高温合成纳米氧化铁及其光催化性能研究
《纳米TiO2复合材料制备及其光催化性能研究》范文

《纳米TiO2复合材料制备及其光催化性能研究》篇一一、引言随着科技的不断进步和人类对环保问题的日益关注,光催化技术作为新兴的绿色技术领域受到了广泛的关注。
纳米TiO2复合材料作为一种高效的光催化剂,具有广泛的应用前景。
本文旨在研究纳米TiO2复合材料的制备方法及其光催化性能,为实际应用提供理论依据。
二、文献综述纳米TiO2复合材料因其独特的物理和化学性质,在光催化领域具有广泛的应用。
其制备方法、性能及应用已成为研究热点。
目前,制备纳米TiO2复合材料的方法主要包括溶胶-凝胶法、水热法、微乳液法等。
其中,溶胶-凝胶法因其操作简便、制备条件温和等优点备受关注。
而光催化性能的研究主要关注其对有机污染物的降解、抗菌性能及自清洁等方面的应用。
三、实验方法(一)实验材料实验中所需材料主要包括TiO2纳米粉体、表面活性剂、溶剂等。
所有材料均需符合实验要求,保证实验结果的准确性。
(二)制备方法本文采用溶胶-凝胶法制备纳米TiO2复合材料。
具体步骤包括:将TiO2纳米粉体与表面活性剂混合,加入溶剂进行搅拌,形成溶胶;然后进行凝胶化处理,得到凝胶;最后进行热处理,得到纳米TiO2复合材料。
(三)性能测试本实验通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对制备的纳米TiO2复合材料进行表征。
同时,通过光催化实验测试其光催化性能,以降解有机污染物为评价指标。
四、实验结果与分析(一)表征结果通过XRD、SEM和TEM等手段对制备的纳米TiO2复合材料进行表征。
结果表明,制备的纳米TiO2复合材料具有较高的结晶度和良好的分散性。
(二)光催化性能测试结果以降解有机污染物为评价指标,对制备的纳米TiO2复合材料进行光催化性能测试。
结果表明,该材料具有优异的光催化性能,能够有效降解有机污染物。
此外,我们还研究了不同制备条件对光催化性能的影响,为优化制备工艺提供依据。
五、讨论本实验研究了纳米TiO2复合材料的制备方法及其光催化性能。
合成制备氧化铁纳米粒子的研究

合成制备氧化铁纳米粒子的研究近年来,随着纳米技术的快速发展,氧化铁纳米粒子作为一种新型的材料,受到了越来越多研究者的关注。
氧化铁纳米粒子具有良好的磁性、光学性能和生物相容性等特点,应用范围非常广泛,如生物医学、环境保护、磁性材料等领域。
随着对氧化铁纳米粒子应用不断扩大,如何制备氧化铁纳米粒子成为了当前研究的重点之一。
一般来说,制备氧化铁纳米粒子的方法有化学合成、生物合成、热分解等。
其中,化学合成是制备氧化铁纳米粒子的主要方法之一。
化学合成法具有制备规模可控、粒径可控、成本低等优点,因此被广泛应用。
化学合成法制备氧化铁纳米粒子的关键是控制粒子的粒径和结构,提高氧化铁纳米粒子的稳定性和磁学性能。
目前,制备氧化铁纳米粒子的化学合成方法主要有共沉淀法、氢氧化物沉淀法、热分解法等。
共沉淀法是一种较为简单的制备方法,采用化学沉淀法将Fe2+和Fe3+混合产生氢氧化物,再通过加热、还原等方法产生氧化物,最终制备氧化铁纳米粒子。
该方法简单易行,但缺点是粒径难以控制和单分散性较差。
氢氧化物沉淀法是一种制备单一相Fe3O4纳米粒子的有效方法,该方法以饱和的氢氧化铵溶液在碱性环境下沉淀,然后加热使其转变为氧化铁纳米晶体。
氢氧化物沉淀法制备的Fe3O4纳米粒子具有较小的粒径和良好的单分散性,但是该方法需要高温煅烧,并且对精密设备要求较高,增加了制备难度和成本。
热分解法是一种高温下进行的制备氧化铁纳米粒子的方法,该方法使用有机化学试剂作为还原剂来制备氧化铁纳米晶体,具有粒径可控性好的特点。
但是,该方法需要高温下进行制备,需要使用有毒的、易燃易爆的有机试剂,制备过程中容易造成环境污染和毒性危害。
综合来看,制备氧化铁纳米粒子的化学合成法各有优劣,需要根据具体应用需求选择适合的方法。
