斑马鱼胚胎发育时期

合集下载

斑马鱼饲养及繁殖孵化过程研究

斑马鱼饲养及繁殖孵化过程研究

斑马鱼饲养及繁殖孵化过程研究摘要:斑马鱼是一种重要的脊椎动物模式生物,因其胚体全透明,繁殖速度快,使用样品量少,饲养成本低,而被作为一种理想的模式动物广泛的应用于科学试验。

本实验通过对斑马鱼生长条件研究,探究斑马鱼可以生长的适宜条件,并在一定条件下使斑马鱼产卵,探究斑马鱼孵化及鱼苗生长条件,建立斑马鱼的养殖平台,为之后进行斑马鱼毒性急性急性实验奠定良好的基础。

关键词:斑马鱼;生长发育;繁殖;胚胎发育孵化;鱼苗斑马鱼(学名:Barchydanio rerio var,别名:蓝条鱼)是一种重要的低等脊椎动物模式生物,因其具有个体小、生殖周期短、繁殖能力强及胚胎透明便于观察等优点,被广泛应用于发育生物学、环境毒理学、免疫学等领域[1]。

斑马鱼在基因水平上87%与人类同源,早期发育也与人类极为相似,这使得斑马鱼及其胚胎在人类疾病的研究中有重要的应用价值[2,3]。

其胚胎、幼鱼和成鱼最早是被用来检测水中的有毒物质和致畸物[4]。

Streisinger 等[8]于 1981 年首次将斑马鱼与遗传学和生物学领域划上联系,使其研究领域得以拓展和延伸。

目前,斑马鱼已被广泛用于遗传学、生态毒理学、药物药效活性物质筛选、药物代谢、药物毒性物质筛选等方面[9]。

该实验通过观察斑马鱼的形态特征,生活习性,繁殖发育,调节孵化条件,熟悉并建立斑马鱼养殖、繁殖、孵化、鱼苗养殖等一系列养殖平台,为之后开展斑马鱼相关生理药理实验奠定基础。

1实验材料1.1 实验用鱼成年AB系斑马鱼,六月龄,来源于斑马鱼科研服务中心1.2 仪器与设备T-240F9L水族箱(宝潮水族专营店);产卵缸(南京一树梨花生物科技有限公司)培养皿若干、斑马鱼饲料(斑马鱼科研服务中心)、控温棒(斑马鱼科研服务中心)、生化培养箱(上海坤天实验室仪器有限公司)、6孔板、电子分析天平(万分之一赛多利斯科学仪器有限公司)。

1.3 实验试剂无水乙醇、500ml硝化细菌菌液、260ml水质稳定剂(上海寸景水族用品有限公司)、250ml胚胎培养液、亚甲基蓝(分析纯,成都市科龙化工试剂场2斑马鱼形态及习性2.1外形及雌雄鱼分辨AB型斑马鱼(野生型)体长为4~6cm,最大体长可达8cm。

斑马鱼模式生物简介

斑马鱼模式生物简介

姓名:谭克强专业:生物技术学号:2009211803斑马鱼模式生物简介斑马鱼是在印度和巴基斯坦河里发现的一种鲤鱼。

成年3~4cm 长,有漂亮的花纹,群居生活。

在实验室里,斑马鱼广泛用于标准毒理学检验。

1996年,一系列论文报道斑马鱼胚胎发育的突变体的筛选及鉴定[1],揭开了斑马鱼广泛应用于基因组功能分析、获得与脊椎动物发育和疾病相关的新基因研究的序幕。

斑马鱼(Danio rerio)作为水生脊椎动物的代表, 是现代遗传学、细胞生物学及发育生物学等研究的常用模式动物。

生物信息学预测认为, 斑马鱼基因组可能编码超过 400 种 miRNAs[2]。

通过构建不同发育阶段斑马鱼的小 RNA cDNA 文库发现, 斑马鱼miRNAs总数已经达到217个[2], 其中一些miRNAs在斑马鱼中的功能已经被解析。

miRNAs整体缺失对斑马鱼胚胎发育的影响研究结果表明, 缺失 miRNAs 的斑马鱼胚胎早期发育过程明显缓慢, 最初的 24 h 发育进程就被延迟了 3~4 h。

在原肠胚发育过程中, 突变胚胎不能进行正常的外包和内卷, 正常胚胎的索前板迁移发生在 80%外包时期, 而突变胚胎由于外包的推迟, 索前板迁移发生在 50%~60%外包时期。

此后, 由于体轴延伸减少导致胚胎缩短和脑部区域细胞的积累。

而在发育晚期, Dicer 突变胚胎后部卵黄延伸的范围也减少[3]。

Dicer 突变严重影响了神经胚形成。

由神经板发育成神经管的过程不能正常完成, 使神经管变成一个实心的棒状结构。

Dicer 突变胚胎脑内缺乏脑间隔而导致脑室数减少, 神经管腔的缺失和神经底板的减少表明脊髓发育也被干扰。

另外, 视网膜的发育也受到影响。

尽管神经系统发育畸形, 基因表达分析却发现, 神经管的前-后轴和背-腹轴图示均没有被完全破坏, 说明胚胎神经系统的图式形成和命运决定过程受到 miRNAs 的影响较少, 而脑的正常发育和神经细胞分化却需要 Dicer 酶的作用[3]。

斑马鱼的性腺发育(1)

斑马鱼的性腺发育(1)
斑马鱼的性腺发育
2021/3/6
1
精巢的组织学结构和不同发育阶段 生殖细胞形态
精巢一对,位于腹腔背部两侧,体积较小,以系膜与体壁相联,左右 精巢彼此分开,在尾端合并成一条很短的输精管,和一般鲤科鱼类相 同。
生殖上皮随着结缔组织向精巢内部延伸,形成许多隔膜,把精巢分成 许多不规则的精小叶,从其横切面上可见许多精小叶紧密排列,但没 有一定的规律性,精小叶为精巢的实质部分,因其呈管状又可称为精 小管。
1. 挑选出适当的公鱼跟母鱼,体长要尽量一样, 母鱼可以略大一些。
2. 将公鱼与母鱼分别放置产卵缸的两侧,中间 设置隔板将其隔开。
3. 产卵房的准备
产卵后小鱼:卵巢细长,结构松散,包含有排卵后的空滤泡、第Ⅱ时相、第Ⅲ 时相和第Ⅳ时相卵母细胞。
2021/3/6
12
繁殖期,IV期卵巢
2021/3/6
13
Ⅰ期:初级生长期(primary growth stage),卵母细胞(卵泡) 体积小(7~140μm),卵母细胞开始生长。
Ⅱ期:皮质泡时期(cortical alveolus stage),卵泡直径 140~340μm。卵母细胞体积进一步增大,卵母细胞外周的 皮质区出现许多小泡。
迅速
•胞核的直径在Ⅱ时相增长迅速,在Ⅲ时相中期、Ⅳ时相增
ቤተ መጻሕፍቲ ባይዱ长缓慢,几乎没有变化
•核质比在第Ⅱ时相最大,随着卵母细胞的发育,核质比越
来越小
9
卵巢壁:由两层被膜构成, 外层为腹膜,内层为白膜。 白膜由外到内依次为扁平上 皮细胞、疏松结缔组织、间 质组织和生殖上皮。
产卵板:白膜中的结缔组织 向卵巢内部伸展与卵巢生殖 上皮共同构成板层状结构, 称产卵板,是卵子产生的地 方。

