五年级奥数第二讲:列方程解应用题

合集下载

五年级奥数列方程解应用题

五年级奥数列方程解应用题

列方程解应用题【专题精析】列方程解应用题是运用方程来解决实际问题,很多稍复杂的应用题,特别是需要逆向思维的,运用算术方法解答有一定困难,列方程解答就比较容易。

列方程解应用题的一般步骤是:(1)弄清题意,找出未知数,用x表示(直接设),也可以把一种量用x表示,待求出x的数值后再求出未知数(间接设)(2)找出应用题中数量之间的相等关系,列出方程,对于所设的未知数要当作已知数来用,通过已知与未知的有关数组成两个表示同一个数量的式子,构成一个方程(3)解方程;(4)检验,写出答案。

(也可以用算术解法检验)【我的心得】列方程解应用题通常有两个等量关系,我们可以用第一个等量关系设未知数,用第二个等量关系列方程。

列方程的方法通常可以这样做:1、提炼出题中的等式,抄在纸上。

2、将文字语言转化为数学语言。

3、代入数字解方程。

如这道题:修一条公路,未修长度是已修长度的3倍,如果再修300米,未修的长度就是已修的2倍,这条公路长多少米?(1)提炼:未修长度是已修长度的3倍。

(解:设已修长度为x米,则未修长度是3x米。

)未修的长度就是已修的2倍。

(2)转化:未修的长度=已修×2(小窍门:将文中的关键字如:是、等于、比、相当于等用“=”代替。

)(3)带入求值。

3x-300=(x+300)×2基础提炼例1一种香梨的价格比橘子的2倍还多0.3元,已知4千克与9千克的价格一样多,每千克香梨和橘子各多少元?补充:修一条公路,未修长度是已修长度的3倍,如果再修300米,未修的长度就是已修的2倍,这条公路长多少米?补充:7年前爸爸的岁数是小华的3倍,7年后是小华的2倍,小华今年多少岁?例2甲、乙两人原来身上的钱分别是丙身上钱的6倍和5倍,后来甲又收入180元,乙又收入30元,甲身上的钱就是乙的1.5倍,原来甲、乙、丙三人钱数之和是多少?例3被除数和除数的和是80,如果被除数和除数都减去13,那么被除数除以除数的商是5,求原来的被除数和除数。

五年级奥数列方程解应用题学生版

五年级奥数列方程解应用题学生版

列方程解应用题教学目标五年级奥数列方程解应用题学生版2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识精讲知识点说明:一、等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、设这个量为x,用含x的代数式来表示题目中的其他量;3、找到题目中的等量关系,建立方程;4、运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.例题精讲板块一、直接设未知数【例 1】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【巩固】一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【巩固】(全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到0.01,π 3.14)【例 2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【例 3】(全国小学数学奥林匹克)abcdefg,则七位数abcdefg应是.某八位数形如2abcdefg,它与3的乘积形如4【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【例 4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【巩固】已知三个连续奇数之和为75,求这三个数。

五年级奥数题:列方程解应用题

五年级奥数题:列方程解应用题

五年级奥数题:列方程解应用题五年级奥数题:列方程解应用题例1:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?例2:已知鸡比兔多13只,鸡的脚比兔脚多16条,问鸡兔各有多少只?等量关系式是:①五年一班有52人做手工,男生每人做3件,女生每人做2件,已知男生比女生多做36件,求五年一班男女生各有多少人?②学校组织暑假旅游,一共用了10辆车,大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐了520人,问大小客车各几辆?例3:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。

如两人相向而行,经过3分钟两人相遇。

已知乙每分钟行25千米,问AB两地相距多少米?例4:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。

已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。

小学五年级奥数题 列方程解应用题

小学五年级奥数题 列方程解应用题

小学五年级奥数题列方程解应用题1.解方程求未知数已知一个数加上它的1.8倍等于0.56,求这个数。

设这个数为x,根据题意得到方程x+1.8x=0.56,化简得到2.8x=0.56,解得x=0.2.2.解方程求未知数已知2.9与0.5的积比一个数的5倍少1.65,求这个数。

设这个数为x,根据题意得到方程2.9×0.5=5x-1.65,化简得到x=0.83.3.解方程求未知数已知某数的8倍加上10等于它的10倍减去8,求这个数。

设这个数为x,根据题意得到方程8x+10=10x-8,化简得到2x=-18,解得x=-9.4.解方程求未知数已知XXX有64张画片,XXX送给她12张,这时XXX和XXX的画片数相等。