在制备氧化铁纳米粒子的过程中,应注意控制反应中的温度、pH值、还原剂的种类和用量等因素,来调整氧化铁纳米粒子的粒径和结构,以获取高性能的氧化铁纳米材料。
纳米材料在光催化领域的应用研究

纳米材料在光催化领域的应用研究近年来,纳米材料在光催化领域的应用引起了广泛关注。
光催化是利用光能激发材料发生化学反应的一种方法,而纳米材料的独特性质使其成为理想的光催化材料。
本文将探讨纳米材料在光催化领域的应用研究,并从多个角度分析其优势和挑战。
一、纳米材料的结构和性质纳米材料是指具有纳米尺度(10^-9米)的结构特征的材料。
由于其具有与宏观材料不同的结构和性质,纳米材料在光催化领域具有独特的优势。
首先,纳米材料具有较大的比表面积,使其能够提高活性位点的数量和反应速率。
其次,纳米材料的能带结构和电子态密度也与宏观材料不同,使其在光吸收和电子传输过程中表现出更高的效率。
此外,纳米材料的光学性质也可以通过尺寸和形貌调控,进一步提高其光催化性能。
二、纳米材料在光催化反应中的应用纳米材料在光催化反应中的应用主要包括光催化降解有机污染物和光催化水分解产氢两个方面。
1. 光催化降解有机污染物纳米材料在光催化降解有机污染物方面表现出良好的性能。
以二氧化钛(TiO2)为例,其广泛应用于光催化降解有机污染物的研究中。
纳米尺寸的TiO2能够吸收紫外光,并产生活性氧自由基,进而氧化降解有机污染物。
此外,通过控制纳米材料的尺寸和形貌,可以进一步提高其光催化性能。
其他纳米材料如氧化锌(ZnO)、二氧化硅(SiO2)等也被广泛应用于光催化降解有机污染物的研究中。
2. 光催化水分解产氢纳米材料在光催化水分解产氢方面也展现出巨大的潜力。
光催化水分解产氢是一种可持续的产氢技术,通过纳米材料吸收太阳光能并催化水分子分解产生氢气。
以金属氧化物如氧化铁(Fe2O3)、氧化钨(WO3)等为催化剂的纳米材料在此领域具有良好的应用前景。
然而,光催化水分解产氢的效率仍然面临挑战,主要体现在催化剂的光吸收率和光生载流子的利用效率方面。
三、纳米材料在光催化领域的挑战和展望纳米材料在光催化领域的应用仍然面临一些挑战。
首先,纳米材料的合成和制备方法需要进一步改进,以提高其性能和稳定性。
氧化铁纳米粒子的制备及应用

氧化铁纳米粒子的制备及应用近年来,随着纳米科技的发展,纳米材料在各个领域的应用越来越广泛。
氧化铁纳米粒子(iron oxide nanoparticles)作为一种纳米材料,其特殊的磁性、光学和化学性质,使其在医学、环保、能源等领域得到了广泛应用。
本文将探讨氧化铁纳米粒子的制备方法以及其在不同领域的应用。
一、氧化铁纳米粒子的制备方法目前,制备氧化铁纳米粒子的方法主要有四种:化学还原法、热分解法、溶剂热法和共沉淀法。
化学还原法是利用金属离子的还原作用在溶液中制备氧化铁纳米粒子的方法。
在该方法中,氧化还原反应是通过还原剂将金属离子还原成纳米颗粒的。
热分解法是利用高温下有机金属桥联合物的热解分解的方法,通过控制温度、时间和反应物浓度合理来制备氧化铁纳米粒子。
溶剂热法是利用有机溶剂中及其混合物中金属离子和氧源的齐聚反应制备氧化铁纳米颗粒的方法。
最后,共沉淀法是将两种金属离子混合在一起,加入一个碱性沉淀剂,在一定条件下形成氧化铁晶体和纳米孔道的方法,产生氧化铁纳米颗粒。
二、氧化铁纳米粒子在医学应用中的意义氧化铁纳米粒子在医学中具有广泛的应用前景。
其磁性属性可以通过磁共振成像(MRI)来成像诊断,被广泛应用于临床领域。
同时,氧化铁纳米粒子可以作为药物、蛋白质等靶向传递的材料,可以提高药物的靶向性和生物活性。
另外,氧化铁纳米粒子还可以用来作为肿瘤治疗的载体,由于其磁性,可以在磁场下实现磁热治疗,产生局部高温杀死肿瘤细胞。
三、氧化铁纳米粒子在环保应用中的作用氧化铁纳米粒子在环保方面的意义也很重要。
通过氧化铁纳米粒子的吸附过程,可以有效去除废水中的重金属、有机染料、电池液泄漏物等有害物质。
另外,将氧化铁纳米粒子复合于多孔性材料中后,可以用作高效的催化剂,具有很好的环保效果。
