高二物理导学案附答案
高二物理34导学案和学案(共45份)高二物理34导学案 22

咸阳市实验中学“链式课堂”课时导学案
)发生全反射的条件:光从光密介质进入光疏介质;或大于临界角。
、对全反射现象的解释
图1
五、拓展延伸
图9
1. (2010·重庆理综·20)如图9所示,空气中有一折射率为2的玻璃柱体,其横截面是圆心角为90°、半径为
一束平行光平行于横截面,以45°入射角照射到
只考虑首次入射到圆孤上的光,则AB上有光透出部分的孤长为( )
A.1
6
πR B.
1
4
πR D.
5
12
π
图8
2. (2011·福建·14)如图8所示,半圆形玻璃砖置于光屏
的左下方.一沿半径方向从
在点发生反射和折射,折射光在光屏上呈现七色光带.若入射点由
射到O点,观察到各色光在光屏上陆续消失.在光带未完全消失之前,反射光的强度变化以及光屏上最先消失的光分别是A.减弱,紫光
图14
一段横截面为正方形的玻璃棒,
一细束单色光由MN端面的中点垂直射入,上发生全反射,然后垂直PQ端面射出.
求该玻璃棒的折射率.。
13.1磁场磁感线(导学案)高二物理(人教版2019)

第1节磁场磁感线导学案【学习目标】1、了解磁现象。
了解电和磁的联系,了解电流磁效应的发现过程。
体会奥斯特发现的重要意义,体会探索自然奥秘的艰难与克服困难带来的成就感。
2、知道磁场的基本特性。
知道磁感线,知道几种常见磁场磁感线的空间分布情况。
体会如何使用形象化的手段描述物理现象。
3、会应用安培定则判断通电直导线和通电线圈周围磁场的方向。
4、了解安培分子电流假说。
【学习重难点】学习重点:磁感线、几种常见的磁场的磁感线分布。
学习难点:磁感线、几种常见的磁场的磁感线分布。
【知识回顾】1、同种电荷相互排斥,异种电荷相互吸引。
同名磁极相互排斥,异名磁极相互吸引。
2、丹麦物理学家奥斯特发现了电流的磁效应。
3、磁体与磁体、通电导线对磁体、磁体对通电导体、任意两条通电导线之间都有力的作用,这些作用力的产生都不需要物体直接接触。
磁体和磁体之间,磁体和通电导体之间,以及通电导体和通电导体之间的相互作用都是通过磁场发生的。
【自主预习】1、磁场的基本性质是对放入其中的磁体或电流会产生力的作用。
2、规定小磁针静止时N极的指向为该点的磁场方向。
3、为描述磁场而人为引入的曲线叫做磁感线。
磁感线都是闭合曲线,磁体外部由N极到S极,内部由S 极到N极;磁感线不相交、不相切;磁感线的疏密表示磁场的强弱;磁感线上每一点的切线方向即为该点的磁场的方向。
4、直线电流的磁感线是一圈圈的同心圆。
5、安培定则的第一种表述:用右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。
安培定则的第二种表述:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁场的方向。
【课堂探究】第一部分电和磁的联系人们很早就发现电和磁有很多相似的特征:自然界中的磁体总存在着两个磁极,自然界中同样存在着两种电荷。
同名磁极或同种电荷相互排斥,异名磁极或异种电荷相互吸引。
直到19世纪初很多著名的科学家——如库仑、安培、托马斯.杨都认为电与磁是互不相关的两回事。
【新步步高】高二物理教科版选修导学案:第一章第讲简谐运动的图像和公式含解析

第3讲简谐运动的图像和公式[目标定位] 1.知道所有简谐运动的图像都是正弦(或余弦)曲线.2.会根据简谐运动的图像找出物体振动的周期和振幅,并能分析有关问题.3.理解简谐运动的表达式,能从该表达式中获取振幅、周期(频率)、相位、初相等相关信息.一、简谐运动的图像1.坐标系的建立:以横坐标表示时间,纵坐标表示位移,描绘出简谐运动中振动物体离开平衡位置的位移x随时间t变化的图像,称为简谐运动的图像(或称振动图像).2.图像形状:严格的理论和实验都证明所有简谐运动的运动图像都是正弦(或余弦)曲线.3. 由简谐运动图像,可找出物体振动的周期和振幅.想一想在描述简谐运动图像时,为什么能用薄板移动的距离表示时间?答案匀速拉动薄板时,薄板的位移与时间成正比,即x=v t,因此,一定的位移就对应一定的时间,这样匀速拉动薄板时薄板移动的距离就能表示时间.二、简谐运动的表达式x=A sin(ωt+φ)其中ω=2πT,f=1T,综合可得x=A sin(2πT t+φ)=A sin(2πft+φ).式中A表示振动的振幅,T和f分别表示物体振动的周期和频率.