2004 红树林来源的细菌作为海洋生物肥料
红树植物根系分泌物壬二酸对海洋原甲藻的影响讲解

2. 2 壬二酸对海洋原甲藻生长及生理的影响 根据 数 次 预 实 验 , 配制壬二酸浓度为0 . 5、 1、 / 1 . 5、 2、 4m L 来进行藻的生长及生理影响实验 。 g ) 的影响 2. 2 1 壬二酸对藻密度 ( ρ 于藻种接种后的 第 1、 3、 5、 7、 9、 1 2d 各 取 藻 液 在显微 镜 下 进 行 细 胞 计 数 , 观察藻细胞密 0 . 1m L, 度的动态变化 。 以细胞数目为纵轴 , 时间为横轴 , 作 出藻的 生 长 曲 线 图 ( ) 。藻密度( 计 r o w t hc u r v e g ρ)
∰
为 每 片 计 数 的 视 野 数; 为 计 数 框 体 积 ( 0 . 1
。 m L) 2. 2 2 形态指标 在进行显微镜细胞计数的同时观察藻细胞的形 态变异 。 包括细胞体积 ( 是否膨胀 ) 、 细胞颜色 ( 是否 、 原生质体变化 ( 是否消失或外泄 ) 、 内含物 ( 淀 黄化 ) 粉粒 、 脂粒 ) 、 细胞器 ( 细 胞 核、 线 粒 体、 叶 绿 体 等) 变 化等 ,并对变异细胞进行拍照 。 2. 2 3 生理指标 ( ) 胞内甘油含量 (ᶄ ) 1 测定胞内甘油含量可以衡量微藻细胞内遭受的
] 2 3 微藻培养基 [ 。 藻种的培养在光照培养箱 ( L R H-
当天微藻的细胞密度 ( 个/ 。 m L) ( ) 色素含量 (∳ ) 2 ᶄ 测定藻细 胞 中 的 叶 绿 素 a 和 光 合 辅 助 色 素 含 量, 可以较全面地衡 量 叶 绿 体 结 构 以 及 光 合 作 用 系
2 8] 统的完整 性 [ 。甲藻门藻类的天线色素分别为岩
2 5-2 6] 渗透胁迫状态以 及 细 胞 膜 的 损 坏 程 度 [ 。 第 3、
泉州湾红树林秋茄根提取物对海水培育生菜幼苗的影响

泉州湾红树林秋茄根提取物对海水培育生菜幼苗的影响摘要:为了绿色经济地利用稀释海水水培生菜,本实验以生菜为材料,采用不同浓度秋茄根提取物进行浸种处理后,在各梯度浓度的海水下培育成幼苗。
结果显示:经过30%的秋茄根提取物浸种,使生菜幼苗能在40%的海水浓度(盐浓度1.08%)下正常生长,高于文献报道14.5%海水最适生菜生长浓度的1.76倍。
本次研究为大幅度利用海水以降低淡水用量来水培生菜打下坚实基础。
关键词:秋茄根提取物,生菜,海水浓度,幼苗生长1.前言由于工业化的不断发展及干旱导致的灌溉土壤盐碱化,淡水消耗量急剧增加,且受到严重污染。
开发代替陆地资源的滩涂、浅海资源有着重要的意义。
但目前海水淡化技术尚在发展中且成本较高,难以应用在大规模的农业生产中。
能够生活在海水中的植物势必进化出适应海水高盐环境的机制,如一类抗盐植物能通过在细胞内合成有机物(如脯氨酸、甘氨酸、糖醇等)以及小分子热激蛋白等逆境诱导蛋白调节植物对水分的利用和吸收[1]。
红树林被称为海洋滩涂绿洲,在福建泉州的泉州湾河口红树林湿地,主要植物有红树林的秋茄,紫金牛科的桐花树和马鞭草科的白骨壤。
秋茄是红树科的秋茄属的植物,秋茄被用来作为药用,已被收录进《现代本草纲目》[2]。
据报道显示,用乙醇提取秋茄根的有效物质,治疗风湿性关节炎的效果比用水煮的效果要好得多[3]。
近年来水培生菜的技术已经成熟,生产量迅速增长,能够满足人们食用安全蔬菜的要求。
据文献报道,生菜具有较强的抗盐性,在低浓度海水中培育生菜的试验已经取得成功。
杨小锋等采用海水灌溉的方法,通过无土栽培技术,对生菜海水灌溉最佳浓度进行研究,结果表明生菜海水灌溉最适宜浓度为14.5%[4]。
本次实验是首次将秋茄利用在农业方面,将采集于泉州湾河口湿地的自然保护区内的秋茄,提取秋茄有效物质,配制成各个浓度梯度后,在各浓度海水下培育出生菜幼苗,研究其生长状况,筛选出最适秋茄根提取物浓度及其相应的海水培育浓度。
青海省果洛藏族自治州七年级生物上册第一单元部编版质量检测模拟卷

青海省果洛藏族自治州七年级生物上册第一单元部编版质量检测模拟卷学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:60分钟)总分栏题号一二三四五六七总分得分评卷人得分一、选择题:本大题共30小题,每小题2分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.人工栽种人参、三七等中药成功的关键是A.控制适宜的温度B.控制适宜的二氧化碳含量C.控制较弱的光照D.提供肥沃的土壤2.下列叙述中不属于生物对环境的影响的是A.黄山松的根部能够分泌酸性物质,使岩石分解B.鼠类对农作物、森林和草原都有破坏作用C.在金鱼缸中放入水草D.兰花的唇形花瓣与雌黄蜂的外形相似3.地球上的生物进行生命活动的基础是()A.新陈代谢B.生长和繁殖C.遗传和变异D.具有应激性4.在某个特定的生态系中可以缺少的成分是A.生产者B.消费者C.分解者D.非生物部分5.美丽的泉州湾有着丰富的藻类资源,海湾浅水处长绿藻,稍深处长褐藻,再往深处长红藻。
