解一元一次方程(讲义)
一元一次方程讲义

一元一次方程一、等式及其性质1、等式用等号表示相等关系的式子叫等式。
如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。
注意:等式中一定含有等号。
2、等式的性质等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。
a=b ,那么a ±c=b ±c等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
a=b ,那么ac=bc ;如果a=b ,那么a /c=b /c (c ≠0)。
注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。
思考:回答下列问题:(1)从a+b=b+c ,能否能到a=c ,为什么?(2) 从a-b=b-c ,能否能到a=c ,为什么?(3) 从ab=bc ,能否能到a=c ,为什么?(4) 从a/b=c/b ,能否能到a=c ,为什么?(5)从xy=1,能否能到x=1/y ,为什么?二、解一元一次方程的步骤:①去分母; ⇐(没有分母的项不要漏乘;去掉分数线,同时要把分子加上括号) ②去括号; ⇐(当括号外面是负号,去掉括号后,要注意变号)③移项; ⇐(移项要注意变号)④合并同类项; ⇐(如果方程中有同类项,一定要合并同类项)⑤系数化为1; ⇐(记得每一项都要除系数) 例:解一元一次方程3122133---=+x x x三、一元一次方程解的实际应用1、列方程解应用题的步骤(1)审:明确已知什么,求什么及基本关系。
找出能表示题目全部含义的相等关系(2)设:设未知数。
可直接设,也可间接设,要尽量使列出的方程简单。
①直接设未知数:题目求什么就设什么。
②间接设未知数:设的未知数不是题目直接求的量。
③设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去(3)列:根据等量关系列方程。
(4)解:解方程(5)验:检验方程的解和解是否符合实际问题。
一元一次方程 浙教版2019-2020学年度七年级数学上册讲义+分层训练(含答案)

浙江版2019-2020学年度七年级数学上册第5章一元一次方程 5.1 一元一次方程【知识清单】 一、一元一次方程:1.方程:含有未知数的等式叫做方程.2.方程的解:使方程左右两边的值都相等的未知数的值叫做方程的解3.一元一次方程:只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程. 二、方程的判定方法归纳:1.判断一个式子是不是方程必须看两点:一是等式,二是含有未知数,二者缺一不可;2.判定一个方程是不是一元一次方程,要看方程是否只含一个未知数并且未知数的指数都是1,而且是整式方程. 【经典例题】例题1、下列方程中,是一元一次方程的是( )A .x 2-2x =1B .-5x =0C .3x +2y =5D .x =x1【考点】一元一次方程的定义.【分析】根据一元一次方程的定义判断即可.【解答】A 、方程的次数是2次,即不是一元一次方程,故本选项错误;B 、是一元一次方程,故本选项正确;C 、含有两个未知数,即不是一元一次方程,故本选项错误;D 、不是整式方程,即不是一元一次方程,故本选项错误; 故选B .【点评】本题考查了对一元一次方程的定义的应用,熟练掌握一元一次方程的定义是解决问题的关键.例题2、如果方程(m -2)1-m x+26=0是关于x 的一元一次方程,那么m 的取值是______.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,高于一次的项系数是0.据此可得出关于m 的方程,继而可求出m 的值. 【解答】由一元一次方程的定义,得⎩⎨⎧=-≠-1102m m ,解得m =-2.故填:-2.【点评】本题主要考查了一元一次方程的定义,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.【夯实基础】1.下列方程中,是一元一次方程的是( )A .2x =3y B.y 1+1=0 C .2x 2+3x =2 D. )2(31-x =1 2.下列说法正确的是( )A .x =-2是方程2x +5=0的解B .y =0是方程0.5(5-2y )=2.5的解C .方程3x -4=)3(31-x )的解是x =3D .方程43-x =2的解是x =383.一件高于成本50%标价的上衣,按8折销售仍可获利40元.