大物课后练习答案 仅供参考
大物课后习题 答案

1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) j t t i t r)4321()53(2-+++=m (4) 1s m )3(3d d -⋅++==j t i tr v则 j i v734+= 1s m -⋅(6) 2s m 1d d -⋅==j tv a这说明该点只有y 方向的加速度,且为恒量。
1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s)的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得ts stl ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v tl v d d ,d d 0-==-=船绳即 θcos d d d d 00v v sl tl s l ts v ==-=-=船或 sv s h slv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置. 解:∵ t tv a 34d d +==分离变量,得 t t v d )34(d += 积分,得12234c t t v ++=由题知,0=t ,00=v ,∴01=c 故 2234t t v += 又因为 2234d d t t tx v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x所以s 10=t 时m70551021102sm 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-8 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b . 解:(1) bt v ts v -==0d dRbt v Rva b t v a n 202)(d d -==-==τ则 240222)(Rbt v b aa a n-+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n--==τϕ(2)由题意应有2402)(Rbt v b b a -+==即 0)(,)(4024022=-⇒-+=bt v Rbt v b b∴当bv t 0=时,b a =1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o0160cos v v v x == 21sm 10-⋅==g a n又∵ 1211ρv a n =∴m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1sm -⋅,而 o60cos 2⨯=g a n ∴ m 8060cos 10)20(22222=︒⨯==n a v ρ2-3 283166-⋅===sm m f a x x2167-⋅-==s m mf a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=2101200872167452832sm dt a v v s m dt a v v y y y x x x于是质点在2s 时的速度18745-⋅--=sm ji v(2) mji j i jt a i t a t v r y x 874134)167(21)4832122(21)21(220--=⨯-+⨯⨯+⨯-=++= 2-4 (1)∵dtdv mkv a =-=分离变量,得m kdt v dv -=即⎰⎰-=vv tmkdt v dv 0mkt ev v -=ln ln∴ tmk e v v -=0(2)⎰⎰---===tttmk mk ekmv dt ev vdtx 000)1((3)质点停止运动时速度为零,即t →∞, 故有⎰∞-=='000kmv dt ev x tmk(4)当t=km 时,其速度为ev ev ev v km m k 0100===-⋅-即速度减至v 0的e1.2-7由题知,小球落地时间为0.5s .因小球为平抛运动,故小球落地的瞬时向下的速度大小为v 1=gt=0.5g ,小球上跳速度的大小亦为v 2=0.5g .设向上为y 轴正向,则动量的增量 Δp=mv 2-mv 1 方向竖直向上,大小 |Δp |=mv 2-(-mv 1)=mg碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-12 (1)由题知,F 合为恒力,∴ A 合=F ·r=(7i-6j)·(-3i+4j+16k)=-21-24=-45 J (2)w tA N 756.045==∆=(3)由动能定理,ΔE k =A=-45 J2-15 弹簧A 、B 及重物C 受力如题2-15图所示平衡时,有题2-15图 F A =F B =Mg 又 F A =k 1Δx 1 F B =k 2Δx 2所以静止时两弹簧伸长量之比为 1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p=∆∆=2-20 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv +=即 222120v v v += ①3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离.解: 甲测得0,s 4==x t ∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv tx cv t t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv解出 c c t t c v 53)54(1)(122=-='∆∆-=8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x tt t v x x γγ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 2220153,1513βββ-=-=-=='则l l∴ c c v 542591=-=3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少?解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆∴ t cv t c t v t t ∆+'∆=∆+∆=∆γγ11′)1(cv t +'=∆γ6.01)8.0(112=-=c c γ则 γλτ)8.01(5.0)1(0c c cv t t +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+=3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何? 解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c ccc c c v cu u v v xx x143.05.06.016.05.0122-=⨯--=--='c ccc c v cu v cu v xyy 990.05.06.01866.06.011122222=⨯-⨯-=--='光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x='+'='22 正是光速不变. 3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功?解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==cv c m c m cm mcE E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆)1111(221222202122cv cv c m cm c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k F x +==串所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k m T +===ππωπ串(2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21k k k +=并 同上理,其振动周期为212k k m T +='π4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2A x =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t TA x)452cos(454πππφ+==t TA x4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10scm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知 12311mN 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT mk 即m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v∴ m )455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A (2)∵ ,334πππφ=-=∆∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大物课后部分参考答案及解析