影响海洋植物这样分布的主要因素是A.海水温度B.含氧量C.阳光D.含盐量6.科学家们利用某些细菌来修复被石油污染的土壤或者海洋,这些细菌属于生态系统中的()A.生产者B.消费者C.分解者D.非生物的物质和能量7.2021年1月1日,被称为“史上最严的限塑令”开始落地实施。
寻乌各大超市都开始使用可降解的包装产品,在自然环境中可被分解者分解。
生态系统中的分解者主要是指()A.植物B.动物C.细菌和真菌D.病毒8.我国小麦自商代传入,距今已有5000年以上的历史。
下列相关现象与生物基本特征不相符的是:( )A.小麦种子生根发芽——能生长发育B.小麦的茎中空——生物适应环境C.草盛则麦苗稀——生物有应激性D.小麦季末落叶——排出代谢废物9.生物圈是指地球上所有生物及其生存环境的总称,下列不属于生物圈范围的是()A.大气圈的底层B.岩石圈的表面C.水圈的大部D.地壳内部10.下列说法正确的是A.现存的每一种生物,都具有与其生活环境相适应的形态结构和生活方式B.影响生物生活的环境因素是指温度、水等非生物因素C.生态系统具有自动调节能力,因此它不会遭到破坏D.生物圈包括大气圈、水圈和岩石圈的全部11.校园里的花草树木、蝴蝶、飞鸟等都属于生物。
中考生物总复习《材料分析题》专项提升练习题(附答案)

中考生物总复习《材料分析题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.全球首个“国际红树林中心”落户深圳。
请结合下列资料回答问题:资料一:红树林是生物多样性最丰富、生态价值最高的生态系统之一,能防风消浪、固碳储碳,被称为“海岸卫土”。
红树林是贝类、虾、鱼、蟹等水生生物集居繁衍重要场所,也是鸬鹚、青脚鹬、红脚鹬、白眉鸭、白鹭等候鸟飞禽栖息越冬的好地方。
近些年来,沿海开发、海水养殖和砍伐等原因导致红树林损失40%,破坏了它们尽力维持的生物多样性。
资料二:深圳是全国乃至全球湿地公园密度最高的城市之一,共拥有湿地3.5万公顷,其中红树林面积296.18公顷,主要集中分布在福田红树林自然保护区。
在深圳23个自然保护地中,有红树林分布的共8处。
划入自然保护地实施严格保护的红树林179.18公顷,占深圳红树林面积61%。
(1)从生物多样性的内涵分析,资料一主要体现了多样性。
候鸟每年都要迁徙,这种行为是由候鸟体内的所决定的。
候鸟迁徙过程中,需要长期飞行,请写出鸟类与飞行相适应的特点(写出一点即可)(2)资料二中,深圳保护红树林所做的最有效的措施是,实施严格保护。
(3)联合国教科文组织将每年的7月26日定为“国际红树林生态系统保护日”。
某学校即将开展红树林保护宣传活动,请你为此设计一个活动任务:。
2.“蹲一蹲,利全身”。
深蹲起在锻炼腿部力量的同时,也能提高人体心肺功能。
分析并回答以下问题:(在[ ]中填字母或序号。
横线上填名称)(1)图1图中股四头肌由①和②肌腱组成,靠骨骼肌两端的[](选填①或②)附着在不同的骨上。
(2)深蹲起运动之前需要热身,热身运动能够加速滑液被分泌到图2所示的[](填序号)中,提升关节的灵活性。
此外,护膝等护具紧实的包裹可避免关节受伤,这些护具在作用上与关节示意图中的④相似。
(3)多次深蹲后,我们会呼吸加快、心跳加速。
红树林生态系统的营养循环与生态服务

红树林生态系统的营养循环与生态服务红树林生态系统是自然界中独特而珍稀的生态系统之一。
它是海洋与陆地交界处的一片水草林,具有极高的生态价值。
红树林生态系统中具有复杂的营养循环,同时也为人类提供了丰富的生态服务,本文将讨论红树林生态系统的营养循环与生态服务。
一、红树林生态系统的营养循环红树林生态系统中的植物主要由红树、白杨、甘蔗等组成。
这些植物通过光合作用吸收二氧化碳、水分、光能等物质,将其转化为糖等有机物,并释放出氧气。
同时,这些植物也利用它们发达的根系吸收营养物质,如氮、磷、钾等元素。
部分营养物质由植物固定在其体内,另一部分则被释放到水中。
红树林生态系统中水体的营养物质主要来自于周边陆地排放的化肥、沙尘暴、家畜粪便等,同时也会受到湖泊、河流和人类活动等影响。
这些营养物质会流入海域中,被红树林吸收或直接转化为浮游生物的营养物质。
这些有机物被红树林水生植物吸收后,在它们体内被转换为有机氮和有机磷等形式,然后储存在植物体内或流入海洋中,被微生物分解为无机化合物,进而再次被水生植物吸收、转化、存储的循环流程中循环。
二、红树林生态系统的生态服务红树林生态系统具有丰富的生态服务,以下将重点讨论其保护海岸线、滋养海洋生态系统、影响气候变化、提供经济价值等方面。
1. 保护海岸线红树林生态系统具有很好的护岸功能,并能有效地保护海岸线不被海浪冲刷侵蚀。