设这件上衣的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+50%)×0.8-x =30B . ( x +50%)×0.8-x =30C .x (1+50%)×0.8=30-xD .( x +50%)×0.8=30-x 4.关于|x -2|=2的说法正确的是 ( )A .不是方程B .是方程其解为0C .是方程其解为4D .是方程其解为0或45.若关于x 的方程(3k -2)x 2- (3k +2)x +5=0是一元一次方程,则k 的值为 .6.如图,两边都放着物体的天平处于平衡状态,用等式表示天平两边所放物体的质量关系为__ __________.7.下列不是方程的是__________.(填序号)① 1+2=3; ② 2x +1; ③ 2m +15=3; ④ x 2-6=0; ⑤ 3x +2y =9; ⑥ 3a +9>15.8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解)【提优特训】10.若5x -6与2x -8是一个正数两个平方根,则可列方程来表示为( )A .5x -6=2x -8B .5x -6+2x -8=0C .5x +6+2x +8=0D .5x +6+2x -8=0 11.若方程(3a -2)x 2+bx +c =0是关于x 的一元一次方程,则字母系数a ,b ,c 的值满足( )A .a =32,b =0,c 为任意数 B .a ≠32,b ≠0,c =0 C .a =32,b ≠0,c 为任意数 D .a =32,b ≠0,c ≠0 12.下列方程中,解为x =-2的方程是( )A .21x +3=x B . x -2=0 C .2x =4 D .321)63(31-=-x x 13.已知单项式-ma 3b m -1与单项式4a 3b 2是同类项,则关于m 的方程一定正确的是( )A .-m +4=0B .-m -4=0C .m -1+2=0D . m -1=2 14.已知53-m x-1=m 是关于x 的一元一次方程,则这个方程的解 .15.对于有理数a ,b ,c ,d ,规定一种运算bc ad dbc a -=,如43525342⨯-⨯==-2. 若32331=----x x ,则所得到的方程为 .16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程.19.汽车的油箱内储油40kg,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t(h) 耗油量p(kg) 剩油量m(kg)1 2.5 40-2.5=37.52 5 40-5=353 7.5 40-7.5=32.54 10 40-10=30………(1)写出工作10h后,油箱内的剩油量;(2)写出工作t h后,油箱内的剩油量为7.5kg,请你列出关于t的方程(不解方程).20.如图用火柴棒搭正方形,用n表示所搭正方形的个数,从而计算火柴棒的根数,当n=1,所需火柴棒为4根,当n=2,所需火柴棒为7根,当n=3,所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?【中考链接】21.(2018•临安)(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.522.(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数7.0 为例进行说明:设7.0 =x ,由7.0 =0.7777…可知,l0x =7.7777…,所以l0x -x =7,解方程,得x =97,于是.得7.0 =97.将63.0 写成分数的形式是 .参考答案1、D2、B3、A4、D5、326、x+4=107、①②⑥ 10、B 11、C 12、D 13、D 14、-1或3 15、-(x -2)+3(3-x )=3 21、D 22、114 8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值. 解:∵方程5a -2x =9的解为x =3,∴5a -2×3=9, ∴a =3.∴(-a )2-2a +1 =(-3)2-2×3+1=4.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解) 解:设x 小时后乙蜡烛的长度是甲蜡烛长度的一半,则1-101x =31(1-121x ). 