四、氧化铁纳米粒子在能源领域的应用氧化铁纳米粒子在能源领域的应用也十分广泛。
例如,将其作为电池电极材料,具有高能量密度和长循环寿命的特性。
另外,将氧化铁纳米粒子制成纳米发电机,可以利用其磁性产生电能。
氧化铁纳米材料的制备及其性质表征

氧化铁纳米材料的制备及其性质表征近年来,氧化铁纳米材料的制备和研究越发受到人们的关注。
氧化铁纳米材料具有比传统氧化铁材料更强的光学、磁学等性能,这意味着氧化铁纳米材料有着更广泛的应用前景。
本文将介绍氧化铁纳米材料的制备及其性质表征。
一、氧化铁纳米材料的制备氧化铁纳米材料具有较小的体积和大的表面积,因此制备过程相对较为复杂。
常用的氧化铁纳米材料制备方法有化学合成法、热分解法、水热合成法、溶剂热法和微波辅助合成法等。
其中,常用的化学合成法包括共沉淀法、水热法、溶胶-凝胶法、微乳法等。
下面我们将介绍其中的共沉淀法和水热法。
1. 共沉淀法共沉淀法是一种较为简单的化学合成方法。
该方法通过将金属离子和盐类共同加入到溶液中,使用还原剂使之还原,从而生成氧化铁纳米材料。
共沉淀法制备氧化铁纳米材料需要选择良好的还原剂和条件,否则还原剂过量或不足都会影响氧化铁纳米材料的质量和性质。
2. 水热法水热法是在高温高压条件下,将金属离子和其他化学物质在水溶液中混合反应所产生的一种方法。
在水热法中,反应过程通常在高温和高压下进行。
水热法制备氧化铁纳米材料可以获得较为均匀的颗粒分布,但是需要注意反应条件,过高或过低的反应条件都会影响氧化铁纳米材料的质量和性质。
二、氧化铁纳米材料的性质表征氧化铁纳米材料具有比传统氧化铁材料更强的光学、磁学等性能。
基于这些性质,可以使用多种方法进行性质表征。
1. X射线衍射X射线衍射是一种最基本的物质结构表征方法,不同物质的晶体结构会引起不同的X射线衍射图样。
通过对氧化铁纳米材料进行X射线衍射实验,可以了解其结构信息。
2. 热重分析热重分析是一种利用物质在温度变化过程中物理和化学性质的差异来实现物质分析的方法。
应用于氧化铁纳米材料,可以了解其热稳定性。
3. 透射电子显微镜透射电子显微镜是一种观察材料晶体结构的高分辨率电子显微镜。
通过透射电子显微镜可以观察氧化铁纳米材料的形貌和结构特点。
4. 磁性测试氧化铁纳米材料是磁性材料,对其的磁性性质进行测试是很重要的。
Fe2O3

第22 卷第 3 期2023 年9 月宁夏工程技术Vol.22 No.3Ningxia Engineering Technology Sep. 2023 Fe2O3/PFD纳米复合材料的制备及光催化性能研究赵丽1,2,3,苏碧桃1(1.西北师范大学化学化工学院,甘肃兰州 730070; 2.甘肃省太阳能发电系统工程重点实验室,甘肃酒泉 735000; 3.酒泉职业技术学院化工学院甘肃酒泉 735000)摘要:以糠醛(FD)和Fe(NO3)3·9H2O为主要原料,采用聚合-热转化两步法探究了Fe2O3/PFD纳米复合材料的制备过程。
通过TEM,XRD等技术对Fe2O3/PFD的尺寸、结构等进行了表征;通过室温、自然光环境下亚甲基蓝(MB)溶液的脱色降解实验给出了该材料的光催化特性。
结果表明,Fe2O3/PFD在25 min内可使MB溶液完全脱色并降解。
关键词:α-Fe2O3;PFD;纳米复合材料;光催化中图分类号:O633.5 文献标志码:A随着全球经济和工业技术的迅猛发展,人们对能源的需求量逐渐增加。
然而,有限的地球储量无法支撑人类社会的长期高速发展,并且化石能源在一定程度上会导致环境污染问题的产生。
基于此,太阳能这种具有可再生能力的清洁能源为人们提供了新的研究方向,对其进行深入挖掘和利用成为改善能源结构及全球生态环境的有效策略。
光催化研究源于十九世纪初,该技术可以在温和的条件下实现化学物质的多种转化,并且在转化过程中不会涉及大量的能源消耗。
光催化技术不但具有清洁无污染的特点,而且在有机物分解应用中也有着巨大的发展潜力[1-2]。