低氧对斑马鱼胚胎发育和红细胞生成的抑制作用

低氧对斑马鱼胚胎发育和红细胞生成的抑制作用

2021年2月第29卷㊀第1期中国实验动物学报ACTA LABORATORIUM ANIMALIS SCIENTIA SINICAFebruary 2021Vol.29㊀No.1楚璐萌,田子颖,崔蕊,等.低氧对斑马鱼胚胎发育和红细胞生成的抑制作用[J].中国实验动物学报,2021,29(1):1-8.Chu LM,Tian ZY,Cui R,et al.Inhibition effects of hypoxia on embryonic development and erythropoiesis in zebrafish [J].Acta Lab Anim Sci Sin,2021,29(1):1-8.Doi:10.3969/j.issn.1005-4847.2021.01.001[基金项目]国家自然科学基金(31301135),河南省高等学校重点科研项目资助计划(21A320018),河南省高校科技创新人才支持计划(17HASTIT047),河南省高等学校青年骨干教师资助计划(2016GGJS-103),新乡医学院精神神经医学学科群支持计划(2016PNKFKT-08),新乡医学院产学研合作项目(2017CXY-2-14),河南省生物精神病学重点实验室开放课题(ZDSYS2016001),研究生创新支持计划资助项目(YJSCX201811Z)㊂Funded by National Natural Science Foundation of China (31301135),Key Scientific Research Projects of Henan Province (21A320018),Innovative Talents in Science and Technology of Fund Program of Universities of Henan Province(17HASTIT047),the Young Backbone TeachersFellowship in Henan Province (2016GGJS-103),the Disciplinary Group of Psychology and Neuroscience,Xinxiang Medical University (2016PNKFKT-08),Production,Study and Research Project Funding of Xinxiang Medical University(2017CXY-2-14),Open Program of Henan Key Laboratory of Biological Psychiatry(ZDSYS2016001),Graduate Innovation Support Program Funded Projects(YJSCX201811Z).[作者简介]楚璐萌(1994 ),女,在读硕士研究生,研究方向:造血分化发育研究㊂Email:670381639@ [通信作者]于海川(1979 ),男,博士,副教授,研究方向:造血分化发育㊂Email:haichuan_yu@;吴娇(1978 ),女,博士,副教授,研究方向:神经分化发育研究㊂Email:wujiao@㊂∗共同通信作者低氧对斑马鱼胚胎发育和红细胞生成的抑制作用楚璐萌1,4,田子颖1,崔蕊1,吴娇2∗,于海川1,3∗(1.新乡医学院医学检验学院,河南省分子诊断与医学检验技术协同创新中心,河南新乡㊀453003;2.新乡医学院药学院,河南新乡㊀453003;3.新乡医学院第二附属医院,河南省生物精神病学重点实验室,河南新乡㊀453002;4.河南省郑州市第七人民医院,郑州㊀450000)㊀㊀ʌ摘要ɔ㊀目的㊀本文以斑马鱼(Danio rerio )为研究对象,探讨了低氧对早期胚胎发育㊁造血分化和红系分化的影响㊂方法㊀选取受精后12h 的斑马鱼胚胎,随机分为两组,以常氧组为对照组,低氧组为实验组,实时观察斑马鱼胚胎发育形态学的变化;通过联苯胺染色㊁邻联茴香胺染色㊁AO 染色及瑞氏吉姆萨染色观察红细胞的生成及形态学变化;并通过Real time PCR 检测了斑马鱼胚胎造血相关基因的表达情况㊂结果㊀与常氧相比,低氧降低了斑马鱼胚胎卵黄囊的营养消耗,抑制了色素细胞的形成,减慢了心率,延缓了斑马鱼胚胎的孵化,观察和分析了低氧对红细胞产生和成熟的抑制作用㊂结论㊀低氧延缓了斑马鱼胚胎发育,抑制了红细胞的产生和成熟㊂ʌ关键词ɔ㊀斑马鱼;低氧;胚胎发育;造血分化;红细胞生成ʌ中图分类号ɔQ95-33㊀㊀ʌ文献标识码ɔA㊀㊀ʌ文章编号ɔ1005-4847(2021)01-0001-08Inhibition effects of hypoxia on embryonic development anderythropoiesis in zebrafishCHU Lumeng 1,4,TIAN Ziying 1,CUI Rui 1,WU Jiao 2∗,YU Haichuan 1,3∗(1.School of Laboratory Medicine,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine,Xinxiang Medical University,Xinxiang 453003,China.2.School of Pharmacy,Xinxiang Medical University,Xinxiang 453003.3.the Second Affiliated Hospital of Xinxiang Medical University,Henan Key Laboratory of Biological Psychiatry,Xinxiang Medical University,Xinxiang 453002.4.Zhengzhou No.7People s Hospital of Henan Province,Zhengzhou 450000)Corresponding author:YU Haichuan.E-mail:haichuan_yu@;WU Jiao.E-mail:wujiao@ ʌAbstract ɔ㊀Objective ㊀The vertebrate model of zebrafish (Danio rerio )was employed to explore the effects ofhypoxia on early embryonic development,hematopoietic differentiation,and erythroid differentiation.Methods ㊀At 12hpost-fertilization,zebrafish embryos were randomly divided into two groups.The normoxic group was used as the control group,and the hypoxic group was used as the experimental group.The morphological changes of zebrafish embryos were observed in real-time.Erythropoiesis and morphological changes were observed by benzidine,O-dianisidine,acridine orange,and May-Grunwald Giemsa staining.Real time PCR was used to analyze hematopoietic gene expression in zebrafish embryos.Results㊀Hypoxia reduced nutritional consumption of the yolk sac,inhibited the formation of pigment cells, slowed down the heart rate,and delayed the hatching of zebrafish embryos.Inhibitive effects of hypoxia on the production and maturity of red blood cells were observed.Conclusions㊀Hypoxia delays zebrafish embryonic development and inhibits the production and maturity of red blood cells.ʌKeywordsɔ㊀zebrafish;hypoxia;embryonic development;hematopoietic differentiation;erythropoiesis Conflicts of Interest:The authors declare no conflict of interest.