材料科学基础(合金相结构)

合集下载

材料科学基础试卷.

材料科学基础试卷.

2001 ——2002 学年第二学期时间110 分一、名词解释(5分×8)1、金属玻璃2、金属间化合物3、离异共晶4、晶界偏聚5、科垂尔气团(Cottrell Atmosphere)6、孪生7、反应扩散8、变形织构二、问答题1、(10分)标出hcp晶胞中晶面ABCDEF面、ABO面的晶面指数, OC方向、OC方向的晶向指数。

这些晶面与晶向中,那些可构成滑移系?指出最容易产生滑移的滑移系。

2、(10分)判断位错反应在面心立方晶体中能否进行?若两个扩展位错的领先位错发生上述反应,会对面心立方金属性能有何影响。

3、(10分)写出非稳态扩散方程的表达式,说明影响方程中扩散系数的主要因素。

4、(10分)指出影响冷变形后金属再结晶温度的主要因素。

要获得尺寸细小的再结晶晶粒,有那些主要措施,为什么?5、(15分)试述针对工业纯铝、Al-5%Cu合金、Al-5%Al2O3复合材料分别可能采用那些主要的强化机制来进行强化。

6、(15分)请在如下Pb-Bi-Sn相图中(1)写出三相平衡和四相平衡反应式;(2)标出成分为5%Pb,65%Bi与30%Sn合金所在位置,写出该合金凝固结晶过程,画出并说明其在室温下的组织示意图。

7、(20分)Cu-Sn合金相图如图所示。

(1)写出相图中三条水平线的反应式,并画出T1温度下的成分-自由能曲线示意图;(2)说明Cu-10wt%Sn合金平衡和非平衡凝固过程,分别画出室温下组织示意图;(3)非平衡凝固对Cu-5wt%Sn合金的组织性能有何影响,如何消除?8、(20分)低层错能的工业纯铜铸锭采用T=0.5T熔点温度热加工开坯轧制。

(1)画出该材料分别在高、低应变速率下热加工时的真应力-真应变曲线示意图,并说明影响曲线变化的各种作用机制;(2)开坯后该金属在室温下继续进行轧制,画出此时的真应力-真应变曲线示意图,并说明影响曲线变化的机制;(3)开坯后该金属要获得硬态、半硬态和软态制品,最后工序中可采用那些方法,为什么?2002 ——2003 学年第二学期时间110 分钟材料科学与工程课程64 学时 4 学分考试形式:闭卷专业年级材料 2000 级 总分 100 分,占总评成绩 70%一、填空(0.5X30=15分)1、 fcc 结构的密排方向是_____,密排面是____,密排面的堆垛顺序是_____,致密度为________,配位数是____,晶胞中原子数为___,把原子视为半径为r 的刚性球时,原子的半径是点阵常数a 的关系为_________。

材料科学基础 第二章 固体材料的结构

材料科学基础  第二章 固体材料的结构

第二章固体材料的结构固体材料的各种性质主要取决于它的晶体结构。

原子之间的作用结合键与晶体结构密切相关。

通过研究固体材料的结构可以最直接、最有效地确定结合键的类型和特征。

固体材料主要包括:金属、合金、非金属、离子晶体、陶瓷研究方法:X光、电子、中子衍射——最重要、应用最多§2-1 结合键结合键——原子结合成分子或固体的结合键决定了物质的物理、化学、力学性质。

一切原子之间的结合力都起源于原子核与电子间的静电交互作用(库仑力)。

不同的结合键代表了实现结构)的不同方式。

一、离子键典型的金属与典型的非金属元素就是通过离子键而化合的。

从而形成离子化合物或离子晶体由共价键方向性特点决定了的SiO2四面体晶体结构极性共价键非极性共价键五、氢键含有氢的分子都是通过极性共价键结合,极性分子之间结合成晶体时,通过氢键结合。

例如:H 2O ,HF ,NH 3等固态冰液态水§2-2 金属原子间的结合能一、原子作用模型固态金属相邻二个原子之间存在两种相互作用:a) 相互吸引——自由电子吸引金属正离子,长程力;b) 相互排斥——金属正离子之间的相互排斥,短程力。

