动量定理及动量守恒定律专题复习(附参考答案)汇总

合集下载

08 动量定理及动量守恒定律(解析版)

08 动量定理及动量守恒定律(解析版)
解得喷出水的速度大小为
2.(2020全国1).行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是( )
A.增加了司机单位面积的受力大小
B.减少了碰撞前后司机动量的变化量
C.将司机的动能全部转换成汽车的动能
(1)A受到的水平瞬时冲量I的大小;
(2)碰撞前瞬间B的动能 至少多大?
【考点】圆周运动的向心力表达式、动能定理、动量定理、动量守恒定律
【答案】(1) ;(2)
【解析】(1)A恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A在最高点时的速度大小为v,由牛顿第二定律,有

A从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A在最低点的速度大小为 ,有
【答案】(1)3m(2) (3)
【解析】:(1)物块A和物块B发生碰撞后一瞬间的速度分别为 、 ,弹性碰撞瞬间,动量守恒,机械能守恒,即:
联立方程解得: ;
根据v-t图象可知,
解得:
(2)设斜面的倾角为 ,根据牛顿第二定律得
当物块A沿斜面下滑时: ,由v-t图象知:
当物体A沿斜面上滑时: ,由v-t图象知:
【考点】动量定理
【答案】2mv+mgt
【解析】取向上为正方向,动量定理mv-(-mv)=I且I=(F-mg)t
解得IF=Ft=2mv+mgt
6.(2017全国3)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。F随时间t变化的图线如图所示,则( )
A.t=1 s时物块的速率为1 m/s
【考点】动量定理
【答案】C
【解析】根据自由落体运动和动量定理有2gh=v2(h为25层楼的高度,约70 m),Ft=mv,代入数据解得F≈1×103 N,所以C正确.

动量定理、动量守恒定理大题50题(含答案)

动量定理、动量守恒定理大题50题(含答案)

1.如图(a)所示,“ ”型木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b)所示.已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求: (1) 斜面BC 的长度;(2) 滑块的质量;(3) 运动过程中滑块克服摩擦力做的功.2.甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度 ,水平向后方的乙船上抛一沙袋,其质量为m .设甲船和沙袋总质量为M ,乙船的质量也为M .问抛掷沙袋后,甲、乙两船的速度变化多少?F/Nt/s-5121 2 3图(b )图(a )AθB C力传感器3.(2011·新课标全国卷)如图,A、B、C三个木块的质量均为m。

置于光滑的水平面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B和C紧连,使弹簧不能伸展,以至于B、C可视为一个整体,现A以初速v沿B、C的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A,B分离,已知C离开弹簧后的速度恰为v,求弹簧释放的势能。

4.一质量为2m的物体P静止于光滑水平地面上,其截面如图所示。

图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接。

现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止。

重力加速度为g。

求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s。

5.( 2010·天津)如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h 。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

十年高考物理真题(2011-2023)分类汇编专题08 动量定理及动量守恒定律(解析版)

十年高考物理真题(2011-2023)分类汇编专题08 动量定理及动量守恒定律(解析版)

十年高考物理真题(2011-2023)分类汇编专题08 动量定理及动量守恒定律(解析版)一、动量定理动量定理是描述物体运动的一个基本定理,它指出:在一个封闭系统内,当外力作用于物体上时,物体的动量变化等于作用在该物体上的外力。

动量定理可以表示为以下公式:物体的动量变化 = 外力的冲量其中,冲量定义为力对时间的积分,即:冲量= ∫(F dt)根据动量定理,我们可以推导出一些物体运动的关系。

1. 动量定理的应用动量定理在物理学中有着广泛的应用。

以下是一些常见的应用场景:a) 车辆碰撞在车辆碰撞中,动量定理可以通过计算碰撞前后物体的动量来判断碰撞力的大小和方向。

例如,当两辆车以不同的速度相撞时,根据动量定理可以计算出它们的相对速度和撞击力。

b) 弹丸射击在弹丸射击中,动量定理可以用来计算弹丸的速度和撞击力。

通过测量弹丸的质量和速度,可以使用动量定理来推导出撞击目标的力度。

c) 物体的反弹当一个物体在碰撞后发生反弹时,动量定理可以用来解释反弹的原理。

根据动量守恒定律,碰撞前后物体的总动量保持不变,因此在撞击后物体会反弹。

2. 动量定理的示例题目下面是一道常见的动量定理示例题目:题目:一个质量为1kg的物体以2m/s的速度在空中自由运动,受到一个水平方向的2N的恒力作用,请问物体在2秒钟后的速度是多少?解答:根据动量定理,我们可以将物体的动量变化表示为:物体的动量变化= 外力的冲量。