16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁. 16.解:1.(1)65x -5=6; (2) 5x =2x -18;(3) (1-20%)x =60%x -5; (4) 3x +6=12;2.解:(1)由长方形的长为3x ,得宽为2x ,则2(5x +3x )=64.(2)根据题意,得3x -4=38.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值. 解:∵ax 2+x b-3-2=0是关于x 的一元一次方程,∴a =0,b -3=1, ∴a =0,b =4, ∴x -2=0, ∴x =2. ∴x a +b =24=16.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程. 18. 解:(1)6个.(2)有3个一元一次方程,它们分别是5x -3=-6,6261-=-x ,5x -3=261-x . 19.汽车的油箱内储油40kg ,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t (h) 耗油量p (kg) 剩油量m (kg) 1 2.5 40-2.5=37.5 2 5 40-5=35 3 7.5 40-7.5=32.5 4 10 40-10=30 ………(1)写出工作10h 后,油箱内的剩油量;(2)写出工作t h 后,油箱内的剩油量为7.5kg ,请你列出关于t 的方程(不解方程). 解: (1)40-10×2.5=15;工作10h 后,油箱内的剩油量为15 kg ; (2)根据题意,得40-2.5t =7.5.20.如图用火柴棒搭正方形,用n 表示所搭正方形的个数,从而计算火柴棒的根数,当n =1,所需火柴棒为4根,当n =2, 所需火柴棒为7根,当n =3, 所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?解:根据图形特点和题意可得:第1个图形n=1,火柴棒为3×1+1=4根,第2个图形n=2,火柴棒为3×2+1=7根,第3个图形n=3,火柴棒为3×3+1=10根,…(1)第5个图形中火柴棒有3×5+1=16根,(2)第n个图形中火柴棒有3×n+1=(3n+1)根,(3)3n+1=781,解得n=260,答:这个图形由260个正方形组成.。
【北师大】七年级上册数学 第18讲 列一元一次方程解应用题(3) 讲义(含答案)

教师讲义〔4〕期数:存入的时间叫期数.〔5〕利率:每个期数内的利息与本金的比叫利率.2.储蓄中的常用公式:〔1〕每个期数内:〔2〕利息=本金〔3〕利息=本金〔4〕本息和=本金+利息四、典型例题及同步练习〔一〕、行程问题【例1】小华和小玲同时从相距700米的两地相对走来,小华每分钟走60米,小玲每分钟走80米.几分钟后两人相遇?分析:先画线段图:假设x分钟后两人相遇,此时小华走了_________米,小玲走了_________米,两人一共走了_________米.找出等量关系,小华和小玲相遇时_________+_________=_________写解题过程:同步练习1假设A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走65千米.两车同时开出,相向而行,过几小时后两车相遇?分析:先画线段图:写解题过程:需要〔〕A、3小时B、3小时C、4小时D、4小时3、学校到县城有28千米,除公共汽车以外,还需步行一段路程,公共汽车的速度为36千米/时,步行的速度为4千米/时,全程共需1小时,那么步行所用时间是〔〕A、小时B、小时C、小时D、小时4、一个图书馆对图书进行防火保险,如果每年的保险费是图书价值的0.4%,参加保险6年,一共交付保险费7.8万元,那么图书馆的图书价值〔〕A、300万元B、305万元C、320万元D、325万元5、某企业为节约用水,自建污水净水站,3月份净化污水3000吨,4月份净化污水3300吨,那么这个月净化污水的量的增长百分率为〔〕A、7%B、8%C、9%D、10%6、小明同学存入300元的活期储蓄,存满3个月时取出,共得本息和301.35元〔不计利息税〕,那么此活期储蓄的月利率是〔〕A、1.6‰B、1.5‰C、1.8‰D、1.7‰二、填空题〔共5小题,每题5分,总分值25分〕1、A,B两地间的路程为450千米,一列慢车从A地出发,每小时行驶60千米,一列快车从B地出发,每小时行驶90千米.