XXX有画片多少张?设XXX有画片为x,根据题意得到方程x+12=64-x,化简得到x=26.5.解方程求未知数已知甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?设从甲桶里倒x千克的油到乙桶里,根据题意得到方程(45-x)/(24+x)=1.5,化简得到x=9.6.解方程求未知数已知一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?设原数为abc,根据题意得到方程100a+10b+c-100b-10c-a=108,化简得到99a-89b=108,由于a和b都是整数,可以得到a=2,b=1,c=5,原数为215.7.解方程求未知数已知某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?设第一次及格人数为x,不及格人数为y,则根据题意得到方程x=3y+4和x+5=6(y+5),化简得到y=11,x=37,参加竞赛的人数为48.8.解方程求未知数已知10年前XXX的妈妈的年龄是她的7倍,15年后XXX的年龄正好是妈妈年龄的一半,问XXX现在多少岁?设XXX现在的年龄为x,妈妈现在的年龄为y,则根据题意得到方程y-10=7(x-10)和2(y+15)=x+15,化简得到y=55,x=25,XXX现在25岁。

五年级奥数专题 列方程解应用题(学生版)

五年级奥数专题 列方程解应用题(学生版)

列方程解应用题学生姓名授课日期教师姓名授课时长知识定位有些数量关系比较复杂的应用题,用算术方法求解比较困难。

此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。

利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

方程作为一种数学工具对于解题有相当大的帮助,并且在代数学中乃至整个数学中有重要的意义。

列方程与方程组解应用题关键注意以下几点:1、设未知数的主要技巧和手段:把与其他数量关系紧密的关键量设为“x”.2、用代数法来表示各个量:利用“x”表示出所有未知量或变量.3、找准等量关系,构建方程:明显的等量关系与隐含的等量关系的寻找知识梳理1、列一元一次方程解应用题方程是代数学最基本的模型,而一元一次方程是方程中最简单的种类.解一元一次方程的步骤:(1)、去分母(2)、去括号(3)、移项(4)、合并同类项(5)、系数化12、二元一次方程组列方程组解应用题的主要步骤与列方程解应用题基本没有区别,由于可以多设未知数,所以通过列方程组解应用题可以有更多的选择,但解方程组的过程更需要一些技巧方法,其中最关键的步骤是消元,“消元”顾名思义减少方程组中未知数的个数,解方程组的消元方法主要有①代入消元法.②加减消元法.加减消元法:将方程组中的某个未知数的系数调整为相等,将方程组中方程的相减达到消元目的.代入消元法:利用方程组中的某条方程得到某项未知数的代数表达式,然后将它代入方程组中的其他方程达到消元目的.消元后,把方程转化成一元一次方程求解。

3、重点难点解析重点:列方程及方程组解应用题的主要步骤:(1)仔细审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系.(2)设这个量为x,用含x的代数式来表示题目中的其他量.(3)找到题目中的等量关系,建立方程.(4)解方程.(5)通过求到的关键量求得题目答案.难点:(1)恰当的假设未知数(2)从已知条件中寻找等量关系,列出方程或方程组并求解。