平衡时这二个力相互抵消,原子受力为0,原子处于能量最低状态。

此时原子间的距离为r0。

§2-3 合金相结构基本概念♦合金——由两种或两种以上的金属或金属非金属元素通过化学键结合而组成的具有金属特性的材料。

♦组元、元——组成合金的元素。

♦相——具有相同的成分或连续变化、结构和性能的区域。

♦组织——合金发生转变(反应)的结果,可以包含若干个不同的相,一般只有一到二个相。

♦合金成分表示法:(1) 重量(质量)百分数A-B二元合金为例m B——元素B的重量(质量m A——元素A的重量(质量合金中的相分为:固溶体,化合物两大类。

固溶体金属晶体(溶剂)中溶入了其它元素(溶质)后,就称为固溶体。

一、固溶体的分类:♦按溶质原子在溶剂中的位置分为:置换固溶体,间隙固溶体♦按溶解度分为:有限固溶体,无限固溶体♦按溶质原子在溶剂中的分布规律分为:有序固溶体,无序固溶体置换固溶体:溶质原子置换了溶剂点阵中部分溶剂原子。

材料科学基础(第04章晶体结构)

材料科学基础(第04章晶体结构)
点阵常数:晶胞的棱边长度,可以采用X射线衍射分析求得。 原子半径:假设原子为刚性球,两个最近邻原子之间的距离就是 原子的半径之和。 面心立方结构:点阵常数为a,且21/2a=4R 体心立方结构:点阵常数为a,且31/2a=4R 密排六方结构:点阵常数为a和c,(a2/3+c2/4)1/2=2R

化学亲和力(电负性):化学亲和力越强,倾向于生成化合物而
不利于形成固溶体;生成的化合物越稳定则溶解度越小。只有电 负性详尽的元素才可能具有大的溶解度。

原子价因素:当原子尺寸因素较为有利时,在某些以一价金属为
基的固溶体中,溶质的原子价越高,其溶解度越小。
2.3 合金相结构
2.3.1 固溶体 2. 间隙固溶体: ① ② 溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙 固溶体。 影响间隙固溶度的因素
4.2 晶体学基础
4.2.1 空间点阵( lattice)和晶胞(cell) 1. 为了便于分析研究晶体中质点的排列规律性,可先将 实际晶体结构看成完整无缺的理想晶体并简化,将其 中每个质点抽象为规则排列于空间的几何点,称之为 阵点。 这些阵点在空间呈周期性规则排列并具有完全相同的 周围环境,这种由它们在三维空间规则排列的阵列称 为空间点阵,简称点阵。 具有代表性的基本单元(最小平行六面体)作为点阵 的组成单元,称为晶胞。同一空间点阵可因选取方式 不同而得到不相同的晶胞。
晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶 面。另外,在晶体内凡晶面间距和晶面上原子的分布完全相同,只 是空间位向不同的晶面可以归并为同一晶面族,以{h k l}表示, 它代表由对称性相联系的若干组等效晶面的总和。 正交点阵中一些晶面的面指数

4.2 晶体学基础

上海交大-材料科学基础-第二章-1

上海交大-材料科学基础-第二章-1

晶面的位向
h : k : l cos : cos : cos
cos2 cos2 cos2 1 立方晶系
晶面间距
dhkl
a h
cos
b h
cos
c h
cos
d
2hkl [(
h a
)2
( h )2 b
( h )2 ] c
cos2
cos2
cos2
式中h、k、l为晶面指数(hkl),a、b、c为 点阵常数,α、β、γ为晶面法线方向与晶轴夹角。
每个原子周围的情况完全相同,则这种原子所组成的
网格称为简单晶格。
复式晶格:如果晶体由两种或两种以上原子组成,同 种原子各构成和格点相同的网格,网格的相对位移而 形成复式晶格。
cc
金刚石结构
2.1.2 晶向指数和晶面指数
晶列:布拉菲格子的格点可以看成是分布在一系列相 互平行的直线上,而无遗漏,这样直线称为晶列;
uvw 放入方括号内,写成[uvw],即为待标定晶向的晶 向指数。若为负值,则在指数上加一负号。(化整数, 列括号)
xa : yb : zc u :v : w abc
立方晶系中一些常用的晶向指数
例:如图在立方体中, a i , b j , c k
方法2
D是BC的中点,求BE,AD的晶列指数
第二章 固体结构
本章主要内容
❖ 2.1晶体学基础 ❖ 2.2金属的晶体结构 ❖ 2.3合金相结构 ❖ 2.4离子晶体结构 ❖ 2.5共价晶体结构
概述
❖ 物质按聚集状态分类: 气态、液态和固态; ❖ 按原子(或分子)排列特征分类:晶体和非晶体。
绝大部分陶瓷、少数高分子材料、金属及合金是晶体; 多数高分子材料、玻璃及结构复杂材料是非晶体。