物体在不同的初始位置开始振动,φ值不同.三、简谐运动的相位、相位差1.相位在式x=A sin(2πft+φ)中,“2πft+φ”这个量叫做简谐运动的相位.t=0时的相位φ叫做初相位,简称初相.2.相位差指两振动的相位之差.一、对简谐运动图像的认识1.形状:正(余)弦曲线2.物理意义表示振动质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律.3.获取信息(1)简谐运动的振幅A和周期T,再根据f=1T求出频率.(2)任意时刻质点的位移的大小和方向.如图1-3-1所示,质点在t1、t2时刻的位移分别为x1和-x2.图1-3-1图1-3-2(3)任意时刻质点的振动方向:看下一时刻质点的位置,如图1-3-2中a点,下一时刻离平衡位置更远,故a此刻质点向x轴正方向振动.(4)判断质点的速度、加速度、位移的变化情况:若远离平衡位置,则速度越来越小,加速度、位移越来越大;若靠近平衡位置,则速度越来越大,加速度、位移越来越小.注意:振动图像描述的是振动质点的位移随时间的变化关系,而非质点运动的轨迹.比如弹簧振子沿一直线做往复运动,其轨迹为一直线,而它的振动图像却是正弦曲线.图1-3-3【例1】如图1-3-3所示为某物体做简谐运动的图像,下列说法中正确的是()A.由P→Q,位移在增大B.由P→Q,速度在增大C.由M→N,位移先减小后增大D.由M→N,加速度先增大后减小解析由P→Q,位置坐标越来越大,质点远离平衡位置运动,位移在增大而速度在减小,选项A正确,选项B错误;由M→N,质点先向平衡位置运动,经平衡位置后又远离平衡位置,因此位移先减小后增大,由a=Fm=-kxm可知,加速度先减小后增大,选项C正确,选项D错误.答案AC借题发挥简谐运动图像的应用(1)可以从图像中直接读出某时刻质点的位移大小和方向、速度方向、加速度方向、质点的最大位移.(2)可比较不同时刻质点位移的大小、速度的大小、加速度的大小.(3)可以预测一段时间后质点位于平衡位置的正向或负向,质点位移的大小与方向,速度、加速度的大小和方向的变化趋势.针对训练1一质点做简谐运动,其位移x与时间t的关系图像如图1-3-4所示,由图可知()图1-3-4A.质点振动的频率是4 HzB.质点振动的振幅是2 cmC.t=3 s时,质点的速度最大D.在t=3 s时,质点的振幅为零解析由题图可以直接看出振幅为2 cm,周期为4 s,所以频率为0.25 Hz,所以选项A错误,B正确;t=3 s时,质点经过平衡位置,速度最大,所以选项C正确;振幅等于质点偏离平衡位置的最大位移,与质点的位移有着本质的区别,t =3 s 时,质点的位移为零,但振幅仍为2 cm ,所以选项D 错误. 答案 BC二、简谐运动的表达式与相位、相位差 做简谐运动的物体位移随时间t 变化的表达式x =A sin(2πft +φ)1.由简谐运动的表达式我们可以直接读出振幅A ,频率f 和初相φ.可根据T =1f 求周期,可以求某一时刻质点的位移x .2.关于两个相同频率的简谐运动的相位差Δφ=φ2-φ1的理解 (1)取值范围:-π≤Δφ≤π.(2)Δφ=0,表明两振动步调完全相同,称为同相. Δφ=π,表明两振动步调完全相反,称为反相. (3)Δφ>0,表示振动2比振动1超前. Δφ<0,表示振动2比振动1滞后.【例2】 一个小球和轻质弹簧组成的系统按x 1=5sin ⎝ ⎛⎭⎪⎫8πt +π4cm 的规律振动.(1)求该振动的周期、频率、振幅和初相.(2)另一简谐运动的表达式为x 2=5sin ⎝ ⎛⎭⎪⎫8πt +54πcm ,求它们的相位差.解析 (1)已知ω=8π rad/s ,由ω=2πT 得T =14 s , f =1T =4 Hz.A =5 cm ,φ1=π4.(2)由Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1得,Δφ=54π-π4=π. 答案 (1)14 s 4 Hz 5 cm π4 (2)π针对训练2 有两个振动,其表达式分别是x 1=4sin ⎝ ⎛⎭⎪⎫100πt +π3cm ,x 2=5sin ⎝ ⎛⎭⎪⎫100πt +π6cm ,下列说法正确的是 ( ) A .它们的振幅相同B .它们的周期相同C.它们的相位差恒定D.它们的振动步调一致解析由简谐运动的公式可看出,振幅分别为4 cm、5 cm,故不同;ω都是100πrad/s,所以周期(T=2πω)都是150s;由Δφ=(100πt+π3)-(100πt+π6)=π6得相位差(为π6)恒定;Δφ≠0,即振动步调不一致.