㊀㊀斑马鱼(Danio rerio)是研究发育㊁造血和遗传学的强大模型[1],其具有体外受精发育㊁产卵量大㊁胚胎透明等多种优势[2-4]㊂斑马鱼与人类之间的遗传同源性达87%[5],同时具有遗传操作和再生能力[6],这使得斑马鱼成为目前研究脊椎动物胚胎发育和造血分化的优秀动物模型[7]㊂低氧是影响水生系统的最重要的压力源之一[8-9],目前有关低氧对斑马鱼胚胎发育的影响机制研究报道非常少㊂斑马鱼胚胎发育是一个复杂的㊁高度协同的过程㊂斑马鱼与人的造血分化是保守一致的,已经发现并克隆了造血过程中的阶段特异性表达基因,包括EPO㊁Globin和GATA1等[3,10]㊂研究发现红细胞生成受到低氧环境的影响,其中一个或多个异常可能导致不同类型的红细胞生成障碍[10]㊂本文采用联苯胺染色㊁邻联茴香胺染色及瑞氏吉姆萨染色来显示红细胞的生成及形态学变化,观察了低氧下斑马鱼胚胎的整个发育过程,并对常氧和低氧下的基因表达水平进行了比较,从而加深了低氧对脊椎动物影响的认识㊂目前涉及低氧对斑马鱼影响的详细研究很少,本研究为揭示低氧影响斑马鱼胚胎发育和红细胞生成的具体过程提供了新数据㊂1㊀材料与方法1.1㊀材料1.1.1㊀实验动物本实验得到新乡医学院动物实验伦理委员会的审批(XYLL-2020163),于河南省免疫与靶向药物重点实验室中进行实验,实验动物实验使用许可证号ʌSYXK(豫)2018-0014ɔ㊂约100对状态良好的生育期的AB品系斑马鱼养殖于上海海圣斑马鱼实验养殖系统中,光照/黑暗14h/10h,水温为28ħ㊂受精卵在28.5ħ下孵育,并根据Kimmel等[2]方法进行分期㊂1.1.2㊀主要试剂与仪器3,3 ,5,5 -四甲基联苯胺(MACKLIN,中国);瑞氏吉姆萨染液(Baso,中国);AO染液(索莱宝,中国);邻联茴香胺(Sigma,美国);TRIzol试剂(ambion,美国);逆转录试剂盒(诺唯赞,中国)㊂斑马鱼养殖系统(上海海圣生物实验设备有限公司,中国);YCP系列三气培养箱(长沙华曦电子科技有限公司,中国);ZEISS Discovery.V8体式荧光显微镜(ZEISS,德国);BX51正置荧光显微镜(Olympus,日本);PikoReal TM实时荧光定量PCR检测仪(Thermo Fisher Scientific,美国);Tanon-3500凝胶成像系统(上海天能公司,中国)㊂1.2㊀方法1.2.1㊀斑马鱼的繁殖和胚胎处理斑马鱼是根据已有文献的标准条件饲养和繁殖[11],交配和胚胎培养方法由中国斑马鱼资源中心提供㊂12hpf(hours post fertilization)后收集高质量的胚胎进行实验㊂将胚胎分为低氧和常氧培养组,低氧组的胚胎暴露于5%O2浓度下㊂每12h收集1次斑马鱼胚胎,鉴定胚胎的发育阶段㊂在不同发育时期,从常氧和低氧组各随机选取10个胚胎,用ZEISS ZEN软件计算卵黄囊的比例;用Image J软件分析体表色素沉着的比例;在体视显微镜下观察并计算胚胎个体的心率㊂1.2.2㊀联苯胺染色和邻联茴香胺染色联苯胺染色按照本实验室的方法进行[12],邻联茴香胺染色参照文献方法进行[13]㊂使用体式显微镜对各发育阶段的胚胎进行观察并拍照,用Image J 软件分析整个斑马鱼中染色部分的占比㊂图像至少是从3个独立的实验中获得,每组至少有6个胚胎或幼鱼㊂1.2.3㊀瑞氏吉姆萨染色对胚胎进行断尾处理收集血细胞,制备血涂片㊂斑马鱼预处理及瑞氏吉姆萨染色方法参照文献进行,并稍作改进[14-15]㊂使用BX51正置荧光显微镜观察并鉴定红细胞类型,并依据统计学方法计算红细胞在所有血细胞中的比例㊂1.2.4㊀AO染色随机收集10个胚胎/幼鱼移至包含1mL ddH2O的EP管中,然后加入30μL10μg/mL的AO染液,避光染色1h[16-17]㊂立即使用体式荧光显微镜观察并拍摄胚胎中的荧光㊂1.2.5㊀RNA提取和Real time PCR每组随机取50个胚胎/幼鱼,溶于TRIzol试剂中提取总RNA㊂使用逆转录试剂盒将总RNA逆转录为cDNA㊂使用特异性基因引物(见表1)进行常规RT-PCR和Real time PCR㊂表1㊀实时荧光定量PCR引物名称及序列Table1㊀Primer names and sequences of Real time PCR引物名称Primer names引物序列(5 -3 )Primer sequences(5 -3 ) Z-Globin-F TTTCCGCAAAGGACAAAGCGZ-Globin-R AGGAGAGTTGGGGCTTAGGTZ-GATA1-F TTTACGGCCCTTCTCCACACZ-GATA1-R GGTGGCACCACAATTCACACZ-l-plastin-F GATGTGGATGGGAACGGTCAZ-l-plastin-R ATGAACCACCTTGGCGAACTZ-scl-F CGGGCTGACAACTAGCGTATZ-scl-R TACCTGATGAGGCGTGGGTAZ-c-myc-F TATGCTGCAAGTGACCGGAGZ-c-myc-R GCTGGATGGAGTCGTAGTCGZ-NFIL3-F TAGCCCGATGTCCTTCCAGAZ-NFIL3-R TGGTGAGTCTGGACATTGCCZ-GAPDH-F TCACATTAAGGGTGGTGCAAZ-GAPDH-R GTGATGGCATGAACAGTGCT 1.3㊀统计学分析使用GraphPad Prism7软件对实验数据进行分析㊂计量资料以平均值ʃ标准差( xʃs)表示,采用t检验比较两组样本的均值,多组间的样本采用单因素方差分析㊂P<0.05为差异有统计学意义㊂2㊀结果2.1㊀低氧延迟斑马鱼胚胎发育依据前期实验结果,最终选定5%O2浓度作为低氧条件㊂将12hpf的斑马鱼胚胎(图1A)随机分为两组,分别在常氧和低氧下培养㊂24hpf,咽囊期原基-5期视网膜色素沉着和皮肤黑色素沉积较早,卵黄囊内出现红细胞,此时出现早期心脏搏动(图1B);36hpf,原基-25期,绒毛膜中的斑马鱼胚胎出现早期运动㊁尾部色素沉着和血液循环(图1C); 48hpf,长胸鳍期,卵黄囊开始变薄,侧边带出现黑素细胞,视网膜上的虹膜色素细胞丰富,头部出现黄色(图1D);60hpf,高胸鳍期,血液循环明显,视网膜虹膜色素细胞环加深(图1E);72hpf,孵化期的突口阶段,虹膜色素细胞覆盖眼睛,背部与头部相同颜色(图1F);84hpf,斑马鱼胚胎已经发育到幼鱼期(图1G)㊂低氧下,胚胎在24hpf时发育到卵裂期的20-体节阶段,在胚胎背侧区域共观察到20个体节,相当于在常氧下19hpf时的发育阶段(图1H)㊂同样,低氧下,36㊁48㊁60㊁72㊁84hpf的胚胎发育阶段分别为原基-6期㊁原基-25期㊁高胸鳍期㊁长胸鳍期和胸鳍期,分别与常氧下的25㊁36㊁42㊁48㊁60 hpf一致(图1I㊁1J㊁1K㊁1L㊁1M),即低氧在一定程度上延迟了斑马鱼胚胎的整体发育㊂2.2㊀低氧对于斑马鱼卵黄囊㊁色素沉着㊁胚胎孵化和心率的影响在相同发育阶段,低氧组斑马鱼的卵黄囊体积明显大于常氧组(图2A㊁2B);低氧组斑马鱼眼睛㊁头部㊁躯干和卵黄囊中的色素沉着明显低于常氧组(图2A㊁2C);在相同的长胸鳍阶段,常氧组胚胎完成了孵化,低氧组胚胎仍然包裹在绒毛膜中(图2A)㊂常氧组斑马鱼在24hpf时胚胎开始出现早期的心脏搏动,而此时低氧组未发现心脏搏动㊂从24 hpf开始,无论是否低氧培养,胚胎早期心率随时间变化趋势一致,约60hpf后心率趋于稳定,而在相同发育时间,低氧组斑马鱼胚胎心率明显低于常氧组(图2D)㊂另外,相同发育阶段,低氧下的胚胎心率明显低于常氧(图2E)㊂2.3㊀低氧减少斑马鱼早期胚胎发育红细胞的生成邻联茴香胺染色结果显示,经低氧处理的斑马鱼胚胎的邻联茴香胺的着色面积显著降低,染色部位主要位于卵黄囊,而常氧组斑马鱼胚胎的染色部位则逐渐从卵黄囊转移到心脏和头部(图3A-a,c, e,g)㊂联苯胺染色结果与邻联茴香胺染色基本一致,常氧下胚胎的主要染色部位逐渐从卵黄囊和大血管转移到心脏㊁大血管和节间血管,低氧下的染色部位逐渐从卵黄囊转移到心脏和血管,节间血管染色不明显(图3B)㊂使用Image J软件对联苯胺染色结果进行分析,在同一发育阶段,低氧下胚胎的着色面积比例明显低于常氧(图3C)㊂AO染色结果显示,低氧下斑马鱼胚胎卵黄囊的前部和上部有大量的凋亡细胞(绿色荧光颗粒);但其会随着斑马图1㊀斑马鱼胚胎发育代表性图片(ˑ150)Figure 1㊀Representative images of zebrafish embryonic development(ˑ150)注:A:斑马鱼胚胎的代表性图片(ˑ150);B㊁C:斑马鱼卵黄囊体积占比和色素沉着占比;D:不同发育时间斑马鱼胚胎的心率变化;E:相同发育阶段下斑马鱼胚胎的心率的差异㊂与常氧相比,∗P <0.05,∗∗P <0.01,∗∗∗P <0.001㊂(下图同)图2㊀低氧对于斑马鱼胚胎卵黄囊㊁色素沉着和心率的影响Note.A.Representative images of zebrafish embryos(ˑ150).B,C.The proportion of yolk sac volume and the proportion of pigmentation.D.The heart rate of zebrafish embryos under normoxic and hypoxic conditions at different developmental time.E.The heart rate of zebrafishembryos under normoxic and hypoxic conditions at the same developmental pared with normal oxygen,∗P <0.05,∗∗P <0.01,∗∗∗P <0.001.(The same in the following figures)Figure 2㊀Effects of hypoxia on yolk sac,pigmentation and heart rate of zebrafish embryos鱼胚胎的发育逐渐减少(图3A-b,d,f,h)㊂2.4㊀低氧抑制红细胞成熟瑞氏吉姆萨染色结果显示,同一发育时期,低氧下斑马鱼的总红细胞(包括幼稚红细胞和成熟红细胞)比例低于常氧(图4A㊁4B)㊂图4A 中,蓝色箭头处为未成熟红细胞,胞体呈圆形,胞质丰富,细胞核呈圆形或类圆形,蓝色,多居中;红色箭头处为成熟的红细胞,胞体比未成熟红细胞小,呈椭圆形,胞质丰富,细胞核呈椭圆形,深紫色㊂低氧下84hpf 的斑马鱼血液中只有未成熟的红细胞存在㊂但是同一发育阶段下常氧和低氧相比较,红细胞总数的比例没有统计学意义(图4C)㊂以往的研究表明,斑马鱼血液中的红细胞呈连续性年龄分布,成熟的红细胞血红蛋白含量较高[18]㊂这些结果表明低氧在一定程度上抑制了红细胞的成熟㊂2.5㊀低氧对于斑马鱼胚胎发育过程中造血相关基因表达的影响通过绘制斑马鱼胚胎发育早期的造血细胞分化发育图谱,我们选定了部分重要的造血相关基因进行表达检测㊂首先使用RT-PCR 的方法观察了在正常培养过程中斑马鱼胚胎发育6㊁12㊁24㊁48㊁72hpf 时一些重要造血相关基因的表达情况(图5A),在24hpf 之后,红系特异性造血因子GATA1和Globin 随着发育时间的增加其表达强度逐渐增加;注:A:斑马鱼胚胎的邻联茴香胺染色图片和AO 染色图片(ˑ150);B:斑马鱼胚胎的代表性联苯胺染色图片(ˑ100);C:联苯胺染色量化图㊂图3㊀低氧对斑马鱼胚胎血红蛋白的生成和细胞凋亡的影响Note.A.O-dianisidine