根据题目,外力的大小为2N,恒力作用时间为2s,因此冲量可以计算为2N * 2s = 4Ns。

根据动量定理,我们可以得到动量变化等于冲量的公式:物体的动量变化 = 4Ns。

根据动量的定义,我们可以将物体的动量表示为动量 = 质量 * 速度。

根据题目,物体的质量为1kg,所以物体的动量可以表示为动量 = 1kg * 2m/s = 2kg·m/s。

根据物体的动量变化等于冲量的公式,我们可以得到2kg·m/s = 4Ns,解方程得到物体的速度为2m/s。

高三一轮复习动量守恒定律带答案

高三一轮复习动量守恒定律带答案

真谛唯一靠谱的标准就是永久自相切合。

土地是以它的肥饶和收获而被估价的;才能也是土地,可是它生产的不是粮食,而是真谛。

假如只好滋长瞑想和想象的话,即便再大的才能也不过砂地或盐池,那上边连小草也长不出来的。

动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的的乘积. (2) 公式: I=,合用于求恒力的冲量.(3)方向:与同样.2.动量(1)定义:物体的与的乘积. (2) 表达式:(3)单位:.符号:(4)特色:动量是状态量,是,其方向和方向同样.3.动量定理(1)内容:物体所受协力的冲量等于物体.(2) 表达式:.(3)矢量性:动量变化量方向与的方向同样,能够在某一方向上用动量定理.二、动量守恒定律1.系统:互相作用的几个物体构成系统.系统中各物体之间的互相作使劲称为内力,外面其余物体对系统的作使劲叫做外力.2 .定律内容:假如一个系统作用,或许所受的为零,这个系统的总动量保持不变.3.动量守恒定律的不一样表达形式(1)m 1 v1+m 2 v2=m 1 v 1′+ m 2 v2′,互相作用的两个物体构成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2 ,互相作用的两个物体动量的增量等大反向.(3)p0=,系统总动量的增量为零.4.守恒条件(1)理想守恒:系统不受外力或所受外力的协力为零,则系统动量守恒.1人生的劫难是好多的,所以我们不行对于每一件稍微的损害都过于敏感。

在生活劫难眼前,精神上的坚毅和漠不关心是我们抵挡罪恶和人买卖外的最好武器。

不出来的。

(2)近似守恒:系统遇到的协力不为零,但当内力远大于外力时,系统的动量可近似当作守恒.(3)分方向守恒:系统在某个方向上所受协力为零时,系统在该方向上动量守恒.三、碰撞1.看法:碰撞指的是物体间互相作用连续时间很短,物体间互相作使劲很大的现象,在碰撞过程中,一般都知足内力远大于外力,故能够用动量守恒定律办理碰撞问题.分析碰撞的三个依照(1)动量守恒: p 1+ p 2= p 1′+ p 2′.(2)动能不增添: E k1+ E k2≥E k1′+ E k2p 12p 22p 1′2p 2′2′或+≥2m 1+.2m 12m 22m 2(3)速度要切合情形①假如碰前两物体同向运动,则后边的物体速度必大于前方物体的速度,即v 后> v 前,否则没法实现碰撞.②碰撞后,本来在前方的物体速度必定增大,且速度大于或等于本来在后边的物体的速度,即v 前′≥v后′.③假如碰前两物体是相向运动,则碰后两物体的运动方向不行能都不改变.除非两物体碰撞后速度均为零.2.分类(1)弹性碰撞:这类碰撞的特色是系统的机械能守恒,互相作用过程中按照的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在互相作用过程中只按照动量守恒定律.(3)完整非弹性碰撞:这类碰撞的特色是系统的机械能损失最大,作用后两物体粘合在一同,速度相等,互相作用过程中只按照动量守恒定律.3.碰撞问题的研究(1)弹性碰撞的求解求解:两球发生弹性碰撞时应知足动量守恒和动能守恒.以质量为m 1、速度为v1的小球不出来的。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