答案BC简谐运动的图像图1-3-51.如图1-3-5表示某质点简谐运动的图像,以下说法正确的是()A.t1、t2时刻的速度相同B.从t1到t2这段时间内,速度与位移同向C.从t2到t3这段时间内,速度变大,位移变小D.t1、t3时刻的回复力方向相反解析t1时刻振子速度最大,t2时刻振子速度为零,故A不正确;t1到t2这段时间内,质点远离平衡位置,故速度、位移均背离平衡位置,所以二者方向相同,则B正确;在t2到t3这段时间内,质点向平衡位置运动,速度在增大,而位移在减小,故C正确;t1和t3时刻质点在平衡位置,回复力为零,故D错误.答案BC图1-3-62.装有砂粒的试管竖直静立于水面,如图1-3-6所示,将管竖直提起少许,然后由静止释放并开始计时,在一定时间内试管在竖直方向近似做简谐运动.若取竖直向上为正方向,则如图所示描述试管振动的图像中可能正确的是( )解析 试管在竖直方向上做简谐运动,平衡位置是在重力与浮力相等的位置,开始时向上提起的距离,就是其偏离平衡位置的位移,为正向最大位移.故正确答案为D. 答案 D简谐运动的表达式3.一弹簧振子A 的位移y 随时间t 变化的关系式为y =0.1sin 2.5πt ,位移y 的单位为m ,时间t 的单位为s.则( ) A .弹簧振子的振幅为0.2 m B .弹簧振子的周期为1.25 sC .在t =0.2 s 时,振子的运动速度为零D .若另一弹簧振子B 的位移y 随时间变化的关系式为y =0.2 sin ⎝ ⎛⎭⎪⎫2.5πt +π4,则振动A 滞后B π4解析 由振动方程为y =0.1 sin2.5πt ,可读出振幅A =0.1 m ,圆频率ω=2.5π,故周期T =2πω=2π2.5π=0.8 s ,故A 、B 错误;在t =0.2 s 时,振子的位移最大,故速度最小,为零,故C 正确;两振动的相位差Δφ=φ2-φ1=2.5πt +π4-2.5πt =π4,即B 超前A π4,或说A 滞后B π4,选项D 正确. 答案 CD4.物体A 做简谐运动的振动方程是x A =3sin ⎝ ⎛⎭⎪⎫100t +π2 m ,物体B 做简谐运动的振动方程是x B =5sin ⎝ ⎛⎭⎪⎫100t +π6 m .比较A 、B 的运动( ) A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 m B .周期是标量,A 、B 周期相等,都为100 s C .A 振动的频率f A 等于B 振动的频率f B D .A 的相位始终超前B 的相位π3解析 振幅是标量,A 、B 的振动范围分别是6 m,10 m ,但振幅分别为3 m,5 m ,A 错;A 、B 的周期均为T =2πω=2π100 s =6.28×10-2 s ,B 错;因为T A =T B ,故f A =f B ,C 对;Δφ=φA -φB =π3,为定值,D 对. 答案 CD题组一 简谐运动的图像1.关于简谐运动的图像,下列说法中正确的是( ) A .表示质点振动的轨迹是正弦或余弦曲线B .由图像可判断任一时刻质点相对平衡位置的位移大小与方向C .表示质点的位移随时间变化的规律D .由图像可判断任一时刻质点的速度方向解析 振动图像表示位移随时间的变化规律,不是运动轨迹,A 错,C 对;由振动图像可判断质点位移和速度大小及方向,B 、D 正确. 答案 BCD2.如图1-3-7所示是一做简谐运动的物体的振动图像,下列说法正确的是( )图1-3-7A.振动周期是2×10-2 sB.第2个10-2 s内物体的位移是-10 cmC.物体的振动频率为25 HzD.物体的振幅是10 cm解析振动周期是完成一次全振动所用的时间,在图像上是两相邻极大值间的距离,所以周期是4×10-2 s.又f=1T,所以f=25 Hz,则A项错误,C项正确;正、负最大值表示物体的振幅,所以振幅A=10 cm,则D项正确;第2个10-2 s的初位置是10 cm,末位置是0,根据位移的概念有x=-10 cm,则B项正确.答案BCD图1-3-83.一质点做简谐运动的振动图像如图1-3-8所示,则该质点()A.在0~0.01 s内,速度与加速度同向B.在0.01 s~0.02 s内,速度与回复力同向C.在0.025 s时,速度为正,加速度为正D.在0.04 s时,速度最大,回复力为零解析F、a与x始终反向,所以由x的正负就能确定a的正负.