假设两车同时开出,相向而行,_________小时相遇;假设慢车先开1小时,快车在同地同向开出,快车经过了_________小时可追上慢车.2、某行军纵队以7千米/时的速度行进,队尾的通讯员以11千米/时的速度赶到队伍前送一封信,送交后又立即返回队尾,共用13.2分钟,那么这支队伍的长度为_________千米.3、假设一艘轮船在静水中的速度是7千米/时,水流速度是2千米/时,那么这艘船逆流而上的速度是_________千米/时,顺流而下的速度是_________千米/时.4、环形跑道400米,小明跑步每秒行9米,爸爸骑车每秒行16米,两人同时同地反向而行,经过_________秒两人相遇.5、在一段复线铁道上,两辆火车迎头驶头,A列车车速为20米/秒,B列车车速为25米/秒,假设A列车全长200米,B列车全长160米,两列车错车的时间为_________秒.6、妈妈用10 000元钱为小彬存了6年期的教育储蓄,6年后能取得11 728元,这种储蓄的年利率为_________%.7、某人将一笔钱按定期2年存入银行,年利率为2.25%〔不计复利〕,到期支取扣除20%利息税,实得利息72元,5、从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程?6、甲、乙两人骑自行车同时从相距80千米的两地出发,相向而行,2小时后相遇,甲每小时比乙多走2.4千米,求甲、乙每人每小时走多少千米?7、甲、乙二人从相距91千米的A、B两地相向而行,甲先出发1小时,二人在乙出发4小时后相遇,而甲每小时比乙快2千米,求甲、乙二人的速度?附答案典型例题及同步练习〔一〕【例1】解:小华走的路程为60x米,小玲走的路程为80x米,两人一共走了700米,60x+80x=700,解得x=5.答:5分钟后两人相遇.故答案为60x;80x;700;60x;80x;700.同步练习1解:设经过x小时相遇,根据题意可得〔60+65〕x=480,解得:x=3.84〔小时〕.答:两车需要3.84小时相遇.同步练习2解:设货车的速度为x千米/小时,根据题意可作出如下方程及图示:80×4+x×4=600,解得:x=70〔千米/小时〕.答:货车每小时行70千米.【例2】解:〔1〕设爸爸追上小明用了x 分钟,根据题意可得线段图〔红线代表爸爸,黑线代表小明〕:得方程:80×5+80x=180x ,解得:x=4.答:爸爸追上小明用了4分钟.各空依次填:180x 、400、80x 、400+80x=180x .〔2〕爸爸追上小明用了4分钟,爸爸和小时走了180×4=720〔米〕,此时离学校还有1000﹣720=280米.同步练习1解:设小明x 秒钟追上小兵,7x=6×〔4+x 〕,解得x=24.答:小明24秒钟追上小兵.同步练习2解:设x 秒后小明能追上小华,7x ﹣5x=20,解得x=10.答:10秒后小明能追上小华.同步练习3解:设经过x 小时摩托车可以追赶上自行车,根据题意得:60x -20x =80 解得x =2所以经过2小时摩托车可以追赶上自行车。
6.2 《解一元一次方程》 课件 华师大版 (9)

1. 5m 0. 5m
3dm
根据以上演示我们知道了它们的等量关系:
水位上升部分的体积=小圆柱形铁Байду номын сангаас的体积
2h r 圆柱形体积公式是_______,
水升高的体积 小铁块的体积
2 0.5 0.3 (__________) (_________)
0.52 x
解:设水面将升高x米, 根据题意得
zxxkw
学科网
学.科.网
思考并回答
请指出下列过程中,哪些量发 生变化,哪些量保持不变? (1)把一小杯水倒入另一只大杯中; (2)用一块橡皮泥先做成一个立方 体,再把它改做球.
例1
将一个底面直径是10 厘米、高为36厘米的 “瘦长”形圆柱锻压 成底面直径为20厘米 的“矮胖”形圆柱, 高变成了多少?
2 x = 0.32 0.5 方程为:0.5 ___________________
解这个方程: x__________ =0.18
容器内水面将升高 0.18m 答:______________________
我 变 二
,
练习、有一个底面直径为10m 的圆柱形储油器,油中浸有 一个钢球,其直径为2m,若 从油中捞出钢球,问液面将 下降多少米? 水下降的体积= 钢球的体积
1 、列方程解应用题的一般分 析过程:找等量关系 设求知数 列方程
2、等积变形
V前 =
V后
拓 展 思 考
一个长方体水箱,从里面量长40㎝, 宽30㎝,深30㎝,箱中水面高10㎝, 放进一个棱长20㎝的正方体铁块后, 铁块顶面仍高于水面,这时水面高 多少厘米?
x
Byebye!