staining pictures and Acridine orange staining pictures of zebrafish embryos(ˑ150).B.Representative benzidine staining of zebrafish embryos(ˑ100).C.Quantitative line chart of Benzidine staining.Figure 3㊀Effects of hypoxia on hemoglobin production and cell apoptosis of zebrafishembryos注:A:斑马鱼胚胎血细胞的瑞氏吉姆萨染色(ˑ1000);B:不同发育时期斑马鱼胚胎中红细胞的比例;C:在相同的发育阶段,斑马鱼胚胎中红细胞的比例㊂图4㊀低氧抑制红细胞成熟Note.A.May-Grunwald Giemsa staining of zebrafish embryonic blood cells(ˑ1000).B.The proportion of red blood cells in blood of zebrafish embryos at different developmental time.C.At the same developmental stage,the proportion of red blood cells in blood of zebrafish embryos.Figure 4㊀Hypoxia inhibits red blood cell maturity同时其他的与造血相关的基因c-myc㊁scl㊁GATA2和NFIL3等在斑马鱼胚胎发育早期,也随着发育时间呈逐渐升高的趋势,而l-plastin 在早期的表达更加明显㊂另外,Real time PCR 结果显示了常氧和低氧下一些红系相关基因的表达差异㊂Globin 在相同的发育时期低氧下的表达强度要明显低于常氧下的表达强度,与之相反Epo 基因在低氧下则显示较高,同时其他相关造血基因在某些发育阶段也显示出低氧下表达强度低于常氧下(图5B)㊂这些基因表达的变化情况证实并解释了先前观察到的低氧抑制斑马鱼胚胎早期红系分化的结果㊂注:A:RT-PCR 分析常氧条件下斑马鱼胚胎发育过程中的mRNA 表达水平;B:Real time PCR 分析比较常氧和低氧条件下造血相关mRNA 的表达差异㊂图5㊀低氧对于斑马鱼胚胎发育中基因表达的影响Note.A.Some mRNA level was analyzed by RT-PCR during embryonic development of zebrafish.B.Real time PCR was employed to analyze the differential expression of hematopoietic related mRNA.Figure 5㊀Effects of hypoxia on gene expression in embryonic development of zebrafish3㊀讨论为了探讨低氧对斑马鱼胚胎发育和造血作用的影响,我们使用了不同的低氧浓度和低氧处理时间㊂前期的实验结果表明当受精后的胚胎直接暴露于1%O 2浓度下超过24h,死亡率几乎是100%㊂我们最终选定了5%O 2浓度作为最适低氧浓度,而12hpf 作为最佳低氧处置时间㊂斑马鱼胚胎是一个 封闭系统 ,且发育早期不能合成血红蛋白来供应自身氧气的需求,只能通过外界氧气的被动扩散才能满足斑马鱼胚胎的正常生长发育,所以绒毛膜上的孔洞是氧气和营养物质从外部水环境运输到胚胎和清除废物所必需的[19],通过独特的绒毛膜结构,未孵化的胚胎感受到低氧并影响其发育,本研究发现低氧延缓了斑马鱼的孵化时间㊂卵黄囊的主要作用是为斑马鱼早期发育提供所需的营养物质,使发育不受外界干扰[20]㊂但有研究发现抵抗动物缺氧的最重要的防御机制之一是能量消耗的下调[21],本实验结果显示:低氧下斑马鱼胚胎卵黄囊的体积占比大于常氧,即实验证实低氧抑制卵黄囊的消耗㊂同时低氧减少了胚胎的体外色素沉着,这可能是由于低氧降低细胞色素P450的表达[22],或者因为低氧影响了酪氨酸酶的活性从而延迟了胚胎色素细胞的发育[23]㊂总之,低氧从整体上抑制了斑马鱼胚胎的发育过程,而持续的低氧不利于胚胎发育和生物学进化,在某些情况下甚至可能导致严重的疾病或死亡㊂鱼类心脏对多种环境因素敏感,其中之一就是低氧㊂在低氧状态下,由于外部氧气浓度较低,通过绒毛膜被动扩散进入斑马鱼胚胎的氧气含量无法满足斑马鱼胚胎心脏形成和发挥功能的需求,从而导致其出现持续性心动过缓,通过降低心率和能量消耗从而提高成活率[24]㊂与文献报道相一致,本研究发现低氧会导致斑马鱼心率发生复杂的变化,其确切的变化取决于发育阶段,并且在较小的程度上取决于饲养温度[25]㊂同时,以往文献显示,低氧导致斑马鱼胚胎出现一定程度的心包水肿,伴有卵黄囊水肿,胚胎血管系统发育不良,血液流速变缓[26-28]㊂我们的研究结果再一次证实了这一结果,心包水肿影响血液循环㊁心率,并很可能对血细胞生成有一定影响㊂低氧不仅影响斑马鱼胚胎的形态和心脏功能,造血分化和红细胞生成也受到了影响㊂斑马鱼是研究胚胎红细胞生成的理想系统[29]㊂红细胞的产生在许多水平上受到调节,包括基因表达的控制,环境条件的改变㊂本研究结果显示胚胎发育早期低氧对红细胞产生和成熟具有抑制作用㊂这可能是由于在胚胎发育的早期,低氧下卵黄囊前部和上部的血供不足引起的细胞凋亡,但在发育后期斑马鱼胚胎出现低氧耐受,凋亡模式发生改变,细胞凋亡数量减少㊂为了揭示低氧对红细胞生成过程中基因表达可能存在的调控机制,我们检测了一些重要的造血相关基因㊂有研究表明斑马鱼胚胎发育后期,12hpf胚胎血红蛋白的表达水平开始增加,并在孵化前后达到高峰,且胚胎血红蛋白基因水平一直保持在高水平,直到成年[30]㊂本实验的初步结果表明,常氧下12hpf,红系特异性造血因子Globin开始表达,随着发育时间的增加其表达强度逐渐增加,这与已有的研究报道结果是一致的;但是低氧下Globin的表达水平降低,及HiF1α的表达水平升高,提示在斑马鱼胚胎发育早期,低氧确实影响基因表达,但其分子机制尚不清楚㊂据报道,低氧可以通过调节斑马鱼胚胎的HIF通路,影响斑马鱼胚胎造血干细胞的产生和造血末期红细胞的终末分化[31-33]㊂综上所述,低氧延缓了斑马鱼胚胎的发育,抑制了红细胞的产生和成熟㊂我们的结果加深了人们对低氧诱导脊椎动物产生影响的认识,同时也提供了低氧对斑马鱼胚胎发育和红细胞生成的最新认识㊂由于斑马鱼相对于小鼠模型具有许多优势,斑马鱼疾病模型的进一步发展将加速我们对疾病各种病理㊁生理过程的了解㊂随着斑马鱼疾病模型的可用性和日益增加的多样性,该动物系统将为疾病诊断,有效治疗和预后提供强大的基础㊂在高海拔地区,低氧与中风或癌症等疾病相关[34]㊂所以此项研究在一定程度上为探索临床上低氧性疾病提供了新的认识和见解,但低氧究竟如何影响斑马鱼的胚胎发育和造血分化,还有待进一步研究㊂参㊀考㊀文㊀献(References)[1]㊀王小琦,孙岩,张洋,等.斑马鱼模型在常见骨疾病研究中的应用[J].中国比较医学杂志,2017,27(6):86-91.Wang XQ,Sun Y,Zhang Y,et al.Application of zebrafishmodels in the research on bone diseases[J].Chin J Comp Med,2017,27(6):86-91.[2]㊀Kimmel CB,Ballard WW,Kimmel SR,et al.Stages ofembryonic development of the zebrafish[J].Dev Dyn,1995,203(3):253-310.[3]㊀Gore AV,Pillay LM,Venero GM,et al.The zebrafish:Afintastic model for hematopoietic development and disease[J].Wiley Interdiscip Rev Dev Biol,2018,7(3):e312. [4]㊀王雪,韩利文,何秋霞,等.斑马鱼模型在糖尿病研究中的应用[J].中国比较医学杂志,2017,27(8):1-5.Wang X,Han LW,He QX,et al.Application of zebrafishmodels in research of diabetes[J].Chin J Comp Med,2017,27(8):1-5.[5]㊀Woo K,Shih J,Fraser SE.Fate maps of the zebrafish embryo[J].Curr Opin Genet Dev,1995,5(4):439-443. [6]㊀Brönnimann D,Annese T,Gorr TA,et al.Splitting of circulatingred blood cells as an in vivo mechanism of erythrocyte maturationin developing zebrafish,chick and mouse embryos[J].J ExpBiol,2018,221(15):184564.[7]㊀de Jong JL,Zon e of the zebrafish system to study primitiveand definitive hematopoiesis[J].Annu Rev Genet,2005,39:481-501.[8]㊀Fitzgerald JA,Jameson HM,Fowler VH,et al.Hypoxiasuppressed copper toxicity during early development in zebrafishembryos in a process mediated by the activation of the HIFsignaling pathway[J].Environ Sci Technol,2016,50(8):4502-4512.[9]㊀Kwong RW,Kumai Y,Tzaneva V,et al.Inhibition of calciumuptake during hypoxia in developing zebrafish is mediated byhypoxia-inducible factor[J].J Exp Biol,2016,219(24):3988-3995.