在x-t图像上,图线各点切线的斜率表示该点的速度,由斜率的正负又可确定v的正负,由此判断A、C正确.答案AC4.图1-3-9甲所示为以O点为平衡位置,在A、B两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是()图1-3-9A.在t=0.2 s时,弹簧振子可能运动到B位置B.在t=0.1 s与t=0.3 s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2 s的时间内,弹簧振子的动能持续地增加D.在t=0.2 s与t=0.6 s两个时刻,弹簧振子的加速度相同答案 A图1-3-105.如图1-3-10所示是某一质点做简谐运动的图像,下列说法正确的是() A.在第1 s内,质点速度逐渐增大B.在第1 s内,质点加速度逐渐增大C.在第1 s内,质点的回复力逐渐增大D.在第4 s内质点的动能逐渐增大E.在第4 s内质点的势能逐渐增大F.在第4 s内质点的机械能逐渐增大解析在第1 s内,质点由平衡位置向正向最大位移处运动,速度减小,位移增大,回复力和加速度都增大;在第4 s内,质点由负向最大位移处向平衡位置运动,速度增大,位移减小,动能增大,势能减小,但机械能守恒,选项B、C、D正确.答案BCD6.一个弹簧振子沿x轴做简谐运动,取平衡位置O为x轴坐标原点.从某时刻开始计时,经过四分之一周期,振子具有沿x轴正方向的最大加速度.能正确反映振子位移x与时间t关系的图像是()解析根据F=-kx及牛顿第二定律得a=Fm=-km x,当振子具有沿x轴正方向的最大加速度时,具有沿x轴负方向的最大位移,故选项A正确,选项B、C、D错误.答案 A图1-3-117.图1-3-11为甲、乙两单摆的振动图像,则()A.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比l甲∶l乙=2∶1 B.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比l甲∶l乙=4∶1 C.若甲、乙两摆摆长相同,且在不同的星球上摆动,则甲、乙两摆所在星球的重力加速度之比g甲∶g乙=4∶1D.若甲、乙两摆摆长相同,且在不同的星球上摆动,则甲、乙两摆所在星球的重力加速度之比g甲∶g乙=1∶4解析由图像可知T甲∶T乙=2∶1,若两单摆在同一地点,则两摆长之比为l甲∶l乙=4∶1;若两摆长相等,则所在星球的重力加速度之比为g甲∶g乙=1∶4.答案BD8.如图1-3-12甲、乙所示为一单摆及其振动图像,由图回答:图1-3-12(1)单摆的振幅为________,频率为________,摆长约为________;图中所示周期内位移x最大的时刻为____________.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中的________点.一个周期内加速度为正且减小,并与速度同方向的时间范围是________.势能增加且速度为正的时间范围是________.解析 (1)由纵坐标的最大位移可直接读取振幅为3 cm.从横坐标可直接读取完成一个全振动的时间即周期T =2 s ,进而算出频率f =1T =0.5 Hz ,算出摆长l =gT 24π2=1 m.从题图中看出纵坐标有最大值的时刻为0.5 s 末和1.5 s 末.(2)题图中O 点位移为零,O 到A 的过程位移为正,且增大,A 处最大,历时14周期,显然摆球是从平衡位置E 起振并向G 方向运动的,所以O 点对应E 点,A 点对应G 点.A 点到B 点的过程分析方法相同,因而O 、A 、B 、C 点对应E 、G 、E 、F 点.摆动中EF 间加速度为正,靠近平衡位置过程中速度逐渐减小且加速度与速度方向相同,即从F 到E 的运动过程对应题图中C 到D 的过程,时间范围是1.5 s ~2 s .摆球远离平衡位置势能增加,即从E 向两侧摆动,又因速度为正,显然是从E 到G 的过程.对应题图中为O 到A 的过程,时间范围是0~0.5 s.答案 (1)3 cm 0.5 Hz 1 m 0.5 s 末和1.5 s 末 (2)E 、G 、E 、F 1.5 s ~2 s 0~0.5 s 题组二 简谐运动的表达式与相位、相位差9.