目前,半导体催化是一种较为常见的光催化方式,可以实现对太阳能的高效转化与存储。
同时,各类半导体材料价格低廉,转化成本较低,具有极强的可控性和广泛的适用范围,并且其可以在紫外线和可见光范围内对光作出响应,因此该材料逐渐成为光催化领域的主流。
然而,半导体催化普遍存在一些问题,如宽而固定的带隙、光生电子和空穴易复合、催化剂与底物之间会产生相互作用及活性位点少等。
水热法制备纳米氧化铁的研究
为干 法和 湿法 。湿法 包 括水 热法 、 迫水 解 法 、 强 凝胶
一
扫描电子显微镜 ( 日本 日 ) 聚 四氟内衬的 自制高 立 ;
压釜。
括微 波法 、 火焰 热分 解 、 相 沉 积 、 温 等 离 子 体化 气 低
醇回流 4 。抽滤 , h 加乙醇分散 , 装入高压釜, 加入对
应量 的 0 5 o LH 110C水 热反 应 1h . m l C 。8 o / 2。
学气相沉积法、 激光热分解 法等。湿法具有原料易
得且 可直接 使 用 ( 需 适 当净 化 处 理 ) 操 作 简 便 、 仅 、 粒 子 可控等特 点 , 而普遍 受 到重 视 , 因 尤其 在 工业生
2 2 实 验方 法 .
2 2 1 以 FC 起始 物 .. e 1为 配 制 1 o LFC 液 , 3 L加 水至 1m , m l e I溶 / 取 m 0 L 加入 一 定 量 0 9 o/ a H, 拌 3mi。加人 乙 . m lLN O 搅 0 n
溶胶法 、 微乳液法 、 沉淀法 , 胶体化学法等 ; 干法包
l 前 言
D M x A型 x射线衍射仪 ( 本理学耐侯 性 、 耐光 性 、 磁性并
10 x 0 C Ⅱ型透射 电子显微镜 ( 本 电子) S 50 日 ; 一 2
且对紫外线具有 良好 的吸收和屏蔽作用 , 可广泛应 用于闪光涂料 、 油墨 、 塑料 、 皮革 、 汽车面漆、 电子 、 高
o e p o u t h p s as u ft r d c g s a e wa l s mma z d h o i r e.
α-Fe_(2)O_(3)的制备及其性能的研究
出离心管中的乙酰丙酮铁,将乙酰丙酮铁平铺在
干净且干燥的大烧杯中,烧杯口使用保鲜膜覆盖,
并扎眼若干个,放入真空干燥箱并在 80°C 下干燥
2 h 即可制备出纯度较高品相较好的乙酰丙酮铁
原料。
合 成 纳 米 级 的 制 备 方 法 1 2 2 αFe2O3
α
Fe2O3 的方法有很多,可以采用干法合成、湿法合
: , Abstract The αFe2 O3 was synthesized by hydrothermal method in two hours under different temperature conditions using acetylac , ( ), etone anhydrous sodium acetate and ferric chloride as precursor materials. Xray powder diffraction XRD field emission scanning ( ), ( ), ( ), electron microscopy TEM UVVis diffuse reflectance spectroscopy UVVis DRS specific surface area test BET Raman spec
troscopy were used to characterize the materials. The results showed that the reaction rate of reduction of hexavalent chromium by α Fe2 O3 synthesized at 175° C was higher than that of αFe2 O3 synthesized at other temperatures.