小学五年级奥数:列方程解应用题

小学五年级奥数:列方程解应用题

列方程解应用题(一)列方程解应用题是小学数学的一项重要内容,是一种不一样于算术解法的新的解题方法。

传统的算术方法,要求用应用题里给出的已知条件,经过四则运算,逐渐求出未知量。

而列方程解应用题是用字母来取代未知数,依据等量关系,列出含有未知数的等式,也就是方程,而后解出未知数的值。

它的长处在于能够使未知数直接参加运算。

列方程解应用题的重点在于能够正确地建立未知数,找出等量关系,进而成立方程。

而找出等量关系,又在于娴熟运用数目之间的各样已知条件。

掌握了这两点,就能正确地列出方程。

列方程解应用题的一般步骤是:1.弄清题材意,找出未知数,并用 x表示;2.找出应用题中数目之间的相等关系,列方程;3.解方程;4.查验,写出答案。

例题与方法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数。

例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。

这两块地各有多少公顷例3.琅琊路小学少年数学喜好者俱乐部五年级有三个班,一班人数是三班人数的倍,二班比三班少3人,三个班共有153人。

三个班各有多少人例4.被除数与除数的和是98,假如被除数与除数都减去9,那么,被除数是除数的4倍。

求本来的被除数和除数。

练习与思虑:1.列方程解应用题,有时要求的未知数有两个或两个以上,我们一定视详细状况,设对解题有益的未知数为x,依据数目关系用含有x的式子来表示另一个未知数。

2.篮球、足球、排球各1个,均匀每个36元。

篮球比排球贵10元,足球比排球贵8元。

每个排球多少元3.一次数学比赛有10道题,评分规定对一道题得10分,错一题倒扣2分。

小明回答了所有10道题,结果只得了76分,他答对了几道题4.将自然数1—100摆列以下表:在这个表里,用长方形框出的二行六个数(图中长方形框仅为表示),假如框起来的六个数的和为432,问:这六个数中最小的数是几5.拉萨路小学图书室一个书架上有上、下两层,一共有245本书。

上层每天借出15本,基层每日借出10本,3天后,上、下两层剩下列图书的本数同样多。

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

列方程解应用题(行程问题)专题解析相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度×时间=路程。

今天,我们学习此类问题。

例1 AB两地相距352千米.甲乙两辆汽车从A、B两地相对开出.甲车每小时行36千米,乙车每小时行44千米.乙车因有事,在甲车开出32千米后才出发,再出多少小时两车相遇?分析解答:要想求出两车的相遇时间,必须找到速度和、时间和总路程的数量关系式。

速度和×时间+甲先行的路程=总路程,其中甲车的速度,乙车的速度,甲先行的路和总路程已知,所以只要设时间为X小时,就可以列出方程。

解:设X小时两车相遇。

(36+44)×x+32=35280x+32=35280x=320x=4答:4小时后两车相遇。

随堂练习:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。

1小时后,货车从乙地开往甲地,每小时行60千米。

货车出发几小时后与客车相遇?例2 甲乙两人从A、B两地相向而行,甲乙两人从AB两地同时出发相向而行,甲每分钟行52米,乙每分钟行48米,两人走了10分钟后交叉而过,且相距64米,甲从A地到B地需多少分钟?分析解答:这道题目要求甲从A地到B地需要的时间,就发必须知道A、B两地相距的路程和甲的速度,现在甲的速度已知,所以这道题目的键就在于通过列方程求出A、B两地的相距的路程。

解:设A、B两会相距x米(52+48)×10-x=641000-x=64x=936936÷52=18(分)答:甲从A地到B地需18分钟。

随堂练习从A地到B地,水路比公路近40千米。

上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B 地,轮船的速度是每小时24千米,汽车的速度是每小时40千米,求A地到B地水路、公路是多少千米?例3 小明和小童分别从一座桥的两端同时相向出发,往返于两端之间小明每分钟走60米,小童每分钟走75米,经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。

五年级列方程解应用题奥数知识列方程解应用题

五年级列方程解应用题奥数知识列方程解应用题

五年级列方程解应用题奥数知识(列方程解应用题)同学们在解答数学问题时;经常遇到一些数量关系较复杂的;或较隐蔽的逆向问题。

用算术方法解答比较困难;如果用方程解就简便得多。

它可以进一步培养我们分析问题和解决问题的能力;抽象思维能力洌方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“ X”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。

11 _例1•金台小学学生参加申奥植树活动;六年级共植树252棵;比五年级植树总数的4倍少8棵;五年级植树多少棵?1丄』4倍少8棵;就是六年级的4倍的数少8;等于六年级植树的思路分析:六年级比五年级植树总数的总数。

等量关系是:五年级的4倍-8=六年级的植树总数。

解:设五年级植树x棵;根据题意列方程;得11 —x -8 =252411-x =252 8411 — x = 26041x 二260 "1 -4x =208验算:把x=208代入原方程1=1—208 -8 =252左边4右边=252左边=右边x =208是原方程的解。

答:五年级植树208棵。

例2. 一瓶农药700克;其中水比硫磺粉的6倍还多25克;含硫磺粉的重量是石灰的2倍;这瓶农药里;水、硫磺粉和石灰粉各多少克?思路分析:这是道比较复杂的“和倍应用题”;硫磺粉和水有直接关系;硫磺粉和石灰也有直接关系;因此应设未知数硫磺粉为x克。