[10]㊀Rasighaemi P,Basheer F,Liongue C,et al.Zebrafish as amodel for leukemia and other hematopoietic disorders[J].JHematol Oncol,2015,8:29.[11]㊀Varga ZM,Ekker SC,Lawrence C.Workshop report:zebrafishand other fish models-description of extrinsic environmentalfactors for rigorous experiments and reproducible results[J].Zebrafish,2018,15(6):533-535.[12]㊀Yu HC,Zhao HL,Wu ZK,et al.Eos Negatively regulateshumanγ-globin gene transcription during erythroid differentiation[J].PLoS One,2011,6(7):e22907.[13]㊀Liu C,Han T,Stachura DL,et al.Lipoprotein lipase regulateshematopoietic stem progenitor cell maintenance through DHAsupply[J].Nat Commun,2018,9(1):1310. [14]㊀Ghersi JJ,Mahony CB,Bertrand JY.bif1,a new BMP signalinginhibitor,regulates embryonic hematopoiesis in the zebrafish[J].Development,2019,146(6):164103.[15]㊀Bertrand JY,Kim AD,Violette EP,et al.Definitivehematopoiesis initiates through a committed erythromyeloidprogenitor in the zebrafish embryo[J].Development,2007,134(23):4147-4156.[16]㊀杨菲,华永庆,林紫薇,等.斑马鱼眼部细胞凋亡模型的建立[J].中国药理学通报,2019,35(9):1320-1325.Yang F,Hua YQ,Lin ZW,et al.Establishment of apoptoticmodel of zebrafish eye[J].Pharmacol Bulletin,2019,35(9):1320-1325.[17]㊀李梦婷,张慧琼,文瑞琪,等.基于斑马鱼研究附子脂溶性总生物碱的神经毒性[J].中药药理与临床,2019,35(6):63-66.Li MT,Zhang HQ,Wen RQ,et al.Study on the Neurotoxicity offat-soluble alkaloids from radix aconiti lateralis based on zebrafish[J].Pharmacol Clin Chin Mater Med,2019,35(6):63-66.[18]㊀Nikinmaa M.Environmental regulation of the function ofcirculating erythrocytes via changes in age distribution in teleostfish:Possible mechanisms and significance[J].Mar Genomics,2020,49:100717.[19]㊀Zhang Q,Kopp M,Babiak I,et al.Low incubation temperatureduring early development negatively affects survival and relatedinnate immune processes in zebrafish larvae exposed tolipopolysaccharide[J].Sci Rep,2018,8(1):4142. [20]㊀Fraher D,Sanigorski A,Mellett NA,et al.Zebrafish embryoniclipidomic analysis reveals that the Yolk cell is metabolically activein processing lipid[J].Cell Rep,2016,14(6):1317-1329.[21]㊀Ton C,Stamatiou D,Liew CC.Gene expression profile ofzebrafish exposed to hypoxia during development[J].PhysiolGenomics,2003,13(2):97-106.[22]㊀Shang EH,Wu RSS.Aquatic hypoxia is a teratogen and affectsfish embryonic development[J].Environ Sci Technol,2004,38(18):4763-4767.[23]㊀Cheng J,Flahaut E,Cheng SH.Effect of carbon nanotubes ondeveloping zebrafish(Danio rerio)embryos[J].Environ ToxicolChem,2007,26(4):708-716.[24]㊀Steele SL,Lo KH,Li VW,et al.Loss of M2muscarinic receptorfunction inhibits development of hypoxic bradycardia and alterscardiacβ-adrenergic sensitivity in larval zebrafish(Danio rerio)[J].Am J Physiol Regul Integr Comp Physiol,2009,297(2):R412-R420.[25]㊀Barrionuevo WR,Burggren WW.O2consumption and heart ratein developing zebrafish(Danio rerio):influence of temperatureand ambient O2[J].Am J Physiol,1999,276(2):505-513.[26]㊀Damalas DE,Bletsou AA,Agalou A,et al.Assessment of theacute toxicity,uptake and biotransformation potential ofbenzotriazoles in zebrafish(Danio rerio)larvae combiningHILIC-with RPLC-HRMS for high-throughput identification[J].Environ Sci Technol,2018,52(10):6023-6031. [27]㊀Antkiewicz DS,Geoffrey BC,Carney SA,et al.Heartmalformation is an early response to TCDD in embryonic zebrafish[J].Toxicol Sci,2005,84(2):368-377.[28]㊀Wu BJ,Chiu CC,Chen CL,et al.Nuclear receptor subfamily2group F member1a(nr2f1a)is required for vasculardevelopment in zebrafish[J].PLoS One,2014,9(8):e105939.[29]㊀Brownlie A,Hersey C,Oates AC,et al.Characterization ofembryonic globin genes of the zebrafish[J].Dev Biol,2003,255(1):48-61.[30]㊀Tiedke J,Gerlach F,Mitz SA,et al.Ontogeny of globinexpression in zebrafish(Danio rerio)[J].J Comp Physiol B,2011,181(8):1011-1021.[31]㊀Zhang Y,Jin H,Li L,et al.cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis[J].Blood,2011,118(15):4093-4101.[32]㊀Wang Y,Liu X,Xie B,et al.The NOTCH1-dependent HIF1α/VGLL4/IRF2BP2oxygen sensing pathway triggers erythropoiesisterminal differentiation[J].Redox Biol,2020,28:101313.[33]㊀Pelster B,Egg M.Hypoxia-inducible transcription factors in fish:expression,function and interconnection with the circadian clock[J].J Exp Biol,2018,221(13):jeb163709. [34]㊀Ward AC,McPhee DO,Condron MM,et al.The zebrafish spi1promoter drives myeloid-specific expression in stable transgenicfish[J].Blood,2003,102(9):3238-3240.[收稿日期]㊀2020-05-27。