Fe3O4纳米材料的制备与应用研究进展
Fe3O4纳米材料的制备与应用研究进展刘超;王广健;朱世从;朱威威;郭亚杰【摘要】阐述Fe3O4纳米材料的主要合成方法及其在生物医药、电磁辐射吸收、污染物处理和光电催化等方面的应用,并对其发展方向进行展望.【期刊名称】《牡丹江师范学院学报(自然科学版)》【年(卷),期】2019(000)002【总页数】4页(P39-42)【关键词】Fe3O4;纳米材料;制备方法【作者】刘超;王广健;朱世从;朱威威;郭亚杰【作者单位】淮北师范大学化学与材料科学学院 ,安徽淮北 235000;淮北师范大学化学与材料科学学院 ,安徽淮北 235000;淮北师范大学化学与材料科学学院 ,安徽淮北 235000;淮北师范大学化学与材料科学学院 ,安徽淮北 235000;淮北师范大学化学与材料科学学院 ,安徽淮北 235000【正文语种】中文【中图分类】O614.7Fe3O4纳米微粒因其优异的物理化学性质和广阔的应用前景,备受科研人员的关注.本文重点阐述纳米Fe3O4粒子液相化学制备法及其在生物医药、电磁辐射吸收、污染物处理和光电催化等方面的应用,并对其发展方向进行展望.1 Fe3O4纳米材料制备方法1.1沉淀法沉淀法是将Fe3O4与其他物质混合到溶液中,加入沉淀剂,使混合液中的离子变成氢氧化物胶体析出.加热氢氧化物胶体,胶体受热脱水会变成含有Fe3O4纳米颗粒的悬浮液,经过洗涤、干燥等步骤后得到Fe3O4粉体微粒.共沉淀法 Massart和Khalafalla最早采用化学共沉淀法制备Fe3O4纳米颗粒,将Fe2+和Fe3+在碱性环境中共沉淀.高道江等将NH3·H2O作为沉淀剂,研究熟化温度及时间对Fe3O4粒子磁性能的影响.Jiang等用氮气做保护气,将FeCl3和FeCl2的混合溶液逐滴滴入溶解了多巴胺的水溶液中,获得Fe3O4纳米线.在金属Pd上负载该纳米线,使得水分散性更为稳定,对Suzuki反应有良好的催化活性.Wang等向超纯水中加入聚丙烯酸并使之溶解,对体系加热至80 ℃后,迅速加入盐酸酸化的FeCl2和FeCl3溶液,得到Fe3O4纳米微粒.氧化沉淀法 Thapa等用氨水作为沉淀剂,在80~90 ℃的高温条件下,将溶液中的Fe2+完全沉淀,获得纳米Fe3O4微粒.王娟分别以三种不同碱(NH3·H2O、NaOH 溶液、NH3·H2O+NaOH)共同作为碱源,以空气中的氧气做氧化剂,制备出三种不同形貌的磁性纳米粒子.还原沉淀法 Qu等采用NH3·H2O为沉淀剂,加入Na2SO3将Fe3+还原,从而得到Fe3O4纳米粒子.涂国荣等将适量的亚硫酸钠加入到含有Fe3+的盐溶液中,将一定量的Fe3+还原成Fe2+,从而得到纳米Fe3O4微粒.其他方法微波沉淀法采用尿素和氨水作为均相沉淀剂,具有独特的加热机制和合成机理.Wang等最先利用交流电沉淀法成功合成了纳米四氧化三铁微粒,并有效控制其形貌.超声沉淀法通过高温、高压环境,为沉淀颗粒的产生供能,可提高沉淀晶核的生成速率,使粒径减小.1.2 水热法Xuan通过直接密封热分解具有花生状形态的FeCO3,制备相同形态的微细磁性颗粒Fe3O4.焦华将用砂纸打磨过的铁片,在无水乙醇中超声处理后, 加入到酒石酸钠和NaOH的混合溶液中,通过水热法合成单晶Fe3O4纳米片.Deng通过溶剂热法成功制备了球形Fe3O4纳米颗粒.1.3 溶胶-凝胶法Lemine[7]在乙醇的超临界条件下,通过控制滴加水的速度,采用溶胶-凝胶法合成了可调控纳米粒子尺寸大小的、平均粒径为8 nm的Fe3O4纳米粒子.Xu等在聚乙二醇中溶解了作为铁源的九水合硝酸铁,在一定温度下制得了溶胶,经加热烘干后,溶胶逐渐转变为棕色凝胶,在高温真空的条件下,200~400 ℃退火,得到尺寸不同的Fe3O4纳米微粒.Tang在300 ℃条件下,通过溶胶-凝胶法制备出平均尺寸12.5 nm、薄膜表面结构完整没有裂缝的Fe3O4薄膜.王士婷通过溶胶-凝胶法,经乙醇回流和煅烧将模板去除,合成粒径60~80 nm且具有单介孔和双介孔结构的Fe3O4@介孔SiO2.1.4 微乳液法Vidal[8]利用微乳液法合成尺寸分布范围在3.5 nm±0.6 nm、结晶良好、具有单分散性、很高比饱和磁化强度、表面包覆油胺的Fe3O4纳米粒子.Zhou合成了粒径小于10 nm的Fe3O4纳米粒子.微乳体系为O/W型微乳体系,其组成为:FeSO4和Fe(NO3)3为水溶液,环己胺为油相,NP-5和NP-9为表面活性剂相. 1.5 热分解法热分解法是将铁源前躯体在溶剂和表面活性剂的作用下高温分解,得到铁原子,使其转化铁纳米粒子,得到单分散性好的纳米粒子.