其发达的根系和密集的树林枝叶能同时消除反射波和洪水的余波,减缓了海洋的侵蚀作用。
与此同时,红树林生态系统还能缓解气候变化带来的自然灾害影响。
2. 滋养海洋生态系统红树林的树干和枝叶会落入海中,成为海洋生态系统的主要营养来源之一。
这些营养物质通过海洋食物链进入到食物网中,成为重要的食物来源,不仅极大地促进了海洋生态系统的物种繁殖和生存,而且也为迁徙的鱼类提供了安全的栖息地。
3. 影响气候变化红树林生态系统通过吸收二氧化碳与氧气进行光合作用,有效地抵消了人类的二氧化碳排放等环境污染。
红树林来源的化学成分及生物活性研究进展

红树林来源的化学成分及生物活性研究进展崔建国;卢艳;黄燕敏【摘要】Mangrove plants are some special plants growed in the tidal coasts of tropic and subtropic regions.The traditional medicinal uses of mangrove plants and unique ecology of microorganisms from mangrove have attracted enormous attention of researchers over the years,and especially,reports about bioactive substances from mangrove have significantly increased recently.In this paper,the studies on isolation and biological activity of components from mangrove in recent years have been reviewed according to their physiological functions,and the developing trends and applying prospects of those substances were also expected.%红树林是分布于热带、亚热带海岸潮间带的特殊植物,近年来红树植物的传统医学用途及红树林中微生物功能引起了研究者越来越多的关注,特别是有关红树林中生物活性物质的相关报导不断增加.本文按照红树林中所发现生物活性物质的用途进行分类,对近年来红树林中生物活性物质的提取分离、生物功能等方面的主要研究成果进行综述,并对此方面的发展趋势、应用前景进行展望.【期刊名称】《天然产物研究与开发》【年(卷),期】2017(029)009【总页数】8页(P1626-1633)【关键词】红树林;生物活性物质;提取分离;研究进展【作者】崔建国;卢艳;黄燕敏【作者单位】广西师范学院化学与材料科学学院,南宁530001;广西防城港市高级中学,防城港538001;广西师范学院化学与材料科学学院,南宁530001【正文语种】中文【中图分类】O629红树林是分布于热带、亚热带海岸潮间带的木本植物群落,红树林的分布虽受气候限制,但海流的作用使它的分布超出了热带海区。
红树林植物内生菌分离鉴定及其抑菌活性研究
红树林植物内生菌分离鉴定及其抑菌活性研究谢星朋1,戴悦1,彭金菊1,罗帅帅1,李杨1,马浩天1,刘志军1,张怡1,马驿1,2∗(1.广东海洋大学滨海农业学院动物医学系,广东湛江524000;2.岭南现代农业科学与技术广东省试验室茂名分中心,广东茂名525000)摘要㊀[目的]从红树林植物组织中分离出对动物病原菌具有广谱抑菌活性的植物内生菌㊂[方法]以铜绿假单胞菌㊁多杀性巴氏杆菌㊁产气肠杆菌㊁粪肠球菌4种常见的致病菌作为指示菌,采用M10和P3培养基从红树林植物根㊁茎㊁叶组织中分离内生菌,以固体琼脂打孔法筛选具有抑菌活性的菌株,提取菌株的基因组DNA,PCR扩增16SrDNA基因并测序,通过邻接法构建系统发育树㊂[结果]从红树林植物组织中共分离857株可培养的内生菌,有145株菌有抑菌活性,占分离菌株的16.6%㊂其中通过M10培养基从红树林植物叶组织分离的菌株32-5对铜绿假单胞菌㊁产气肠杆菌都具有最强抑菌活性,其抑菌圈直径分别为38和42mm;通过P3培养基从红树林植物茎组织分离的菌株12-4对粪肠球菌具有最强抑菌活性,其抑菌圈直径为56mm;通过M10培养基从红树林植物茎组织分离的菌株13-2对多杀性巴氏杆菌具有最强抑菌活性,其抑菌圈直径为64mm㊂有抑菌活性菌株分为10个属,其中芽孢杆菌属是优势菌属㊂[结论]该试验初步揭示红树植物根㊁茎㊁叶组织中植物内生菌的抑菌活性和多样性,为开发新型抗菌药物及应用提供理论依据㊂关键词㊀红树林;植物内生菌;分离;鉴定;抑菌活性;海洋细菌中图分类号㊀Q939.9㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