材料科学基础第四版答案

材料科学基础第四版答案

材料科学基础第四版答案【篇一:材料科学基础课后习题答案】txt>第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。

其中一次键的结合力较强,包括离子键、共价键和金属键。

一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。

二次键的结合力较弱,包括范德瓦耳斯键和氢键。

二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。

6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。

一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。

相反,对于离子键或共价键结合的材料,原子排列不可能很致密。

共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。

9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

答:单相组织,顾名思义是具有单一相的组织。

即所有晶粒的化学组成相同,晶体结构也相同。

两相组织是指具有两相的组织。

单相组织特征的主要有晶粒尺寸及形状。

晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。

单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。

等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。

对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。

如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。

如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。

2017年西安理工大学803材料科学基础考研大纲硕士研究生入学考试大纲

2017年西安理工大学803材料科学基础考研大纲硕士研究生入学考试大纲

《材料科学基础》考试大纲Foundations of Materials Science (A)科目代码:803科目名称:材料科学基础一、课程性质与目的《材料科学基础》是材料科学与工程专业的基础课,是材料类专业必修的专业核心课程。

该课程通过从三个层次阐述材料的组成与结构、制备与加工、性质与性能之间的相互关系与制约规律,讲述了从理想到实际,从规则到不规则,从静态到动态,在宏观、微观、宏观的循环过程中材料制备-加工-使用过程中的科学和工程原理。

通过对材料科学中专业基础知识的学习、对材料微观组织与性能对应关系的分析,旨在使学生掌握材料科学的基础知识和基本原理,了解材料发展历史中重大突破的背景与影响,认识材料在生产、成型及使用过程中的各种化学、物理现象和性能变化;掌握材料的化学成分、组织结构与性能之间的基本变化规律及机理,掌握金相组织的分析方法;培养学生能够在材料生产过程中发现问题、分析数据,有意愿创新,具有追求创新的态度和意识;具备解决材料专业复杂工程问题的能力。

二、教学与考试范围0.绪论材料分类、应用范围、研究现状及发展趋势,掌握材料发展历史中一些重大突破的背景与影响,了解本课程的主要内容。

本章重点:材料分类、应用范围及研究现状及学习本课程的思路、方法。

本章难点:材料发展历史中一些重大突破的背景与影响。

1.纯金属的晶体结构1)掌握固体材料键合的分类及相对应材料的性能。

2)掌握晶体中空间格子的概念、类型、特点。

3)掌握晶体结构的表征及典型晶体结构。

4)掌握晶体缺陷的基本概念及研究方法。

本章重点:1)金属的晶体性及14种布拉菲点阵的结构特点。

2)典型金属的晶体结构。

3)位错的相关概念。

本章难点:1)晶体结构与材料性能之间的联系。

2)通过对位错的定义、表征及受力、运动、应力场的研究,掌握线缺陷的相关基本原理和对晶体完整性的影响机制。

2.合金相结构掌握合金相的概念、分类及性能特点,了解和掌握各类合金相的应用范围。

材料科学基础第四张相平衡与相图(2)