有一个弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向最大加速度,则它的振动方程是( ) A .x =8×10-3sin ⎝ ⎛⎭⎪⎫4πt +π2mB .x =8×10-3sin ⎝ ⎛⎭⎪⎫4πt -π2mC .x =8×10-1sin ⎝ ⎛⎭⎪⎫πt +32πmD .x =8×10-1sin ⎝ ⎛⎭⎪⎫4πt +π2m解析 ω=2πT =4π,当t =0时,具有负向最大加速度,则x =A ,所以初相φ=π2,表达式为x =8×10-3·sin ⎝ ⎛⎭⎪⎫4πt +π2m ,A 对.答案 A10.某质点做简谐运动,其位移随时间变化的关系式为x =A sin π4t ,,则质点( )A .第1 s 末与第3 s 末的位移相同B .第1 s 末与第3 s 末的速度相同C .第3 s 末与第5 s 末的位移方向相同D .第3 s 末与第5 s 末的速度方向相同解析 根据x =A sin π4t 可求得该质点振动周期为T = 8 s ,则该质点振动图像如右图所示,图像的斜率为正表示速度为正,反之为负,由图可以看出第1 s 末和第3 s 末的位移相同,但斜率一正一负,故速度方向相反,选项A 正确,B 错误;第3 s 末和第5 s 末的位移方向相反,但两点的斜率均为负,故速度方向相同,选项C 错误,D 正确. 答案 AD11.一个质点做简谐运动的图像如图1-3-13所示,下列叙述中正确的是( )图1-3-13A .质点的振动频率为4 HzB .在10 s 内质点经过的路程为20 cmC .在5 s 末,质点做简谐运动的相位为32πD .t =1.5 s 和t =4.5 s 两时刻质点的位移大小相等,都是 2 cm解析 由振动图像可直接得到周期T =4 s ,频率f =1T =0.25 Hz ,故选项A 错误;一个周期内做简谐运动的质点经过的路程是4A =8 cm,10 s 为2.5个周期,故质点经过的路程为20 cm ,选项B 正确;由图像知位移与时间的关系为x =A sin(ωt +φ0)=0.02sin ⎝ ⎛⎭⎪⎫π2t m.当t =5 s 时,其相位ωt +φ0=π2×5=52π,故选项C 错误;在1.5 s 和4.5 s 两时刻,质点位移相同,与振幅的关系是x =A sin 135°=22A = 2 cm ,故D 正确. 答案 BD图1-3-1412.如图1-3-14所示,一弹簧振子在M 、N 间沿光滑水平杆做简谐运动,坐标原点O 为平衡位置,MN =8 cm.从小球经过图中N 点时开始计时,到第一次经过O 点的时间为0.2 s ,则小球的振动周期为________s ,振动方程为x =________cm .解析 从N 点到O 点刚好为T 4,则有T 4=0.2 s ,故T =0.8 s ;由于ω=2πT =5π2,而振幅为4 cm ,从最大位移处开始振动,所以振动方程为x =4cos 5π2t cm. 答案 0.8 4cos 5π2t 13.图1-3-15如图1-3-15所示为A 、B 两个简谐运动的位移-时间图像.请根据图像写出: (1)A 的振幅是________ cm ,周期是________ s ;B 的振幅是________cm ,周期是________s.(2)这两个简谐运动的位移随时间变化的关系式; (3)在时间t =0.05 s 时两质点的位移分别是多少?解析 (1)由图像知:A 的振幅是0.5 cm ,周期是0.4 s ;B 的振幅是0.2 cm ,周期是0.8 s.(2)由图像知:t =0时刻A 中振动的质点从平衡位置开始沿负方向振动,φ=π,由T =0.4 s ,得ω=2πT =5π.则简谐运动的表达式为x A =0.5sin(5πt +π) cm.t =0时刻B 中振动的质点从平衡位置沿正方向已振动了14周期,φ=π2,由T =0.8 s 得ω=2πT =2.5π,则简谐运动的表达式为x B =0.2sin ⎝ ⎛⎭⎪⎫2.5πt +π2cm. (3)将t =0.05 s 分别代入两个表达式中得:x A =0.5sin(5π×0.05+π) cm =-0.5×22 cm =-24 cm ,x B =0.2sin ⎝ ⎛⎭⎪⎫2.5π×0.05+π2cm =0.2sin 58π cm.答案 (1)0.5 0.4 0.2 0.8 (2)x A =0.5sin(5πt +π)cm ,x B =0.2sin ⎝ ⎛⎭⎪⎫2.5πt +π2cm (3)x A =-24cm , x B =0.2sin 58π cm.14.有一弹簧振子在水平方向上的B 、C 之间做简谐运动,已知B 、C 间的距离为20 cm ,振子在2 s 内完成了10次全振动.