斑马鱼胚胎发育基因与功能的研究进展

斑马鱼胚胎发育基因与功能的研究进展

斑马鱼胚胎发育基因与功能的研究进展斑马鱼是一种常见但又极其特殊的小型观赏鱼类,它们不仅长得漂亮,而且拥有极强的再生能力,因此成为了生物科学研究的重要模式生物。

通过对斑马鱼进行基因编辑和遗传学实验,科学家们逐渐发现其胚胎发育过程中涉及的各种基因以及它们的功能,这不仅可以加深我们对斑马鱼胚胎发育的认识,而且可以为其它生物的研究提供指导和借鉴。

一、斑马鱼基因组的研究斑马鱼的基因组非常小、简单,但也很特殊,与人类和小鼠基因组存在较高的相似性,这让斑马鱼成为了研究发育生物学、基因调控和疾病模型等领域的绝佳模式生物。

研究发现,斑马鱼基因组含有大约2.7亿个碱基对,并且有约7万个基因,其中的大部分基因与人类或小鼠的基因存在功能上的相似性。

这让斑马鱼成为了研究发育生物学、基因调控和疾病模型等领域的绝佳模式生物,因为它们的生长和发育具有很高的可塑性,而且在成年后生命周期较短,其胚胎的早期发育过程更是完全透明,让科学家可以清晰地观察到其中的过程。

二、斑马鱼胚胎发育过程中的基因调控斑马鱼胚胎发育过程一般分为不同的阶段,通过对各个发育阶段的斑马鱼胚胎进行基因调控和功能研究,科学家们逐渐揭示了许多重要的发现。

一些基因负责斑马鱼的胚胎发育,如胚胎发育第一阶段的基因nrdp1,其担负着细胞核中的degradation保持during cell division的任务,同时nrdp1和内质网脱落调节蛋白p58温度缺陷包装的方式也有关系。

另一些基因则负责胚胎的器官发育,如在体育的鳍环投射被关键结构点抑制基因和smoothened 等基因,这些基因在斑马鱼胚胎发育过程中扮演着重要的角色,它们的异常活动会造成发育异常或者致病。

而在斑马鱼胚胎发育到一定的时期以后,神经系统的快速发育就成为了重点,这时候一些特异性的基因将会被表达,如gap43和omp等,这些基因机制是重要的神经信息人员通道的生物标志,此时会刺激生长锻炼和神经系统之间的联系,指导树突和神经纤维的生长与导向,如此就可以构建功能区域内的神经网络。