锻压
回答: 变化前的体积=变化后的体积 相等关系: , = V V后 即: 前 , πr2 h=πR 2H 设未知数 :
一元一次方程的概念与解法讲义知识点经典例题练习

一元一次方程的概念与解法【知识要点梳理】1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.(2)一元一次方程的一般形式是: 2.解一元一次方程的基本步骤:【典型例题探究】例1.下列方程是一元一次方程的有哪些? x+2y=9 x 2-3x=111=xx x 3121=-2x=1 3x –5 3+7=10 x 2+x=1例2. 老师在黑板上出了一道解方程的题421312+-=-x x ,小明马上举起了手,要求到黑板上去做,他是这样做的: )2(31)12(4+-=-x x ①63148--=-x x ② 46138+-=+x x ③ 111-=x ④111-=x ⑤ 老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你 指出他错在第 步(填编号),并将正确的过程写出来.例3.解方程 (1)32243332=+--x x (2)1423(1)(64)5(3)25x x x --++=+ (3)22314615+=+---x x x x (4)83161.20.20.55x x x +-+-=-例4.方程的综合应用 (1)x 取何值时,代数式 63x +与 832x- 的值相等.(2)已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.(3) 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.(4) 当.38322倍的的值是为何值时,代数式x x x x ++-(5) 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.例5. 竞赛中的方程 (1) 解方程200920102009433221=⨯++⨯+⨯+⨯x x x x ΛΛ(2)(希望杯邀请赛)对于数a,b,c,d,规定一种运算dc b a =ad-bc,如2201--=220)2(1-=⨯--⨯;若85)3(40=--x ,求x 的值.*(3)(广西竞赛)解关于x 的方程3-=++++++++bca x a cb xc b a x【基础达标演练】1.若ax +b=0为一元一次方程,则__________2.当=m 时,关于字母x 的方程0112=--m x 是一元一次方程.3.若9a x b 7 与 – 7a3x –4b 7是同类项,则x=4.当=x ___时,代数式24+x 与93-x 的值互为相反数.5.(北京中考)已知2-=x 是方程042=-+m x 的根,则m 的值是( ) A. 8B. -8C. 0D. 26.如果关于x 的方程01231=+m x是一元一次方程,则m 的值为( )A .31B. 3C. -3D.不存在 7.下列方程中( )是一元一次方程. A .3x-065= B. 2x+y=4 C. x(x+2)=8 D. 11=+x x8.下列方程变形中,正确的是( )A.方程1223+=-x x ,移项,得;2123+-=-x xB.方程()1523--=-x x ,去括号,得;1523--=-x xC.方程2332=t ,未知数系数化为1,得;1=x D.方程15.02.01=--xx 化成.63=x 9.方程62123xx +=-去分母后可得( ) A. 3x -3 =1+2x , B. 3x -9 =1+2x , C. 3x -3 =2+2x , D. 3x -12=2+4x ; 10.若32,24,A x B x =-=+使A -B=8,x 的值是( ) A .6 B .2 C .14 D .18 11.下列各方程中变形属于移项的是( ) A .由24,2x x ==得B .由735,735x x x x -=++=+得C .由,58-=-x x 得85--=--x xD .由139-=+x x ,得913+=-x x12.下列方程的解法中,正确的是( ) A .214x =,移项得142,12x x =-∴= B .155x=,两边都除以5,得3=x C .23,32==x x 得 D .0.017x =,两边都乘以100,得x =70013. 解方程: (1)221131+=-x x (2)1-323x x -=+ (3)1122142=--+x x (4)x-3(314615+--x x )=2(x+2)(5)1111(3)3302222y ⎧⎫⎡⎤---=⎨⎬⎢⎥⎣⎦⎩⎭【能力提升训练】1.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( )A .1B .-1C .-1或1D .任意数2. 如果()01122=+++-y x x ,则21xy -的值是 . 3. 已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= .4.在有理数范围内定义运算“*”,其规则为:a*b =2a-b ,试求(x*3)*2=1的解.5. 阅读短文:利用列方程可将循环小数化为分数,如求=?方法是:设x =0.5,即x =0.555……,将方程两边同乘以10,得10x =5.55……,即10x =5+0.555……,而x =0.55……, ∴x =95.试根据上述方法:(1)比较0.9与1的大小;(2)将0.25化为分数.。