纳米粒子的大小和形貌通过控制前躯体的种类和浓度、加热条件、热分解时间以及表面活性剂的种类和数量调控.Kolhatkar[9]等通过溶剂热法和热分解法合成了具有可调尺寸的Fe3O4纳米立方体和Fe3O4纳米球,其饱和磁化强度(Ms)和矫顽力是相同体积Fe3O4纳米球的1.4~3.0倍和1.1~8.4倍.Yang等将乙酰丙酮铁[Fe(acac)3]和油酸加入到苄基醚溶剂中,获得具有可调控体对角线长度的纳米立方体Fe3O4.Sun等通过热分解乙酰丙酮铁(Fe(acac)3)合成了Fe3O4纳米粒子,其粒径小于20 nm,且单分散性好.Chiu等通过控制反应时间将油酸铁盐进行热分解,从而制得了粒径4~18 nm、分布均匀的纳米Fe3O4晶体.1.6 生物模板法生物模板法引入相应的生物模板,利用生物分子对粒子的成核、生长、组装的影响,使材料的合成过程得到控制,从而得到所期望的目标材料.常用的模板是内部为空穴结构的小热激蛋白(sHSP)、铁蛋白、李斯特细菌等.Wong等采用铁蛋白作为生物模板,通过控制反应条件,得到了直径为7.3 nm的四氧化三铁纳米粒子.2 Fe3O4纳米材料的应用2.1 生物医学磁性Fe3O4纳米材料具有无毒副作用以及生物相容性好的优点,广泛应用于肿瘤磁热疗法、磁共振造影技术、靶向药物载体以及磁分离等众多生物医学领域.磁性Fe3O4纳米粒子作为缓释靶向药物载体可以提高药效,减少药量,增强治疗作用.靶向药物在体外磁场的导向作用下,直达病灶.药物的传送路径可通过Fe3O4的核磁共振成像进行跟踪.Alexiou[10]等采用米托蒽醌磁性纳米粒子作为靶向药物的载体,其浓度高得多.超顺磁性氧化铁粒子能将磁场震动能转化为热能,升高肿瘤组织的温度,使病变细胞死亡.磁共振造影技术常用的造影剂是经过表面修饰的Fe3O4纳米粒子,因网状内皮数量的差异,异常组织与正常组织对Fe3O4纳米粒子的吞噬量也有明显的差别.采用静脉注射Fe3O4纳米粒子使之进入血液,因其在正常组织和异常组织中分布明显不同,显著增加成像的效果.Hu等对植入小鼠体内的人体结肠癌进行检测,造影剂为用单克隆抗体标记的PEG包覆的Fe3O4纳米粒子.Lee等利用超顺磁性氧化铁粒子的长期血液循环,对人体体内乳腺瘤进行检测,造影剂为Fe3O4纳米粒子-赫赛汀探针.2.2 磁性流体和磁记录材料磁性纳米Fe3O4广泛应用于磁流体工业生产中.磁流体有固体的强磁性,又存在液体的流动性,在许多领域中广泛应用.纳米Fe3O4由于晶体结构简单、尺寸小、矫顽力高、耐氧化、相结构稳定,可用做磁记录材料.纳米多铁复合材料也具有一定的磁性,饱和磁化强度与矫顽力成反比.[11]纳米Fe3O4粒子磁记录材料的信噪比、信息记录的密度以及图像的质量等方面均有极大改善.2.3 污染物处理Fe3O4/石墨烯纳米复合材料能迅速有效除去水溶液中的氯苯胺和苯胺.Fe3O4/GO 磁性纳米颗粒[12]对水溶液中的多氯联苯具有良好的吸附性.Liu等用廉价的铁盐和HA通过共沉淀法制备了腐植酸(HA)包覆的Fe3O4纳米颗粒(Fe3O4/HA),能从水中去除有毒的Hg(II),Pb(II),Cd(II)和Cu(II).Fe3O4/HA对重金属的吸附不到15分钟即可达到平衡,最大吸附容量为46.3~97.7 mg/g.2.4 光电催化Kumar[13]开发出一种包裹有还原氧化石墨烯的核壳结构CuZnO @ Fe3O4微球,构成三元复合光催化剂(rGO @ CuZnO @ Fe3O4),高效、可回收、可磁分离,用于可见光照射下光还原二氧化碳生产甲醇.3 前景展望纳米四氧化三铁粒径小,具有磁性好、比表面积大的优点.磁性纳米Fe3O4可包覆不同的材料,制备出具有不同复合结构的多功能磁性催化载体材料,因此在催化等方面有着广阔的应用前景.参考文献【相关文献】[1] Zong P F,Cao D L,Wang S F,et al.Synthesis of Fe3O4/CD magnetic nanocomposite via low temperature plasma technique with high enrichment of Ni(II) from aqueoussolution[J]. Journal of the Taiwan Instituteof Chemical Engineers,2016,21(5):1-7.[2] Massart R.Preparation of aqueous magnetic liquids in alkline and acidic media [J]. IEEE Transactions on Magnetics,1981,MAG-17:1247-1248.