若从某时刻振子经过平衡位置时开始计时(t =0),经过14周期振子有正向最大加速度.图1-3-16(1)求振子的振幅和周期;(2)在图1-3-16中作出该振子的位移—时间图像; (3)写出振子的振动方程.解析 (1)x BC =20 cm ,t =2 s ,n =10,由题意可知:A =x BC 2=20 cm2=10 cm ,T =t n =2 s10=0.2 s.(2)由振子经过平衡位置开始计时经过14周期振子有正向最大加速度,可知振子此时在负方向最大位移处.所以位移—时间图像如图所示.(3)由A =10 cm ,T =0.2 s ,ω=2πT =10π rad/s ,故振子的振动方程为x =10sin(10πt +π)cm.答案 (1)10 cm 0.2 s (2)如解析图所示 (3)x =10sin(10πt +π)cm。
法拉第电磁感应定律(导学案)(教师版)高二物理同步备课系列

第2节 法拉第电磁感应定律导学案【学习目标】1.通过实验,理解法拉第电磁感应定律。
知道E=Blvsinθ是法拉第电磁感应定律的一种特殊形式,会用法拉第电磁感应定律在具体情境中分析求解有关问题。
2.经历分析推理得出法拉第电磁感应定律的过程,体会用变化率定义物理量的方法;经历推理得出E=Blvsinθ的过程,体会矢量分解的方法。
3.知道t nE ∆∆Φ=与E=Blvsinθ的内在联系,感悟事物的共性与个性的关系,体会辩证唯物主义的方法和观点【学习重难点】1、教学重点:法拉第电磁感应定律的建立和应用。
2、教学难点:对磁通量,磁通量的变化量和磁通量变化率的理解。
【知识回顾】一、楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
二、右手定则 1.内容伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向,如图所示。
2.适用范围适用于闭合电路部分导体切割磁感线产生感应电流的情况。
【自主预习】 一、电磁感应定律 1.感应电动势(1)在电磁感应现象中产生的电动势叫作感应电动势,产生感应电动势的那部分导体相当于电源。
(2)在电磁感应现象中,若闭合导体回路中有感应电流,电路就一定有感应电动势;如果电路断开,这时虽然没有感应电流,但感应电动势依然存在。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =ΔΦΔt。
若闭合电路是一个匝数为n 的线圈,则E =n ΔΦΔt。
(3)在国际单位制中,磁通量的单位是韦伯,感应电动势的单位是伏特。
二、导线切割磁感线时的感应电动势 1.动生电动势由于导体运动而产生的电动势叫动生电动势。
切割磁感线的导线相当于一个电源。
2.动生电动势的大小(1)导线垂直于磁场运动,B 、l 、v 两两垂直时,如图甲所示,E =Bl v 。
高中物理选修3-2导学案(含答案):4.7 涡流、电磁阻尼和电磁驱动

§4.7 涡流、电磁阻尼和电磁驱动制作:_____________审核:______________班级: .组名: . 姓名: .时间:年月日【学习指导】:1兴趣、好奇心、不断尝试、自主性、积极性2动脑思考3听懂是骗人的,看懂是骗人的,做出来才是自己的4不仅要去学习,而且要学出效果,还要提高效率。
5保证效果就要每个点都要达标。
达标的标准是能够“独立做(说、写)出来”,不达标你的努力就体现不出来6该记的记,该理解的理解,该练习的练习,该总结的总结,勿懈怠!7费曼学习法:确定一个学习的知识点;假设你在教授别人该知识点;遇到卡壳时回顾相关知识点;简化你的语言,达到通俗易懂的程度。
该法尤其适合概念、定义、定理、定律等的理解和记忆。
8明确在学习什么东西,对其中的概念、定律等要追根溯源,弄清来龙去脉才能理解透彻、应用灵活9总结:9.1每题总结:每做完一道题都要总结该题涉及的知识点和方法9.2题型总结:先会后熟,一种题型先模仿、思考,弄懂后,总结出这类题型的出现特征、解题方法,然后再多做几道同类型的,直到遇到这种题型就条件反射得知道怎么做9.3小节总结:总结该小节的知识结构、常见题型及做法9.4章节总结:总结该章节的知识结构、常见题型及做法10独立、限时、满分作答11步骤规范,书写整洁12多做多思,孰能生巧,熟到条件反射,这样一是能见到更多的出题方式,二是能提高做题速度13根据遗忘曲线,进行循环复习14错题本的建立:在每次发的试卷资料的右上角写上日期,同一科目的试卷按日期顺序放好。