水的重量是硫磺的6倍还多25克;也就是(6x+ 25)克;石灰的重量就是硫磺1x粉的重量除以2;也就是2 克。

等量关系式表示为:水+硫磺粉+石灰=农药重量1X解:设硫磺粉的重量是 X 克;那么;水的重量是(6x 25)克;石灰重量是2 克。

根据题意列方程;解。

16x 25 x x = 7002 17 —x =700 -25 275x 二 675 x = 90验算:把x =90代入原方程1=6><90 +25 + 90 +— x 90 = 700 左边 2右边=700 左边=右边x = 90是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲列方程解应用题
【专题精析】列方程解应用题是运用方程来解决实际问题,很多稍复杂的应用题,特别是需要逆向思维的,
运用算术方法解答有一定困难,列方程解答就比较容易。

列方程解应用题的一般步骤是:
(1)弄清题意,找出未知数,用x表示(直接设),也可以把一种量用x表示,待求出x的数值后再求出未知数(间接设)
(2)找出应用题中数量之间的相等关系,列出方程,对于所设的未知数要当作已知数来用,通过已知与未知的有关数组成两个表示同一个数量的式子,构成一个方程
(3)解方程;
(4)检验,写出答案。

(也可以用算术解法检验)
【我的心得】列方程解应用题通常有两个等量关系,我们可以用第一个等量关系设未知数,用第二个等量关系
列方程。

列方程的方法通常可以这样做:
1、提炼出题中的等式,抄在纸上。

2、将文字语言转化为数学语言。

3、代入数字解方程。

如这道题:修一条公路,未修长度是已修长度的3倍,如果再修300米,未修的长度就是已修的2倍,这条公路长多少米?
(1)提炼:
未修长度是已修长度的3倍。

(解:设已修长度为x米,则未修长度是3x米。


未修的长度就是已修的2倍。

(2)转化:未修的长度=已修×2 (小窍门:将文中的关键字如:是、等于、比、相当于等用“=”代替。

)
(3)带入求值。

3x-300=(x+300)×2
基础提炼
例1一种香梨的价格比橘子的2倍还多0.3元,已知4千克与9千克的价格一样多,每千克香梨和橘
子各多少元?
例2修一条公路,未修长度是已修长度的3倍,如果再修300米,未修的长度就是已修的2倍,这条
公路长多少米?
例37年前爸爸的岁数是小华的3倍,7年后是小华的2倍,小华今年多少岁?例4甲、乙两人原来身上的钱分别是丙身上钱的6倍和5倍,后来甲又收入180元,乙又收入30
元,甲身上的钱就是乙的1.5倍,原来甲、乙、
丙三人钱数之和是多少?
例5今年爷爷78岁,三个孙子的年龄分别是27岁,23岁,16岁,经过几年后爷爷的年龄等于三个
孙子的年龄和?
例6被除数和除数的和是80,如果被除数和除数都减去13,那么被除数除以除数的商是5,求原来
的被除数和除数。

例7王华从家到少年宫参加活动,如果每分钟走50米,就会比计划吃到3分钟;如果每分钟走60
米,就会比计划提前2分钟到达,王华家距离少
年宫多少米?
例8五(1)班教室里有部分学生在举行联欢会,联欢会开始后,10位女生走出教室化妆,这时教
室里男生是女生的2倍;接着又出去9个男生准
备道具,此时教室里女生是男生的5倍,最初教
室里有多少名学生?
例9 一条船从一码头顺流而下,再逆流而上,打算在8小时回到原出发的码头,已知这船在静水中的速度是每小时10千米,水流的速度是每小时2千米,
例9有一个三位数,其各位数字之和是16,十位数字是各位数字与百位数字之和,若把百位数字与
个位数字对调,那么新数比原数大594,求原数。

例10小明登山,上山每小时行2.4千米,下山每小时行3千米,他从山下到山顶,再从山顶原路返回
山下共用了4.5小时,求从山下到山顶的路程有
多少千米?
例11一个两位数,个位上的数字比十位上的数字少4,如果把十位上的数字与个位上的数字对调,
新数比原数少36,求原数。

例12有两枝蜡烛,第一枝长19厘米,第二枝长11厘米,同时点燃后每分钟都燃烧掉1厘米,多少分
钟后,第一枝蜡烛的长度是第二枝长度的3倍?
例13一个两位数,个位上的数字是十位上数字的3倍,若把这个十位上的数与个位上的数对调,那
么所得到的新数比原数大54,求原来的两位数。

例14甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是
甲队的2倍,问甲、乙两队原有汽车各多少辆?
例15 两名运动员在湖的周围环形道练习长跑,甲每分钟比乙多跑50米,如果两人同时同地同向出发,则绕过45分钟甲追上乙;如果两人同时同地反向出发,则经过5分钟可以相遇,求甲、乙两人的速度。