斑马鱼在生命科学研究中的应用

斑马鱼在生命科学研究中的应用

斑马鱼在生命科学研究中的应用斑马鱼是一种小型的热带淡水鱼类,它在生命科学研究中有着广泛的应用。

作为模式生物,这种鱼类可用于研究各种生物过程的机制,包括发育、再生和感染等。

在本文中,我们将探讨斑马鱼在生命科学研究中的应用及其重要性。

一、斑马鱼的基本特征和优点斑马鱼在生物学界是一个备受瞩目的模式生物。

这种鱼类的大小约为3.5厘米,一般寿命为2-3年。

它的简单型态和发育机理使得斑马鱼成为生命科学领域的重要研究对象。

此外,斑马鱼的优点还包括:1. 短周期快速成熟:斑马鱼的生殖周期短,每年可以产卵多次,而且发育迅速,只需要2-3天就可以孵化。

这个特性可以为研究人员提供大量的实验数据。

2. 生殖方式丰富:斑马鱼的生殖方式又泳动复杂和单纯的交配两种方式,这两种方式的存在又许多研究的方向。

3. 透明且可观察性强:斑马鱼在早期发育阶段为透明,这样质子在显微镜下容易被观察。

此外,它的胚胎发育过程短,只需两天就可以完成。

4. 基因治疗研究利器:斑马鱼拥有大量与人类同源的基因,可用于研究与人类相关的疾病和药物疗法。

5. 容易饲养: 斑马鱼简单易饲养,成本低,数量多。

二、斑马鱼在研究发育和遗传方面的应用斑马鱼因其胚胎发育阶段的透明,被广泛用于发育研究。

斑马鱼的早期胚胎非常透明,这使得它们的神经发育可以被轻松观察。

科学家们可以将神经标记物标记到斑马鱼的内皮细胞和神经系统细胞中,以观察它们的运动情况。

这种研究方法在研究神经退化疾病以及癌症等疾病方面有着重要的应用价值。

斑马鱼还可用于研究遗传学。

由于斑马鱼基因与人类基因非常相似,因此它们被广泛用于研究基因组的相互作用和表达。

举个例子,研究人员可以将人类基因序列植入斑马鱼基因组中,以研究人类基因的功能及其与其他基因和环境之间的相互作用。

这种方法被称为转基因鱼。

三、斑马鱼在药物发现和治疗研究中的应用斑马鱼可用于新药发现和针对性药物治疗研究。

在此方面具体的例子包括斑马鱼在研究新型抗生素和癌症治疗药物方面的应用。

斑马鱼繁殖时需要注意的地方

斑马鱼繁殖时需要注意的地方

斑马鱼成熟期短,繁殖能力强,在养殖过程中经常会遇到自然繁殖和人工繁殖等情况,这时饲养者就需要格外注意一些问题,以保障卵子受精率和幼苗的成活率。

斑马鱼是一种常见的热带鱼。

体型纤细,成体长3~4cm,对水质要求不高。

孵出后约4个月达到性成斑马鱼熟,成熟鱼每隔几天可产卵一次。

卵子体外受精,体外发育,胚胎发育同步且速度快,胚体透明,发育温度要求在25~31摄氏度之间。

斑马鱼由于个体小,养殖花费少,能大规模繁育。

饲养者在养殖过程中遇到繁殖情况,就需要格外注意。

首先,斑马鱼在繁殖期对水质水温有所要求。

一般而言,斑马鱼繁殖期需要用到软性水,水质偏硬,水温维持在25-26摄氏度即可。

不少养殖设备厂家生产制造的养殖单元配有恒温设备,可以根据不同研究需要调节水温。

对于水质问题,则需饲养者勤观察,勤换水,以调整到适宜的水质。

另外,需要注意的是斑马鱼在产卵后会有吸食鱼卵的习惯。

因此,饲养者需要提前在养殖单元底部铺上一层网板或者小的鹅卵石。

这样一来,在斑马鱼产卵后,其鱼卵会散落到网板下面或散落在小卵石的空隙中,可有效防止亲鱼蚕食鱼卵,保证斑马鱼卵成活率。

在亲鱼产卵一段时间后,即会有一些没有受精的鱼卵开始发白时,就可以用吸管将鱼卵吸出,放置到培养皿中进行孵化。

在鱼卵孵化期间,需要格外注意其水温。

斑马鱼鱼卵的孵出水温需要保持在24摄氏度左右,两三天后受精卵会孵出仔鱼。

如果在水温28摄氏度时,受精卵经36小时会孵出仔鱼。

雌鱼每次产卵300余枚,多时能有上千枚。

繁殖仔鱼的水温约为25摄氏度左右,仔鱼孵出后7~8天,才会开始主动摄取食物,此时,饲养者需要投喂蛋黄灰水,以后再投喂小鱼虫,以帮助幼鱼进食。

上海海圣生物实验设备有限公司成立于1997年,是一家从事水生物养殖设备制造的专业生产型企业,专为各高等院校、研究院所度身设计、制造水生物实验养殖系统,如中国水产科学研究生院东海水产研究所、黄海水产研究所、北京大学等。

近年来,海圣在斑马鱼养殖设备研发上取得新进展,开发出二代新品,既提升了性能又降低了运行成本。

斑马鱼中囊胚过渡调控机制

斑马鱼中囊胚过渡调控机制

斑马鱼中囊胚过渡调控机制郑福军;贾方钧;李逸平【期刊名称】《细胞生物学杂志》【年(卷),期】2004(26)3【摘要】斑马鱼中囊胚过渡(MBT)始于受精卵的第10次卵裂,此时亦伴有细胞周期延长,分裂同步性丧失,合子型基因开始转录活化,胚胎细胞开始具备运动迁移能力等现象。

斑马鱼MBT的发生依赖于胚胎细胞的核质比,胚胎细胞周期中的G_1时相则只有在合子型基因组开始被转录活化后才能出现。

细胞周期检验点的激活可能也是受转录调控的,但中期检验点对DNA复制抑制状态的响应不仅在MBT前后、甚至在MBT前的不同阶段也可能有具体作用途径的差异。

活化的P38蛋白在胚胎中的不对称分布是维持卵裂阶段细胞分裂同步性的关键因素。

尽管大规模的合子型基因的表达发生在MBT开始后,也有少数与胚层分化有关的合子型基因是在MBT 前表达的,还有一些既有母型表达也有合子型表达的基固在MBT前后分别参与不同的信号途径来调控胚胎的发育与分化。

【总页数】5页(P266-270)【关键词】斑马鱼;中囊胚过渡;MBT;受精卵;细胞周期【作者】郑福军;贾方钧;李逸平【作者单位】华东师范大学研究生;中国科学院生物化学与细胞生物学研究所【正文语种】中文【中图分类】Q25;Q959.4【相关文献】1.斑马鱼早期胚胎发育囊胚sphere时期的蛋白组学研究 [J], 陈漪;胡瑞芹;冉皓宇;陈良标2.藏茵陈水提物对斑马鱼新生血管的抑制效果及调控机制 [J], 刘源; 张莉敏; 熊飞; 由凤鸣; 蔡懿; 陈婧; 冯阳; 万雪梅3.斑马鱼外胚层早期发育及其某些调控机制 [J], 高广文;钟涛;宋后燕4.中科院水生所揭示斑马鱼核糖核酸还原酶基因表达的调控机制 [J],5.斑马鱼早期内胚层发育及其分子调控机制 [J], 钱林溪;钟涛;宋后燕因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斑马鱼胚胎发育的分期CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL等原著俄勒冈大学神经生物学学院;达特茅斯学院生物系黄万旭译浙江大学生命科学学院摘要:我们对斑马鱼(zebranfish, Danio rerio)胚胎发育的分期作了一系列的阐述。

我们定义了胚胎发育的七段时期(period)——合子(zygote)、卵裂(cleavage)、囊胚(blastula)、原肠(gastrula)、分节(segmentation)、咽囊(pharyngula),以及孵化期(hatching period)。

这一划分强调了发生于受精后头3天的主要发育过程中的变化情况,同时我们也回顾了发生于每一时期的诸如形态发生及其他主要事件。

时期的下一划分单位是分期(stage)。

各分期都有名称,而非标号,反映了分期序列的灵活性和持续演变过程,因为我们从这一物种中还能得到更多。

各分期的命名是基于用解剖立体显微镜(dissecting stereomicroscope)观察活体胚胎所容易观察到的形态学特征为依据的,同时也充分利用了活体胚胎的透明性,这一性质使我们可以用组合显微镜(compound microscope)和Nomarski干涉相差照明(Nomarski interference contrast illumination)观察到即使很深层的结构。

显微照相(photomicro-graphs)和组合显微描图(composite camera lucida line drawings)则以图片刻画了每一分期。

此外还有一些图像则显示了发育过程中一些可用作分期辅助标志的显著特征。

关键词:斑马鱼,形态发生,胚胎发生,合子,卵裂,囊胚,原肠,分节,咽囊,孵化精品目录概述 (2)全文组织结构 (3)步骤 (5)温度与标准发育时间 (13)合子期(0-0.75h) (15)卵裂期(0.75-2.25h) (15)囊胚期(2.25-5.25h) (20)原肠期(5.25-10h) (28)体节期(10-24h) (37)咽囊期(24-48h) (56)孵化期(48-72h) (71)早幼期 (80)谢辞 (80)感谢下载载概述概述分期为发育研究提供了准确度。

这是因为不同的胚胎即使在同一群体中一起生长,其发育亦有不同程度的差异,我们已看到在斑马鱼发育过程中出现的不同步性。

体外同时受精产生的胚胎,孵育于温度合适的稀疏环境(28.5℃,5-10个胚胎/ml),最早期即出现不同步性,并随时间延续愈加显著。

通过对比显示,不同群体中的差异比同一群体中的更大。

基因差异能部分说明而不能完全解决这一问题,因为即使来自同一斑马鱼克隆系的胚胎其发育亦有不同步性。

就不同胚胎而言,通过形态学标准分期可部分解决这一问题。

例如,头部的原始三叉神经感受神经元(primary trigeminal sensory neurons)和躯干的原始运动神经元(primary motoneurons)都是在体节连续沿体轴出现这段时期内开始轴突发生的。