在做错的题号上画叉号,在不会做的题号上画问号,以后就是一本很好的错题集。
其他资料亦如此处理。
这种方式简单实用。
同时,当你积攒到一定程度,看到自己做过的厚厚的资料,难道不会由衷的产生一种成就感么?!【一分钟德育】二分法悖论(dichotomy paradox)概述:运动是不可能的。
你要到达终点,必须先到达全程的1/2处;要到达1/2处,必须先到1/4处……每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。
新教材高二物理精品导学案 磁场对通电导线的作用力

【详解】
(1)若磁场方向竖直向上,从a向b观察,导线受力情况如下图所示
由平衡条件得,在水平方向上有
F-FNsinθ=0
在竖直方向上有
mg-FNcosθ=0
其中
F=BIL
联立以上各式可解得
(2)若要求磁感应强度最小,则一方面应使磁场方向与通电导线垂直,另一方面应调整磁场方向使与重力、支持力合力相平衡的安培力最小,如下图所示
A.方向不变,大小变为原来的 倍B.方向不变,大小变为原来的 倍
C.方向改变,大小变为原来的 倍D.方向改变,大小变为原来的 倍
【答案】B
【解析】假设原磁场如图
则导体PMN所受的安培力
方向垂直于纸面向里
导体逆时针旋转后,如图
导体PMN所受安培力为
方向垂直于纸面向里;导体顺时针旋转,安培力大小、方向与逆时针旋转相同。
得
B2=2T
磁感应强度的范围为: T≤B≤2T。
五、磁电式电流表的原理
例5.如图甲是高中物理电学实验中常用的磁电式电流表的结构,其内部磁场分布和线圈中电流流向剖面示意如乙图所示。关于磁电式电流表的下列各项说法中正确的是( )
A.线圈a在磁场中受到的安培力为逆时针方向,线圈b在磁场中受到的安培力为逆时针方向
A.方向沿纸面垂直bc向上,大小为( +1)ILB
B.方向沿纸面垂直bc向下,大小为( +1)ILB
C.若在纸面内将abcd逆时针旋转30°,力的大小减半
D.若在纸面内将abcd逆时针旋转60°,力的大小减半
答案A
解析:由安培力公式F=BIL与左手定则,可得ab段导线的安培力方向垂直于导线与磁感线构成的平面并斜向左。同理cd段导线的安培力方向垂直于导线与磁感线构成的平面并斜向右。因此由平行四边形定则对这两个安培力进行分解,可得沿bc段方向的安培力分力正好相互平衡,所以ab段与cd段导线的安培力的合力为 BIL,方向竖直向上,而bc段安培力的大小为BIL,方向是竖直向上。则导线段abcd所受到的磁场的作用力的合力大小为( +1)BIL,方向是竖直向上。若在纸面内将abcd旋转任何角度,力的大小均不变,故A正确,B、C、D错误。
11.2导体的电阻(导学案)高二物理(人教版2019)

第2节导体的电阻导学案【学习目标】1、体会物理概念及规律的建立过程,理解电阻的定义。
2、通过实验探究,了解金属导体的电阻与材料、长度和横截面积的定量关系,体会物理学中控制变量的研究方法。
3、引导学生观察实验现象,对数据进行分析思考,了解电阻率的物理意义及其与温度的关系。
通过查找资料、交流讨论,初步了解超导现象及其应用。
4、设计实验探究影响导体电阻的因素,同时学习电流表的内外接、滑动变阻器分压及限流接法对电路的影响。
5、能由伏安特性曲线分析不同导体的导电性能的区别,体会电阻率在科技、生活中的应用。
【学习重难点】学习重点:电阻的定义及电阻的决定因素。
学习难点:电阻的定义及电阻的决定因素。
【知识回顾】1、测量电阻的基本方法是伏安法,原理式为R=U。
I2、电阻是导体对电流的阻碍作用。
影响导体电阻的因素有导体的材料、长度、横截面积、温度。
3、电阻的国际单位是欧姆(简称欧,符号为Ω),常用单位有千欧(kΩ)和兆欧(MΩ),换算关系是1kΩ=103Ω,1MΩ=106Ω4、欧姆定律的内容是导体中的电流I跟导体两端的电压U成正比,跟导体的电阻R成反比。
其数学表达式是I=。
欧姆定律适用于金属、电解液等纯电阻导电,气体导电、半导体导电、含电动机或电解槽等电器R不适用。
5、电流的定义式是I=Q,微观表达式(决定式)是I=nqSv。
t6、电阻定律同种材料的导体,其电阻R与它的长度l成正比,与它的横截面积S成反比;导体电阻还与构。
其中,比例系数ρ叫做这种材料的电阻率,不同种材料的导体ρ一般不同。
成它的材料有关。
即R=ρS7、金属的电阻率随温度升高而增大。