动量守恒定律专题复习

12
二、子弹打木块类的问题
1.运动性质:子弹对地在滑动摩擦力作用下匀减速 直线运动;木块在滑动摩擦力作用下做匀加速运动
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻力 作用下相对运动,系统动量守恒,机械能不守恒,
ΔE = f 滑d相对
典例1 :如图:具有弧形光滑表面(右侧足够高)的小 车A静止在平台边缘的水平光滑地面上,小车质量MA=4kg 。静止在光华平台上的小物体B,其质量为mB=0.9kg。质 量为mC=0.1kg的子弹C以速度v0=20m/s水平射入B,经极 短时间与B达到相对静止,并使B(含C)从P点向右滑上 小车,如图所示(g取10m/s2)。试求:物块B在小车A上所 能达到的最大高度h;
(1)滑块A与B碰撞后瞬间的共同速度的大小;
(2)小车C上表面的最短长度.
变式训练2
如图,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端 固定一轻质弹簧,左端A与弹簧的自由端B相距l。物体P置于P1的最 右端,质量为2m且可看作质点。P1与P以共同速度v0向右运动,与静 止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起。P压缩弹 簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩 擦因数为μ。求: (1)P1、P2刚碰完时的共同速度v1和P的最终速度v2; (2)此过程中弹簧的最大压缩量x和相应的弹性势能Ep。
(1) 救生员和 B 船的总动量大小. (2) A 船的速度大小.
7 【答案】 (1) Mv0-mv (2) v0+Mm(v0+v)
【解析】 (1) 取 v0 的方向为正方向,救生员跃上 B 船前救生员的动量为-mv,B 船的动量为 Mv0.

(完整word版)高三复习高中物理重点知识习题动量守恒定律-(含答案),推荐文档

第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。

F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。

动量及动量守恒定律习题大全(含解析答案)

动量守恒定律习题课一、运用动量守恒定律的解题步骤1.明确研究对象,一般是两个或两个以上物体组成的系统; 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.二、碰撞1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101v m v m v m +=碰撞前后动能不变:222212111210121v mv m v m += 所以012121v v m m m m +-= 022211v v m m m +=(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <<m 2时,v 1≈-v 0,v 2≈O (速度反向) ③当m l >m 2时,v 1>0,v 2>0(同向运动) ④当m l <m 2时,v 1<O ,v 2>0(反向运动)⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能的损失:)()(22221211212222121121'+'-+=∆v m v m v m v m E3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v动能损失:221212222121121)()(v m m v m v mE k +-+=∆ 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是A.m 甲=m 乙B.m 乙=2m 甲C.m 乙=4m 甲D.m 乙=6m 甲 三、平均动量守恒问题——人船模型:1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:【模型】如图所示,长为L 、质量为M 的小船停在静水中,一个质量m 的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少? 〖分析〗lv 0 v S四、“子弹打木块”模型此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹) 1.“击穿”类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动【模型1】质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速度v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。

高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s4.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量定理及动量守恒定律专题复习一、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。

(3)动量是矢量,它的方向和速度的方向相同。

(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。

题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。

(5)动量的变化:0p p p t -=∆.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。

B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。

(6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。

2、深刻理解冲量的概念(1)定义:力和力的作用时间的乘积叫做冲量:I =Ft(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。

如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。

对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

(4)高中阶段只要求会用I=Ft 计算恒力的冲量。

对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

(5)要注意的是:冲量和功不同。

恒力在一段时间内可能不作功,但一定有冲量。

特别是力作用在静止的物体上也有冲量。

3、深刻理解动量定理(1).动量定理:物体所受合外力的冲量等于物体的动量变化。

既I =Δp(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。

这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

(3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

(4)现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。

(5)动量定理的表达式是矢量式。

在一维的情况下,各个矢量必须以同一个规定的方向为正。

4、深刻理解动量守恒定律(1).动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

即:22112211v m v m v m v m '+'=+ (2)动量守恒定律成立的条件○1系统不受外力或者所受外力之和为零; ○2系统受外力,但外力远小于内力,可以忽略不计; ○3系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

○4全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

(3).动量守恒定律的表达形式:除了22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/外,还有:Δp 1+Δp 2=0,Δp 1= -Δp 2 和1221v v m m ∆∆-= (4)动量守恒定律的重要意义动量守恒定律是物理学中最基本的普适原理之一。

(另一个最基本的普适原理就是能量守恒定律。

)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。

二、动量定理及动量守恒定律的典型应用1、有关动量的矢量性例1、质量为50kg 的人以8m/s 的速度跳上一辆迎面驶来的质量为200kg 、速度为4m/s 的平板车。

人跳上车后,车的速度为:( )A.4.8m/sB.3.2m/sC.1.6m/sD.2m/s例2、在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们落地的瞬间正确的是:( )A .速度相等B .动量相等C .动能相等D .从抛出到落地的时间相等拓展一:在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们从抛出到落地时,比较它们的动量的增量△P ,有:( )A .平抛过程较大B .竖直上抛过程较大C .竖直下抛过程较大D .三者一样大拓展二:质量为0. 1kg 的小球从离地面20m 高处竖直向上抛出,抛出时的初速度为15m /s ,取g =10m /s ,当小球落地时求:(1)小球的动量;(2)小球从抛出至落地过程中动量的变化量;(3)若其初速度方向改为水平,求小球落地时的动量及动量变化量。