【北师大】七年级上册数学 第17讲 列一元一次方程解应用题(2) 讲义(含答案)

教师讲义同步练习1某队有林场108公顷,牧场54公顷,现在要栽培一种新果树,把一局部牧场改为林场,使牧场面积只占林场面积的20%,改为林场的牧场面积是多少公顷?五、课堂小结学生总结,老师补充六、家庭作业一、选择题1、方程2x=1,那么的值为〔〕A、B、C、2D、﹣22、以下写法中正确的选项是〔〕A、直线a,b相交于点nB、直线AB,CD相交于点MC、直线ab,cd相交于点MD、直线AB,CD相交于m3、在一张挂历上,任意圈出同一列上的三个数的和不可能是〔〕A、27B、33C、40D、514、一种小麦的出粉率是80%,那么200千克这种小麦可出粉〔〕A、80千克B、160千克C、200千克D、100千克5、一批200千克的种子中有190千克出芽,照这样算发芽率应为〔〕A、5%B、95%C、190%D、100%6、一件风衣,按本钱价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的本钱价是〔〕A、150元B、80元C、100元D、120元x+4=〔40-x〕-8x+4=32-xx+x=32-42x=28x=14∴乙池原有水量为:40-x=40-14=26〔吨〕〔检验:甲池注水4吨后的水量:14+4=18〔吨〕;乙池出水不吨后的水量为:26-8=18〔吨〕,注出水之后,甲、乙池的水量相等,符合题意。
〕答:甲池原有14吨水,那么乙池原有26吨水。
【例8】解:设较小一块的面积为x平方米,那么较大一块的面积为5/3x平方米,根据题意,得:x+5/3x=16008/3x=1600x=1600÷8/3x=1600×3/8x=600那么:较大的一块面积为5/3x=5/3×600=1000〔平方米〕答:较小一块的面积为600平方米,较大一块的面积为1000平方米.同步练习1解:设改为林场的牧场面积是x公顷,根据题意,得:54-x=108×20%54-x==x=xx=答:改为林场的牧场面积是公顷。
解一元一次方程(去分母)课件

两边同时乘以最小公倍数
将方程两边同时乘以最小公倍数,消 除分母。
移项与合并同类项
将方程中的同类项进行移位
将含有未知数的项移到等式的一侧,常数项移到另一侧。
合并同类项
将等式两侧的同类项进行合并,简化方程。
注意符号变化
在移项过程中,需要注意符号的变化,确保方程的正确性。
系数化为
将未知数的系数单独放在等式的一侧
在解决实际问题时,可以通过建立数学模型将问题转化为数学问题,然后利用一 元一次方程求解得到实际问题的答案。这有助于培养学生的数学应用能力和解决 问题的能力。
02
解一元一次方程(去分母)的基本 步骤
去分母
确定最小公倍数
注意处理分数项
找出方程中分母的最小公倍数,以便 去除分母。
在去除分母的过程中,需要注意处理 分数项,确保方程的等价变换。
检验解的合理性包括检查解是 否符合实际情况、是否符合题 目的要求以及是否满足方程的 定义域。
如果发现解不合理,需要重新 检查方程的建立或考虑其他方 法解决方程。
注意解的取值范围
在解一元一次方程时,需要注意 解的取值范围,以确保解是有效
的。
解的取值范围取决于方程的定义 域和方程的实际意义。
如果解的取值范围不符合要求, 需要重新检查方程的建立或考虑
其他方法解决方程。
05
解一元一次方程(去分母)的练习 题与答案
练习题一
总结词:简单基础
详细描述:此题为解一元一次方程的基础题目,适合初学者练习。方程形式简单 ,只需要进行基本的去分母操作。
练习题二
总结词:中等难度
详细描述:此题在练习题一的基础上有所提升,方程形式较为复杂,需要运用多次去分母的技巧。适合已经掌握基础解法的 学员练习。
第4章 一元一次方程——一元一次方程的定义和解法 讲义苏科版版数学七年级上册

A.3-x-1=0 B.6-x-1=0 C.6-x+1=0 D.6-x+1=2
题型二:解方程
例1、解下列方程
(1)-2x=-3x+8(2)56=3x+32-2x
(3) (4)4y﹣3(20﹣y)=6y﹣7(9﹣y)
(5) (6) x- =1
(7) (8)
(9) . (10) - = 1
注:①方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.