有些合金(锰铜合金和镍铜合金),电阻率几乎不受温度变化的影响。
8、当温度降低到某一数值时,某些材料的电阻突然减小到零,这称为超导现象。
9、ρ<10–6Ω·m的物体叫做导体。
ρ>10–5Ω·m的物体叫做绝缘体。
导电性能介于导体和绝缘体之间的物体叫做半导体。
4.3电磁波的发射与接收(导学案)(教师版) 高二物理同步高效课堂(人教版2019选择性必修第二册)

第3节电磁波的发射与接收导学案【学习目标】1.了解有效地发射电磁波的两个条件。
了解调制、调幅、调频、调谐、解调、电谐振的概念及其相互关系。
能解释无线电波发射、接收的过程。
2.了解电视广播的发射与接收的原理与过程。
3.领会高频电磁波在无线电发射与接收中的重要作用。
【学习重难点】1.教学重点:建构无线电波调制、解调等有关概念,了解无线电波发射调制和接收解调的过程。
2.教学难点;用物理技术的视角解决分析无线电波对生产生活的实际应用。
【知识回顾】二、电磁波1.电磁波的产生:变化的电场和磁场由近及远地向周围传播,形成了电磁波。
2.电磁波的特点(1)电磁波的传播靠的是电和磁的相互“感应”,而不是靠介质的机械传递。
(2)电磁波在真空中的传播速度等于光速c,光是电磁波。
(3)电磁波的电场强度E与磁感应强度B互相垂直,而且二者均与波的传播方向垂直。
(4)电磁波能发生反射、折射、干涉、偏振和衍射等现象。
(5)电磁场的转换就是电场能量和磁场能量的转换,电磁波传播过程就是能量传播过程。
【自主学习】一、无线电波的发射1.要有效地发射电磁波,振荡电路必须具有两个特点(1)要有足够高的振荡频率。
频率越高,发射电磁波的本领越大。
(2)应采用开放电路。
振荡电路的电场和磁场必须分散到尽可能大的空间。
2.开放电路实际应用中的开放电路,线圈的一端用导线与大地相连,这条导线叫作地线;线圈的另一端与高高地架在空中的天线相连。
3.无线电发射技术(1)载波:携带要传递的信号的高频电磁波。
(2)调制:使载波随各种信号而改变的技术。
(3)调制的分类:调幅:使高频电磁波的振幅随信号的强弱而变的调制。
调频:使高频电磁波的频率随信号的强弱而变的调制。
二、无线电波的接收1.接收原理电磁波在传播时遇到导体,会使导体中产生感应电流,所以导体可用来接收电磁波,这个导体就是接收天线。
2.电谐振当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二物理导学案精选附答案
1.了解是热辐射及热辐射的特性,了解黑体与黑体辐射
2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系
3.了解能量子的概念
【重点难点】 1. 能量子的概念 2. 黑体辐射的实验规律
一、预习:
1.⑴ 我们周围的一切物体都在辐射,这种辐射与物体的有关,所以叫。
⑵ 除了这种辐射以外,物体外表还会和外界射来的电磁波,假设某种物体能够完全吸收入射的各种波长的电磁波而不发生,这种物体就叫。
2.实验测出了辐射的电磁波的强度按波长的分布情况。
随着温度的升高,一方面,各种波长的辐射强度都有,另一方面,辐射强度的极大值向波长的方向移动。
3.微观世界里的能量是一份一份的,其中不可分的最小值叫,它的值为。
1.一切物体都在不停的向外辐射电磁波,即热辐射。
为什么物体的温度不是一直降低的?
2.写出定量计算能量子的公式,并说明各符合的物理意义。
3.普朗克认为微观粒子的能量有什么特点?
【例1】以下宏观概念,哪些是“量子化”的 ( )
A.木棒的长度 B.物体的质量
C.物体的动量 D.学生的个数
【例2】对黑体辐射电磁波的波长分布有影响的是 ( )
A.温度 B.材料 C.外表状况 D.质量
【例3】黑体辐射的实验规律如下图,由图可知 ( )
A.随温度升高,各种波长的辐射强度都有增加
B.随温度降低,各种波长的辐射强度都有增加
C.随温度升高,辐射强度的极大值向波长较短的方向移动
D.随温度降低,辐射强度的极大值向波长较长的方向移动
【例4】能正确解释黑体辐射实验规律的是 ( )
A.能量的连续经典理论
B.普朗克提出的能量量子化理论
C.牛顿提出的能量微粒说
D.以上说法均不正确
【例5】能引起人的眼睛视觉效应的最小能量为10
丸:6.63 x10—34—18J,可见光的平均波长约为60 μm,普朗克常量J·s,那么进人人眼的光子数至少为 ( )
A.1个 B.3个 C .30个 D.300个。