2、求恒力和变力冲量的方法。

恒力F 的冲量直接根据I=Ft 求,而变力的冲量一般要由动量定理或F-t 图线与横轴所夹的面积来求。

例3、一个物体同时受到两个力F 1、F 2的作用,F 1、F 2与时间t 的关系如图1所示,如果该物体从静止开始运动,经过t=10s 后F 1、F 2以及合力F的冲量各是多少?例4、一质量为100g 的小球从0.80m 高处自由下落到一厚软垫上.若从小球接触软垫到小球陷至最低点经历了0.2s ,则这段时间内软垫对小球的冲量大小为________.(取 g=10m/s 2,不计空气阻力).变式:从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。

3、动量定理求解相关问题例5、一个质量为m=2kg 的物体在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s ,然后推力减小为F 2=5N ,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。

试求物体在水平面上所受的摩擦力。

拓展:如图2所示,矩形盒B 的质量为M ,放在水平面上,盒内有一质量为m 的物体A ,A 与B 、B 与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。

现瞬间使物体A 获取一向右且与矩形盒B 左、右侧壁垂直的水平速度V 0,以后物体A 在盒B 的左右壁碰撞时,B 始终向右运动。

当A 与B 最后一次碰撞后,B 停止运动,A 则继续向右滑行距离S 后也停止运动,求盒B 运动的时间t 。

4、系统动量是否守恒的判定例6、如图3所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中︰( ) A .动量守恒、机械能守恒 B .动量不守恒、机械能不守恒C .动量守恒、机械能不守恒D .动量不守恒、机械能守恒变式:把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是︰( ) A BC.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零图2图3拓展:如图4所示,A 、B 两小车间夹一压缩了的轻质弹簧,且置于光滑水平面上,用手抓住小车使其静止,下列叙述正确的是:( )A .两手先后放开A 、B 时,两车的总动量大于将A 、B 同时放开时的总动量B .先放开左边的A 车,后放开右边的BC .先放开右边的B 车,后放开左边的A D .两手同时放开A 、B5、碰撞:碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。

(2)碰撞过程中,总动能不增。

因为没有其它形式的能量转化为动能。

(3)碰撞过程中当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。

(4)碰撞过程中,两物体产生的位移可忽略。

判定碰撞可能性问题的分析思路(1)判定系统动量是否守恒。

(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。

(3)判定碰撞前后动能是不增加。

如:光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧(1)弹簧是完全弹性的。

压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。

这种碰撞叫做弹性碰撞。

由动量守恒和能量守恒可以证实A 、B 的最终速度分别为:。

(这个结论最好背下来,以后经常要用到。

)(2)弹簧不是完全弹性的。

压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。

(3)弹簧完全没有弹性。

压缩过程系统动能减少全部转化为内能,Ⅱ状态没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有分离过程。

可以证实,A 、B 最终的共同速度为。

在完全非弹性碰撞过程中,系统的动能损失最大。

例7、如图所示,木块A 的右侧为光滑曲面,且下端极薄,其质量为2.0㎏,静止于光滑水平面上,一质量为2.0㎏的小球B 以2.0m/s 的速度从右向左运动冲上A 的曲面,与A 发生相互作用.(1)B 球沿A 曲面上升的最大高度(设B 球不能飞出去)是:( )A .0.40mB .0.20mC .0.10mD .0.05m(2)B 球沿A 曲面上升到最大高度处时的速度是:( )A .0B .1.0m/sC .0.71m/sD .0.50m/s(3)B 球与A 曲面相互作用结束后,B 球的速度是:( )A .0B .1.0m/sC .0.71m/sD .0.50m/s图4例8、A、B两球在光滑水平面上沿同一直线同向运动,A、B的质量分别为2kg和4kg,A 的动量是6kg·m/s,B的动量是8kg·m/s,当A球追上B球发生碰撞后,A、B两球动量可能值分别为:()A.4kg·m/s,10 kg·m/s B.-6kg·m/s,20kg·m/sC.10 kg·m/s,4 kg·m/s D.5kg·m/s,9kg·m/s变式:甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P1=5kg.m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种?A、m1=m2B、2m1=m2C、4m1=m2D、6m1=m2。

相关文档
最新文档