②方程的解的检验方法:把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等.
【例题精讲】
第一部分:从问题到方程
题型一:方程及一元一次方程的概念辨析
例1、已知 是关于x的一元一次方程,试求代数式 的值。
3. 移项法则
把等式一边的某项__________后移到另一边,叫做移项.
4. 去括号法则
(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号_______.
(2)括号外的因数是负数,去括号后各项的符号与原ቤተ መጻሕፍቲ ባይዱ号内相应各项的符号_______.
5. 解方程的一般步骤
(1)去分母(方程两边同乘各分母的最小公倍数)
(2)方程3y= ,两边都除以3,得y=1( )
改正:________________________________________________。
2.下列解方程的过程中,移项错误的是( ).
A.方程2x+6=-3变形为2x=-3+6 B.方程2x-6=-3变形为2x=-3+6
C.方程3x=4-x变形为3x+x=4 D.方程4-x=3x变形为x+3x=4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
解一元一次方程(讲义)
➢ 课前预习
1. 含有_______的_______叫做方程.
2. 等式的基本性质
性质1:
等式两边同时加上(或减去)_________,所得结果仍是等式.
性质2:
等式两边同时乘___________(或_____________________),所得结果仍是
等式.
3. 已知a,b,x,y都是未知数,给出下列式子:
①21x;②325;③231x;④321a;
⑤531ab;⑥23xy;⑦251xx.
其中是方程的有_________________.(填序号)
4. 解下列方程:
(1)192x; (2)36248a.
2
➢ 知识点睛
1. 一元一次方程的定义:只含有___________,_______________的_______方
程叫做一元一次方程.
2. 使方程左右两边的值________的___________叫做方程的解.
3. 等式的基本性质:①等式两边同时加上(或减去)同一个__________所得结
果仍是___________;
②等式两边同时乘同一个数(或除以同一个_________的数)所得结果仍是
___________.
4. 解方程的五个步骤:①______________;②______________;③
_____________;④______________;⑤_______________.
➢ 精讲精练
1. 下列各式中,是一元一次方程的为_________(填序号).
①210x;②3x5y=1;③21xx;④3+7=10.
2. 若(1)6aax是关于x的一元一次方程,则a=______.
3. 如果x=2是方程5ax的解,那么a=__________.
4. 解下列方程:
(1)1036xx;
解:移项,得
合并同类项,得
系数化为1,得
(2)3653xxx;
(3)2(10)52(1)xxxx;
解:去括号,得
移项,得
合并同类项,得
系数化为1,得
(4)37(1)32(3)xxx;
3
(5)15233442xx;
解:去分母,得
移项,得
合并同类项,得
系数化为1,得
(6)1113312xx;
(7)110512442xxxx;
解:去分母,得
去括号,得
移项,得
合并同类项,得
系数化为1,得
(8)151136xx;
4
(9)1337yy;
(10)14126110312xxx;
(11)41.51.250830.50.12xxx;
解:原方程可化为
去分母,得
去括号,得
移项,得
合并同类项,得
系数化为1,得
(12)0.891.33511.20.20.3xxx.
5
5. m为何值时,代数式3152mm的值与代数式27m的值的和等于5?
6
【参考答案】
➢ 课前预习
1. 未知数 等式
2. 同一个数 同一个数 除以同一个不为0的数
3. ④⑤⑥⑦
4. (1)21x (2)6a
➢ 知识点睛
1. 一个未知数 并且未知数的指数都是1 整式
2. 相等 未知数的值
3. 代数式,等式 不为0,等式
4. 去分母 去括号 移项 合并同类项
系数化为1
➢ 精讲精练
1. ①
2. -1
3. 2.5
4. (1)8x; (2)3x; (3)43x;
(4)5x; (5)8x; (6)58x;
(7)43x; (8)1x; (9)47y;
(10)12x; (11)2x; (12)1x.
5. 7m