例16甲、乙、丙、丁四人共做零件270个,如果甲多做10个,乙少做10个,丙做的个数乘以2,
丁做的个数除以2,那么四人做的零件数恰好
相等,问:丙实际做了多少个?(间接设未知
数)
例17 某图书馆原有科技书,文艺书共630本,其中科技书占20%,后来又买进一些科技书,这时科技书占总书数的30%,买进科技书多少本?
A
例18 某县农机厂金工车间有77个工人,已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种零件3个。

但加工3个甲种零件,1个乙种零件和9个丙种零件才恰好配成一套,问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套?(间接设法,提示:设加工乙种零件x 个 复习:
(2+4+6+……+2006)-(1+3+5+7+……2005)=
198919881987198619851984198319821981198019791978987
654321
++---+++---+⋅⋅⋅+++---+++
算式1234567898765432163⨯值的各位数字之和为 。

(2008年四中考题)如右图,AD DB =,
AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是 平方厘米
第七讲 列方程解应用题 已知3个连续自然数的和是51,求这三个连续自然数。

篮球、足球和排球各1个,平均每个20元。

篮球比排球贵12元,足球比排球贵6元,每个排球多少元? 工程队挖一条涵洞,未挖的长度是已挖长度的3倍,如果再挖300米,未挖的长度就是已挖的2倍,这条涵洞长多少米? 一艘轮船所带的燃料最多可用9小时,轮船从一码头顺流而下每小时可行150千米,返回时逆流而上每小时行驶120千米,这艘轮船最多开出多少千米就必须返回? 杭州到盐城两地相距496千米,货车从杭州开往盐城,每小时行32千米,货车开出半小时后,客车从盐城开往杭州,每小时行64千米,客车开出几小时后才能与货车相遇? 鸡兔同笼,数头10只,数脚共24只,鸡兔各多少只?
某农民养鸡若干只,已知鸡比兔多13只,鸡的脚比兔的脚多16只。

问鸡和兔各有多少只?
小虎在敌人窗前听到屋子里分子弹,有一个人说:每人背45发,则多680发;若每人背50发,还多200发,有多少敌人?多少发子弹?
一个商人估计,假如1公斤苹果卖1.2元,就得赔2元,假如1公斤苹果卖1.5元,就可赚4元,他想快点出手,以不赔不赚的价格出卖,每公斤苹果应卖多少元?
运输公司给某单位运送200只羊,按合同规定,每只羊的运费是5元,如果运输途中死亡一只羊,不但扣一只羊的运费,还要赔偿这个单位损失40元。

运输公司结账时,得到运费820元,运输途中死亡几只羊?
李会计到银行取10000元钱。

他只想要20元、50元和100元面值的人民币,并且要求20元、50元的张数同样多,总张数是178张,银行应如何付款?
甲、乙两地的公路长164千米,小明和哥哥骑自行车同时从这两地出发,相向而行,小明每小时行11千米,哥哥每小时行14千米。

行车途中,小明修车耽误1小时,然后继续行驶直到相遇,从出发到相遇经过几小时?
小强和小亮商量,星期四早晨8点整出家门,相向走来,小强每分钟行48米,小亮每分钟行54米。

两人在距离中点30米相遇。

他们两家之间的公路长多少米?
李顺、李利结伴出去春游,每分钟走50米,出发12分钟时,李顺回家取照相机,然后骑自行车以每分钟200米的速度赶李利。

骑车多少分钟追上?
第七讲列方程解应用题作业
连续的5个奇数的和是45,这5个连续奇数分别是多少?
数学竞赛有10道题,这次比赛评分规定对1题得10分。

错1题倒扣2分。

李玲回答了全部10道题,结果只得76分。

她答错了几道题?
金明从家步行到学校,他如果以每分钟走50米的速度,就会迟到3分钟,于是他以每分钟走60米的速度前行,结果到学校时离上课还有2分钟,金明家距离学校多少米?
一艘船从甲码头顺流而下再逆流返回,打算在6小时内回到甲码头,这艘船在静水中的速度是每小时12千米,水流速度是每小时2千米,这艘船最多走出多少千米就必须返回?
有10分和20分的邮票共18张,总面值为2.80元。

问10分和20分的邮票各有多少张?。

相关文档
最新文档