[3] Khalafalla S, Reimers G. Preparation of dilution-stable aqueous magnetic fluids [J]. IEEE Transactions on Magnetics,1980,MAG-16:178-180.[4] Thapa D,Palkar V R.Kurup M B,et al.Properties of magnetite nanoparticles synthesized through a novel chemical route[J].Material Letters,2004,58:2692-2694.[5] Qu S C, Yang H B, Ren D W, et al.Magnetite Nanoparticles Prepared by Precipitation from Partially Reduced Ferric Chloride Aqueous Solutions[J]. Colloid Interf. Sci.,1999, 215: 190-192.[6] Xuan S H,Hao L Y,Jiang W Q,et al.A FeCO3 precursor-based route to microsized peanutlike Fe3O4[J].Cryst Growth Des,2007,7(2):430-434.[7] Lemine O M,Omri K,Zhang B,et al.Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties[J].Superlattices and Microstruct,2012,52:793-799.[8] Vidal J,Rivas J,Lopez M A.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,288(1-3):44-51.[9] Arati G Kolhatkar,Yi-Ting Chen,Pawilai Chinwangso,et al.Magnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres[J].ACS Omega 2017, 2, 8010-8019.[10] Alexiou C,Jurgons R,Schmid R,et al.In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles[J].Journal of Magnetism and Magnetic Materials,2005,293(1):389-393.[11] 李丹,孙云飞.多铁复合材料0.5NiFe2-xMnx04/0.5BaTi03的磁性能及介电性能[J].牡丹江师范学院学报:自然科学版,2018(1):43-47.[12] Zhu S M,Guo J J,Dong J P.Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors[J].Ultrasonics Sonochemistry,2013,3(20):872-880.[13] Pawan Kumar,Chetan Joshi,Alexandre Barras,et,al.Core-shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light[J].Applied Catalysis B: Environmental, 2017,205:654-665.。
水热法制备纳米氧化铁(科学前沿讲座论文)1
水热法制备纳米氧化铁材料摘要纳米材料是材料科学的一个重要发展方向。
氧化物纳米材料的制备方法很多,有化学沉淀法、固相反应法、气相沉积法等等,水热水解法是较新的制备方法,它通过控制一定的温度和PH值条件,使一定浓度的金属盐水解,生成氢氧化物或氧化物沉淀。
我们运用控制单一变量的实验方法制备纳米氧化铁,实验在一定范围内,反应时间越长,PH值越高,Fe3+浓度越大,水解溶液的吸光度越大,水解程度越深。