以含Ni=30%的Cu-Ni合金为例: 以含Ni=30%的Cu-Ni合金为例: Ni=30% 合金为例 t1以上:单相的L, 冷却时只 t 以上:单相的L, 是降温不发生状态的变化. 是降温不发生状态的变化. 是降温不发生状态的变化
冷到t1:发生匀晶转变,凝固 冷到t 发生匀晶转变, 冷到 出固溶体α1 (含高熔点组元 出固溶体α 出固溶体 Ni较多),而液相的成分为L1 Ni较多),而液相的成分为 Ni较多),而液相的成分为L 与合金的成分相同. 与合金的成分相同. 与合金的成分相同 t1温度下相的相平衡关系为 t L1→α1 . 运用杠杆定律得出的α1量很少, 运用杠杆定律得出的α 运用杠杆定律得出的 量很少, 几乎为另,此时结晶刚刚开始. 几乎为另, 几乎为另 此时结晶刚刚开始.
固溶体平衡凝固时液,固两相相对量 固溶体平衡凝固时液, 固溶体平衡凝固时液 的变化:可以用杠杆定律确定. 的变化: 的变化 可以用杠杆定律确定.
固溶体合金平衡凝固示意图
⑶ 有极值的匀晶相图
具有极小点或极大点的匀晶 具有极小点或极大点的匀晶 相图. 相图. 相图 对应极点处液固两相的成分 对应极点处液固两相的成分 相同,其凝固过程为等温反应. 相同, 相同 其凝固过程为等温反应. 应用相律时要予以修正,因为 应用相律时要予以修正, 应用相律时要予以修正 该处的化学成分不变,所以确 该处的化学成分不变, 该处的化学成分不变 定系统状态的变数就减少一个, 定系统状态的变数就减少一个, 定系统状态的变数就减少一个 即 f=2-2=0. 极大点的匀晶相图比较少见. 极大点的匀晶相图比较少见. 极大点的匀晶相图比较少见
⑵平衡凝固 平衡凝固:凝固过程是在极其缓慢冷 平衡凝固: 却条件下凝固. 却条件下凝固. 平衡组织:在极其缓慢冷却条件下凝 平衡组织: 固所得到的组织. 固所得到的组织. 因速度十分缓慢, 因速度十分缓慢,原子能够进行充分扩 散,在凝固过程的每一时刻都能达到完 全的相平衡. 全的相平衡. 以含Ni=30% Cu-Ni合金为例 Ni=30%的 合金为例, 以含Ni=30%的Cu-Ni合金为例,来分析单 相固溶体合金的平衡凝固过程. 相固溶体合金的平衡凝固过程.

材料科学基础(哈工大版)课件


dislocations climbing and gliding:位错攀移和滑移
⑴相变机制: 固态相变:过饱和固溶体 蠕变:位错 层错 滑移 攀移
⑵晶体学基础: 结构:单晶体 多晶体 原子排列:体心立方 面心立方 密排六方 晶体表征:晶面指数 晶向指数
内容及要求:懂-会-熟(练习)
本章内容
1. 化学键
№1
练习1-2答案
∞、∞、∞、1 №2
(1121) 1、1、-1/2、1
晶帶:相交或平行于某直线的所有晶面
直线:晶带轴 晶帶定理: hu + kv+ lw = 0
晶面间距
面间距的应用-物相鉴定
α ˊ (110)
In ten sity
1000
850(℃ )
800
600
400
200
0
20
Materials Science and Engineering A 454–455 (2007) 461–466
Fig. 5. Dislocation structure of a precompression treatment specimens during creep at 800 ◦C and 600MPa: (a) t = 0, (b) t=10h, (c) t = 50 h and (d) after fail at t = 287 h.
材料科学基础
第一章 材料的结构
前言
材料热处理学报,29(1),99-101, 2008
304 奥氏体不锈钢热诱发马氏体相变研究
杨卓越、王 建、陈嘉砚
摘 要: 借助X射线衍射技术,研究了304 奥氏体不锈钢热诱发 马氏体相变倾向。结果表明:C、Mn、Cr 和Ni接近标准规范下 限,304 不锈钢的稳定性急剧下降,致使液氮内冷却后的奥氏体 转变为α′或ε马氏体,室温拉伸即形成应变诱发ε和α′马氏体,而且 较小的室温变形显著增大随后液氮内冷却的热诱发α′马氏体相 变倾向,但随室温预应变增大快速形成应变诱发α′马氏体,致使 随后在液氮内发生热诱发α′马氏体倾向下降。此外,研究表明ε 马氏体的形成及消失与α′马氏体的累积量有关。