第一章P171-2 已知j t A i v v ωωsin 0-=,则j t A i t v dt v rωcos 0+==⎰由 ⎝⎛==t A y t v x ωcos 0 可得A v xA y -=0cos ω〔以出发点为原点〕 j t mA a m F jt A a ωωωωcos cos 22-==∴-=1-4 如图,在B 点时,根据其受力情况,有⎝⎛==-20202130sin 60cos BB B mv mgl l mv mg T 解得)N (923==mg T B 在B 点时,根据其受力情况,有⎝⎛==-2221CC C mv mgl l mv mg T 解得)N (183==mg T C1-6 由题意设kv f = ,其受力方向在竖直方向上,则有dtdv mma kv F mg f F mg ==--=-- 变形可得dt dv kvF mg m=--两边同时积分⎰⎰=--t vdt dv kvF mg m00整理可得)1(t m ke kFmg v ---= 注意基本概念的理解和掌握:位移,速度,加速度之间的关系 注意受力分析,区分出B 点时的角度关系设沉降距离为y ,则dtdy v =)]1([)1(0-+-=--==--⎰⎰tm ktt m ke km t k F mg dt e k F mg vdt y1-9 由题意,当h=50m 时,桶中水已全部漏完,故木桶从井中提到井口所做的功为J)(3500)(J 3430)1.011(]2.0)[(1005050021005050或=+-=+-+=⎰⎰gh gh h Mgdhdh gh g m M W1-14 〔1〕子弹所受的冲量)m /s kg (9)50050(02.0⋅-=-⨯=∆=p I木块所受的冲量与子弹所受的冲量反向,即)m/s kg (9⋅=木块I〔2〕对木块,有)m/s kg (950⋅=⋅=∆=m p I木块,因此kg 18.0=m 。
大物课后习题答案

大物课后习题答案大物课后习题答案大学物理是一门重要的基础学科,对于理工科学生来说尤为重要。
在学习大物的过程中,课后习题是巩固知识和提高能力的重要途径。
然而,很多同学在解答习题时常常遇到困难,尤其是对于一些复杂的题目。
为了帮助同学们更好地学习大物,我将在本文中为大家提供一些大物课后习题的答案。
1. 力学习题答案1.1 一个质点以初速度v0沿着x轴正方向做匀加速直线运动,加速度为a,求它在时间t时的速度v。
解答:根据匀加速直线运动的基本公式v = v0 + at,代入已知条件即可得出答案。
1.2 一个质点以初速度v0沿着x轴正方向做匀加速直线运动,加速度为a,求它在时间t时的位移x。
解答:根据匀加速直线运动的基本公式x = v0t + 1/2at^2,代入已知条件即可得出答案。
2. 热学习题答案2.1 一定质量的物体由温度T1加热到温度T2,求它所吸收的热量Q。
解答:根据热学的基本公式Q = mcΔT,其中m为物体的质量,c为物体的比热容,ΔT为温度变化。
代入已知条件即可得出答案。
2.2 一定质量的物体由温度T1加热到温度T2,求它的温度变化ΔT。
解答:根据热学的基本公式ΔT = (T2 - T1),代入已知条件即可得出答案。
3. 光学习题答案3.1 一束光从空气射入玻璃,求光在入射角为θ1时的折射角θ2。
解答:根据光的折射定律n1sinθ1 = n2sinθ2,其中n1为空气的折射率,n2为玻璃的折射率。
代入已知条件即可得出答案。
3.2 一束光从空气射入玻璃,求光在入射角为θ1时的反射角θr。
解答:根据光的反射定律θ1 = θr,代入已知条件即可得出答案。
4. 电磁学习题答案4.1 一个电荷为q的点电荷在距离r处产生的电场强度E为多少?解答:根据库仑定律E = kq/r^2,其中k为电场常量。
代入已知条件即可得出答案。
4.2 一个电流为I的直导线在距离r处产生的磁场强度B为多少?解答:根据安培定律B = μ0I/2πr,其中μ0为真空中的磁导率。
大学物理课后习题及答案

习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 t v mma f d d == 即 tvm kv d d ==-所以 t m kv v d d -=对等式两边积分 ⎰⎰-=tv v t m k v v 0d d 0得 t mkv v -=0ln因此 t m kev v -=0(2) 由牛顿第二定律 x vmv t x x v m t v m ma f d d d d d d d d ==== 即 x vmv kv d d =-所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到 0v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即 tvm ma kv F mg d d ==--整理得mtkv F mg v d d =-- 对上式两边积分⎰⎰=--t vmt kv F mg v00d d得 mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理课本课后习题答案