关键词:水热法;纳米材料;水解反应;吸光度Hydrothermal iron oxide nano-materialsJinfeng Liu, College of Chemistry and Chemical Engineering, Central South University,Changsha, Hunan,410012,ChinaAbstract: Nano-material is an important development direction of material science. There are many preparations of oxide nanomaterials ,such as chemical precipitation, solid-state reaction method, vapor deposition method, etc. water solution is a relatively new preparation method, which by controlling the temperature and PH value of certain conditions, make the certain concentration hydrolysis of metal salts, hydroxides or oxide generated precipitation. Conclusion In a certain range, the longer reaction time is, the higher PH value is, the higher Fe3+ concentration is ,the stronger absorbance of hydrolysis and hydrolysis level deeper.Key words: hydro-thermal method, Nanomaterials, hydration reaction, absorbance前沿纳米材料是指晶粒和晶界等显微结构能达到纳米级尺度水平的材料,是材料科学的一个重要发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高温合成纳米氧化铁及其光催化性能研究
纳米材料在当今科学领域中越来越受到关注。
纳米氧化铁是一种重要的纳米材料,具有磁性、电学和光学性能等优异特性,因而在医学、环境保护以及能源等领域中具有广泛的应用前景。
本文主要探讨高温合成纳米氧化铁及其光催化性能研究。
一、高温合成纳米氧化铁的方法
高温合成是一种控制纳米颗粒结构和形态的重要方法。
通常在较高温度下合成
纳米氧化铁,可获得较为均匀的颗粒分布。
本文提出两种常见的高温合成法。
1.1 热分解法
热分解法是将一定量的前驱体,如Fe(NO3)3·9H2O,以热分解的方式制备纳米氧化铁的方法。
实验条件是在氧气气氛和高温下进行,一般需要将反应温度控制在400~700℃之间。
通过调节反应温度和时间,可调节粒子的尺寸和形貌。
1.2 水热法
水热法也是一种常见的高温合成方法。
该方法依靠水介质,通过高压反应、水
解和热裂解等过程合成纳米氧化铁。
在水热反应中,反应时间、温度和反应物比例等条件对产物的晶体结构和粒径有很大的影响。
水热法可以制备出单晶、多晶的纳米氧化铁颗粒。
二、纳米氧化铁的光催化性能
光催化是利用光的能量引起化学反应的技术。
纳米氧化铁作为一种优秀的光催
化剂,在环境污染治理和能源转化等领域有着重要的应用。
2.1 光吸收特性
纳米氧化铁的光吸收特性与其结构和形貌密切相关。
一般来说,粒径较小的纳米氧化铁材料呈现出较为宽广的吸收光谱,并且具有较高的吸收强度。
同时,结构不规则或表面存在缺陷的纳米氧化铁在光催化反应中表现出更好的催化性能。
2.2 光生电子转移
光生电子转移是纳米氧化铁催化过程的关键性质之一。
当光吸收后,纳米氧化铁会产生空穴和电子对。
空穴可以通过氧化物或降解物的直接还原而转移,电子则可以通过还原和电位位降的方式迁移。
2.3 光催化反应机理
纳米氧化铁的光催化反应机理通常认为是在光照下,光生电子和空穴对启动反应,然后与污染物发生氧化还原反应,最终将其分解为无害物质。
因此,通过控制纳米氧化铁的结构和形貌等物理化学特性,可调节其在光催化反应中的效果。
三、总结
纳米氧化铁作为一种优异的纳米材料,其在能源、医学和环境等领域中具有广泛的研究价值。
本文主要介绍了高温合成纳米氧化铁及其光催化性能的研究,并探究了其在光催化领域中的应用前景。
未来,纳米氧化铁在环境污染治理、水资源开发利用和能源转化等领域中的应用前景仍然广阔。