通过体节数目分期比通过受精后逝去的时间分期能更准确地预测这些神经元在发育过程中的位置。

参照分期序列来记录实验能提供很好的方式确保实验的再现性,并允许随后加入新的观察结果和数据。

一系列基于形态学的划分同时也有利于交流,“18-体节胚胎”比“受精后18小时胚胎”这一称谓含有更丰富的意义,尤其在交叉物种比对中。

以往的斑马鱼发育分期尽管不如目前的完善,也相当准确地反映了头一天的胚胎发育,并提供了多组有用的图片(Hisaokaand Battle, 1958; Hisaoka and Firlit, 1960)。

Warga 和Kimmel (1990)简要地描述了囊胚期和原肠期。

本系列分期的先前版本见于已出版和发行的《斑马鱼手册》(The Zebrafish Book,Westerfield,1994)一书。

新版做了细微的修正和补充,更新版本可以电子版形式在http://zfish. 获得。

表1. 早期发育的各时期时期h 描述合子0 新受精的卵子完成首个合子细胞周期卵裂0.75 细胞周期2至7快速同步发生2精品囊胚快速间时同步(metasynchronous)细胞周期(8,9)在原肠中期转变中变为延长的异步(asynchronous)周期;随后外包(epiboly)开始原肠 5.25 内卷(involution)、聚合(convergence)和延伸(extension)等形态学运动形成上、下胚层和胚轴;持续到外包运动结束分节10 体节、原始咽弓和神经原节(neuromeres)发育;原始器官发生;开始运动;尾部出现咽囊24 种系期(phylotypic-stage)胚胎;体轴由先前绕卵黄囊的弯曲状态开始伸直;循环系统、色素沉着和鳍开始发育孵化48 原始器官系统完成快速形态发生;软骨在头和鳍中发育;陆续开始孵化早幼72 鳔膨胀;觅食及积极的躲避行为全文组织结构我们命名了每一分期,而不是像其他序列那样使用数字编码,因为命名的分期更为灵活且易于记忆和识别。

分期的定义不是一个瞬间的时刻点,而只是一个用以近似定位连续发育过程中一小段时间的手段。

有了分期命名,我们就可以很容易地加入所知细节,或是为了某一特定的研究在序列中插入一个新的分期,而无需求助于诸如小数、负数、正数这类令人生厌的工具。

例如:我们现在描述了一个5-,随后又描述了一个14-,但一项特定的研究可能要用到其间的8个分期(6-体节,7-体节等等),此时我们可以立刻明白其含义(而不必再行描述)。

我们强调的是,这里不作描述并不意味将其排斥于分期之外。

表2. 胚胎发育的分期a分期h HB 描述感谢下载载全文组织结构合子期1-细胞0 1,2 胞质流向动物极,形成胚盘卵裂期2-细胞0.75 3 部分卵裂4-细胞 1 4 2×2排列的卵裂球8-细胞 1.25 5 2×4排列的卵裂球16-细胞 1.5 6 4×4排列的卵裂球32-细胞 1.75 7 规则的2层卵裂球,有时4×8排列64-细胞 2 8 规则的3层卵裂球囊胚期128-细胞 2.25 9 5层卵裂球;卵裂面不规则256-细胞 2.5 7层卵裂球512-细胞 2.75 9层卵裂球;NO:YSL形成1k-细胞 3 10 11层卵裂球;NO:单排YSL核;卵裂细胞周期轻度不同步高囊胚 3.33 >11层卵裂球;胚盘开始变平;NO:2排YSL核;分裂不同步椭形 3.66 11 胚盘变平产生椭球形;NO:多排YSL核球形 4 12 球形;胚盘与卵黄之间为水平边界穹顶 4.33 13 仍为球形;当外包开始时,卵黄细胞向动物极顶起30%-外包 4.66 14 胚层如倒置杯状不均一增厚;边缘达动植物极距离30%原肠期50%-外包 5.25 胚层厚度仍不均一胚环 5.66 胚环在动物极可见;50%-外包胚盾 6 15 胚盾在动物极可见;50%-外包75%-外包8 16 背侧明显增厚;可见上下胚层和排泄(evacuation)区90%-外包9 脑原基增厚;脊索原基从节板分离尾芽10 17 尾芽显著;脊索原基从神经突(neural keel)分离;早期小膨出(polster);神经突前侧出现中间矢状沟;100%-外包体节期1-体节10.33 第一体节沟5-体节11.66 18 小膨出显著;视囊,Kuperffer囊14-体节16 19 EL=0.9mm;眼基板;脑神经元,V形躯干体节;NO:前肾导管20-体节19 20 EL=1.4mm;0.5<YE/YB<1;肌收缩;晶状体;耳囊;交叉条纹;后脑神经元显著;尾部延伸26-体节22 EL=1.6mm;HTA=125°;侧向条纹;耳石(otoliths);原基-3咽囊期原基-5 24 EL=1.9mm;HTA=120°;OVL=5;YE/YB=1;视网膜和皮肤早期色素沉着;中鳍折叠;卵黄血红细胞;心脏搏动原基-15 30 EL=2.5mm;HTA=95°;OVL=3;YE/YB>1;YB/HD=2;早期触碰反射和简单4精品主静脉编织;浅胸鳍芽;直尾;NO:尾端细胞退化;第1大动脉弓血液循环原基-25 36 EL=2.7mm;HTA=75°;OVL=1;PF(H/W)=3/4;早期运动;尾部色素沉着,背部条纹加深;强循环;单一大动脉弓对;主静脉达尾部3/4;NO:PF顶端上胚层缘高胸鳍42 EL=2.9mm;HTA=55°;1/2<OVL<1;YE/YB=1.5;YB/HD<1.3;PF(H/W)=1;去绒膜胚胎游动后背上位静息;YE仍为锥形;PF顶端上胚层缘显著;早期侧带;完整的背侧带;黄素细胞仅见头部;虹膜色素细胞仅见视网膜;心包显著;NO:心腔;血管段;颚弓和舌弓;前肠发育;嗅觉纤毛;耳囊壁增厚孵化期长胸鳍48 EL=3.1mm;HTA=45°;OVL=1/2;PF(H/W)=2;背上位静息;YE开始变细,PF突出;背腹侧条纹汇于尾部;侧带约6个黑素细胞;视网膜上虹膜色素细胞丰富;头部显著黄色;NO:循环见于2-4大动脉弓及血管段;嗅觉纤毛摆动;半规a EL:胚体长度;PF:胸鳍;HB:Hisaoka 和Battle (1958)斑马鱼分期大致序列(一直到HB分期20大致准确);HD:背侧观头部直径;NO:Nomarski optics;H/W:高/宽;YB:卵黄球;YE:卵黄延伸部;YSL:卵黄合胞体层;HTA:头-肢角;OVL:耳囊长度为从更广的视角观察发育过程,我们将数个分期归为一组,形成更长的时间段称为时期(表1),并在文中总结了发生在这些时期内的主要事件。

术语表中定义了一些特定的术语,文中黑体字强调的术语在分期中是重要的。

表2对各个分期作了简要的描述,而图1则展示了相应的草图。

我们可以利用这些资料大致定位我们所感兴趣的一个分期,然后尽可能在文中和其他图中找到更多细节。

步骤分期我们可以通过使用立体显微镜观察活体胚胎来大致确定发育分期,通常用透射光(而非反射或入射光)以及高放大倍数(约50×)。

在体节期尾部伸长,如果胚胎仍处于绒膜(chorion)内,尾部感谢下载载步骤最终将环绕驱干和头部,以致不易观察。

此时,我们必须将胚胎移出绒膜,可以使用5号镊子(forceps)手工移去,也可用蛋白溶解酶(proteolytic enzyme)处理。

咽囊晚期,一旦受到触碰,胚胎(如已去除绒膜)会反射性游走,这种情况下,可用0.003%三卡因(tricaine)以麻醉之。

相关文档
最新文档