大学物理课本课后习题答案大学物理课本课后习题答案作为大学物理课程的一部分,课后习题是学生巩固所学知识、培养解决问题能力的重要环节。
然而,很多学生在自学过程中会遇到一些难题,特别是对于一些较为复杂的习题,往往很难找到正确的答案。
为了帮助学生更好地理解和掌握物理知识,本文将提供一些大学物理课本课后习题的答案,供学生参考和学习。
第一章:运动的描述1. 一个物体在2秒内沿直线运动,初速度为2m/s,加速度为3m/s²。
求物体在2秒内的位移。
答案:利用公式s = ut + 0.5at²,代入已知数据得到s = 2 × 2 + 0.5 × 3 × 2² = 10m。
2. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,经过5秒后速度为10m/s。
求物体在这段时间内的位移。
答案:利用公式v = u + at,代入已知数据得到10 = 0 + 2 × 5,解得加速度为2m/s²。
再利用公式s = ut + 0.5at²,代入已知数据得到s = 0 × 5 + 0.5 × 2 × 5² = 25m。
第二章:力和运动1. 一个质量为2kg的物体受到一个10N的力,求物体的加速度。
答案:根据牛顿第二定律F = ma,代入已知数据得到10 = 2a,解得加速度为5m/s²。
2. 一个质量为3kg的物体受到一个5N的力,求物体的加速度。
答案:根据牛顿第二定律F = ma,代入已知数据得到5 = 3a,解得加速度为5/3m/s²。
第三章:牛顿定律和万有引力1. 一个质量为5kg的物体在水平面上受到一个10N的水平力和一个5N的竖直向下的重力,求物体的加速度。
答案:根据牛顿第二定律F = ma,水平方向上的合力为10N,竖直方向上的合力为5N,代入已知数据得到10 = 5a,解得加速度为2m/s²。
大学物理课后习题答案解析详解.doc
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解: kv dtdv-= ⎰⎰-=t v v kdt dv v 001 t k e v v -=0t k e v dtdx -=0 dt e v dx tk t x -⎰⎰=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m处,初速度v 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理教材课后习题参考答案
大学物理教材课后习题参考答案1.7 一质点的运动学方程为x t2,y (t 1)2,x 和y均以为m单位,t以s为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v和加速度a。
解:(1)由运动学方程消去时间t可得质点的轨迹方程,将ty 1)2 或1(2)对运动学方程微分求速度及加速度,即vx dxdy 2t vy 2(t 1) v 2ti 2(t 1)j dtdtay dvydtdv ax x 2dt 2 a 2i 2j当t=2s时,速度和加速度分别是2 v 4i 2j m/s a 2i 2j m/s21.8 已知一质点的运动学方程为r 2ti (2 t)j,其中, r,t分别以m和s为单位,试求:(1)从t=1s到t=2s质点的位移;(2) t=2s时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy平面x = 2t (1)y = 2 t(2) 2(1) 将t=1s,t=2s代入,有r(1)= 2i j,r(2) 4i 2j故质点的位移为 r r(2) r(1) 2i 3j(2) 通过对运动学方程求导可得dx dy d2x d2y i j 2i 2tj a 2i 2j 2j v dtdtdtdt2 当t=2s时,速度,加速度为v 2i 4j m/s a 2jm/s(3) 由(1)(2)两式消去时间t可得质点的轨迹方程y 2x2/4(4)图略。
1.11 一质点沿半径R=1m的圆周运动。
t=0时,质点位于A点,如图。
然后沿顺时针方向运动,运动学方程s t t,其中s的单位为m,t的单位为s,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。
解:(1) 质点绕行一周所经历的路程为圆周周的周长,即 s 2 R 6.28m,由位移和平均速度的定义,可知此时的位移为零,平均速度也为零,即 2,v 0 tr r 0。
可得质点绕行一周所需时间 t 1s 平均速率为令 s s(t) s(0) t2 t 2 Rv s2 R 6.28m/s t t由以上结果可以看出路程和位移,速度和速率是不相同的。
大学物理上册课后习题答案
大学物理上册课后习题答案大学物理上册课后习题答案大学物理是一门重要的基础学科,它为我们提供了理解自然界的物质和能量运动规律的工具。
然而,学习物理并不仅仅是理论知识的学习,更需要通过实践和习题的解答来巩固和应用所学的知识。
本文将为大家提供大学物理上册课后习题的答案,希望能够帮助大家更好地学习和理解物理知识。
第一章:运动的描述1. 一个物体从静止开始做匀加速直线运动,经过2秒后速度达到10m/s,求物体的加速度和位移。
答案:加速度a = (10m/s - 0m/s) / 2s = 5m/s²,位移s = (0m/s + 10m/s) / 2 ×2s = 10m。
2. 一个物体做直线运动,已知它的初速度为20m/s,加速度为4m/s²,求它在5秒内的位移。
答案:位移s = 20m/s × 5s + 1/2 × 4m/s² × (5s)² = 100m + 50m = 150m。
第二章:力学1. 一个质量为2kg的物体受到一个10N的水平力,求物体的加速度。
答案:根据牛顿第二定律F = ma,可得加速度a = F / m = 10N / 2kg = 5m/s²。
2. 一个质量为0.5kg的物体受到一个向上的力10N和一个向下的力5N,求物体的加速度。
答案:合力F = 10N - 5N = 5N,根据牛顿第二定律F = ma,可得加速度a = F / m = 5N / 0.5kg = 10m/s²。
第三章:能量守恒1. 一个质量为0.1kg的物体从地面上抛起,初速度为10m/s,求物体达到最高点时的动能、势能和总机械能。
答案:最高点时,物体的速度为0,所以动能为0;势能由重力势能计算,势能mgh = 0.1kg × 9.8m/s² × h,总机械能为动能和势能之和。
2. 一个质量为2kg的物体从高度为5m的斜面上滑下,摩擦系数为0.2,求物体滑到底部时的动能损失。
大物习题册答案全套
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a r ρρρωωsin cos += (SI)可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy -==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t cos a m x F A d d ωω=⎰=-022221d a ma x x m ωω⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。