 3 2
1
探究一:你的图象与x轴的交点坐标是什么?
b2-4ac>0
x y
b2-4ac=0
O
2a
x y
2a
b2-4ac<0
与x轴没有 交点
O
没有实数根 x
例题精讲 2. 判断下列二次函数图象与x轴的交点情况 (1)y=x2-1; (2)y=-2x2+3x-9; (3)y=x2-4x+4; (4)y=-ax2+(a+b)x-b(a、b为常数, a≠0) 解:(1)∵ b2-4ac=02 -4×1×( -1) >0 ∴函数与x轴有两个交点
(2、20)
t
?
利用二次函数的图象求方程x2-x-3=0的实数根(精确到 0.1).
y
方法: (1)先作出图象; (2)写出交点的坐标; (-1.3、0)、(2.3、0) (3)得出方程的解. x =-1.3,x =2.3。
1
x
用你学过的一元二次方程的解法来解, 准确答案是什么?
?
交流总结
同学们, 通过这节课的学习,你收获了什么?
结论三: 对于二次函数y=ax2+bx+c,判别式又能给 我们什么样的结论? (1)b2-4ac>0 函数与x轴有两个交点 (2)b2-4ac=0 函数与x轴有一个交点 (3)b2-4ac<0 函数与x轴没有交点
二次函数y=ax2+bx+c的图象和x轴交点的横坐标 与一元二次方程ax2+bx+c=0的根有什么关系?
∴函数与x轴有一个交点
例题精讲 2. 判断下列二次函数与x轴的交点情况 (1)y=x2-1; (2)y=-2x2+3x-9; (3)y= x2-4x+4 ; (4)y=-ax2+(a+b)x-b(a、b为常数, a≠0) 解:(4) ∵ b2-4ac=(a+b)2 -4× ( -a )×( -b) =( a - b)2 ≥0 ∴函数与x轴有一个或两个交点
-0.06 -0.02
判断方程ax2+bx+c=0 (a≠0,a,b,c为常数)一个解x C 的范围是( ) A 3< X < 3.23 B 3.23 < X < 3.24
C 3.24 <X< 3.25
D
3.25 <X< 3.26
(1)抛物线y x 2 x 3与x轴的交点个数有( A.0 B.1个 2个 C.
2 2 2 2 2
即 m m 2 0, (m 2)(m 1) 0 m1 2, m2 1 B点坐标为 (2,0)
?
问题1:如图,以 40 m /s的速度将小球沿与地面成 30度 角的方向击出时,球的飞行路线是一条抛物线,如果不考 虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系: h= 20 t – 5 t2 考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要多少时间? (2)球的飞行高度能否达到 20 m? 若能,需要多少时间? (3)球的飞行高度能否达到 20.5 m? 若能,需要多少时 间?
观察二
y x2 6x 9
y x2 6x 9 y x2 2x 3
3 0
观 察 二 次 函 数
y x2 2x 3
探究二:二次函数与x轴的交点个数与一元
二次方程的解有关系吗?
结论二: 函数与x轴有两个交点 方程有两不相等根 函数与x轴有一个交点 方程有两相等根 函数与x轴没有交点 方程没有根 方程的根的情况是由什么决定的? 判别式b2-4ac的符号
二次函数与一元二次方程
温故知新
(1)一次函数y=x+2的图象与x轴的交点为 ( -2 ,0 ) -2 一元一次方程x+2=0的根为________ (2) 一次函数y=-3x+6的图象与x轴的交点为 ( 2, 0 ) 2 一元一次方程-3x+6=0的根为________ 思考:一次函数y=kx+b的图象与x轴的交点与一元 一次方程kx+b=0的根有什么关系? 一次函数y=kx+b的图象与x轴的交点的横坐标就是 一元一次方程kx+b=0的根
例题精讲
1. 求二次函数y=x2+4x-5与x轴的交点坐标 解:令y=0 则x2+4x-5 =0 解之得,x1= -5 ,x2 = 1 ∴交点坐标为:(-5,0)(1,0) 结论一: 若一元二次方程ax2+bx+c=0的两个根是x1、x2, 则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是 A( X1,0 ), B( X2,0 ) 思考:函数y=-x2+6x-9和y=2x2+3x+5与x轴的 交点坐标是什么?试试看!
函数y=x2-2x-3的图象与x轴两个交点为 (-1,0)(3,0) 方程x2-2x-3 =0的两根是 x1= -1 ,x2 = 3 你发现了什么? (1)二次函数y=ax2+bx+c与x轴的交点的横坐 标就是当y=0时一元二次方程ax2+bx+c=0的 根 (2)二次函数的交点问题可以转化为一元二次方 程去解决
(4)球从飞出到落地要用多少时间?
解:(1)解方程 15=20t-5t² t² -4t+3=0 t 1 =1, t 2 =3. 当球飞行1s和2s时, 它的高度为15m。 (2)解方程 20=20t-5t² t² -4t+4=0 t 1 = t2 =2. 当球飞行2s时, 它的高度为20m。
(3)解方程 h 20.5=20t-5t² t² -4t+4.1=0 ∵(-4)² -4*4.1<0, ∴方程无实数根 (4)解方程 0=20t-5t² t² -4t=0 t 1 =0, t 2 =4. 当球飞行0s和4s时, 它的高度为0m,即0s飞 出,4s时落回地面。
联想:二次函数与x轴的交点个数可以借助判 别式解决,那么二次函数与一次函数的交 点个数又该怎么解决呢? 例如,二次函数y=x2-2x-3和一次函数y= x+2有交点吗?有几个? 分析:两个函数的交点是这两个函数的公共 解,先列出方程组,消去y后,再利用判别 式判断即可.
例题精讲 3.二次函数y=x2-x-3和一次函数y=x+b 有一个公共点(即相切),求出b的值. 解:由题意,得
抛物线y x x n的顶点在( A.第一象限
2
2
A
).
B.第二象限
C.第三象限
D.第四象限
(7)抛物线y=x2-kx+k-2与x轴交点个数为 ( C ) A、 0个 B、 1个 C、 2个 D、无法确定
5、已知二次函数y=x2-mx-m2 (1)求证:对于任意实数m,该二次函数的图像与x轴 总有公共点; (2)该二次函数的图像与x轴有两个公共点A、B,且A 点坐标为(1、0),求B点坐标。