石德珂《材料科学基础》配套题库-章节题库(材料的相结构及相图)【圣才出品】

第5章材料的相结构及相图一、选择题三元系统相图中,若存在有n条界线,则此系统相图中能连接出()条连线。

A.3B.n-1C.nD.n+1【答案】C【解析】三元系统相图中,存在几条界线就能在相图中连接出几条连线。

二、填空题1.Fe-Fe3C相图中含碳量小于______为钢,大于______为铸铁;铁碳合金室温平衡组织均由______和______两个基本相组成;奥氏体其晶体结构是______,合金平衡结晶时,奥氏体的最大含碳量是______;珠光体的含碳量是______;莱氏体的含碳量为______;在常温下,亚共析钢的平衡组织是______,过共析钢的平衡组织是______;Fe3CⅠ是从______中析出的,Fe3CⅡ是从______中析出的,Fe3CⅢ是从______中析出的,它们的含碳量为______。

【答案】2.11%C;2.11%C;铁素体(a);渗碳体(Fe3C);FCC;2.11%;0.77%;4.3%;铁素体和珠光体;珠光体和Fe3CⅡ;液相;奥氏体;铁素体;6.69%2.置换固溶体的溶解度与原子尺寸因素、______、电子浓度因素和______有关。

【答案】电负性;晶体结构三、判断题1.中间相只是包括那些位于相图中间且可以用一个分子式表示的化合物相。

()【答案】×【解析】凡是位于相图中间的各种合金相结构都统称为中间相,这其中当然包括一个分子式表示的化合物相以及一些固溶体相。

2.三元相图中的三元无变量点都有可能成为析晶结束点。

()【答案】×【解析】三元相图中三条界线的交点是三元无变量点,也是低共熔点,它的液相同时对三种晶相饱和。

低共熔点也是存在液相的最低温度点。

通过低共熔点平行于底面的平面称为固相面或结晶结束面。

固相面之下全部是固相。

四、名词解释1.中间相答:中间相是指合金中组元之间形成的、与纯组元结构不同的相。

在相图的中间区域。

2.间隙固溶体答:间隙固溶体是指若溶质原子比较小时可以进入溶剂晶格的间隙位置之中而不改变溶剂的晶格类型所形成的固溶体。

2024年材料科学基础---三元相图及其合金的凝固1

可发生四相平衡转变; 一、二、三相区均占有一定空间,是变温转变,
四相区为恒温水平面。 ➢ 要实测一个完整的三元相图,工作量很繁重,加
之应用立体图形并不方便,也不必要。
与二元相图联系和区别
基本结晶原理一致; 分析过程一致; 相区接触法则基本相同; 不同:由点到线,由线到面。
重点是熟练掌握各类相图的液相面投影图、等温截面、变温截面的分析方法及分析实际 三元相图(立体模型只作为帮助理解这些内容的工具)
三边AB、BC、CA按顺时针方向 分别代表三组元B、C、A的含量
由x点分别作三边的平行线, 顺序交于三边的三线段之和 等于三角形的任一边长,即: Sa+Sb+Sc=AB=BC=CA=合金 的总量(100%) Sc=Ca,代表A组元的含量。 Sa=Ab,代表B组元的含量。
Sb=Bc,代表C组元的含量
空间。
8.1.1 三元相图的成分表示法
三元相图的浓度三角形。三元合金的成分则需用一平面表示, 通常是用等边三角形或直角坐标表示。
三角形的3个顶点A、B、C分别表示3个纯组元,三角形的边AB、BC、CA分 别表示3个二元系的合金成分,三角形内的任一点都代表某一成分的三元合金。
三角形内任一点x合金的成分求法
8.3 简单共晶三元相图 8.3.1 相图的立体模型 ;8.3.2 合金的凝固过程及组织 ;8.3.3 等混截面 ;8.3.4 变温截面
8.4 固态有限溶解的三元共晶相图 8.4.1 相图立体模型;8.4.2 合金的凝固过程及组织;8.4.3 等温截面;8.4.4 变温截面
8.5 具有包共晶反应的三元相图 8.5.1 相图的立体模型 ;8.5.2 合金的凝固过程及组织;8.5.3 等温截面;8.5.4 变温我面
8.1 三元相图基础 8.1.1 三元相图成分表示方法; 8.1.2 三元相图杠杆定律及重心法则; 8.1.3 三元相图中 的截面图和投影图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档