2024)04-0001-10doi:10.3969/j.issn.0517-6611.2024.04.001㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):Isolation,IdentificationandAntibacterialActivityofEndophyticBacteriafromMangrovePlantsXIEXing⁃peng,DAIYue,PENGJin⁃juetal㊀(DeparimentofVeterinaryMedicine,CollegeofCoastalAgriculturalSciences,GuangdongO⁃ceanUniversity,Zhanjiang,Guangdong524000)Abstract㊀[Objective]Toisolateplantendophyteswithbroad⁃spectrumantibacterialactivityfrommangroveplanttissues.[Method]Pseudo⁃monasaeruginosa,Pasteurellamultocida,EnterobacteraerogenesandEnterococcusfaecaliswereselectedasindicatorbacteria.M10andP3solidmediasandagar⁃welldiffusionwereusedtoisolateandscreenendophyteswithantibacterialactivityfromroot,stemandleaftissuesofmangroveplants.ExtractedDNAwereusedastemplateforPCRamplificationofthe16SrDNAgeneandsequencedtoconstructaphylogenetictreebyneighbor⁃joiningmethod.[Result]Atotalof857culturablebacteriawereisolatedfrommangroveplanttissuesand145strainshadinhibitoryac⁃tivity,accountingfor16.6%oftheisolates.Thestrain32⁃5,isolatedfrommangroveplantleaftissueusingM10solidmedium,hadthestrongestinhibitoryactivityagainstPseudomonasaeruginosaandEnterobacteraerogenes,withaninhibitioncirclediameterof38mmand42mm,respec⁃tively.Strain12⁃4isolatedfrommangroveplantstemtissueusingP3solidmediumshowedthestrongestinhibitoryactivityagainstEnterococcusfaecaliswithaninhibitioncirclediameterof56mm.Strains13⁃2isolatedfrommangroveplantstemtissuesusingM10mediumshowedthestron⁃gestinhibitoryactivityagainstPasteurellamultocidawithaninhibitioncirclediameterof64mm.Bacteriawithantibacterialactivitywereclassi⁃fiedinto10genus,ofwhichBacilluswasthedominantgenus.[Conclusion]Thisexperimentinitiallyrevealedtheantibacterialactivityanddi⁃versityofendophyticbacteriainmangroveplantroots,stemsandleaftissues,providingatheoreticalbasisforthedevelopmentandapplicationofnewantibacterialdrugs.Keywords㊀Mangrove;Plantendophyticbacteria;Separation;Identification;Bacteriostaticactivity;Marinebacteria基金项目㊀广东省自然科学基金项目(2023A1515012181);湛江市科技局科技专项资金竞争性分配项目(2021A05231);茂名实验室科研启动项目(2021TDQD002)㊂作者简介㊀谢星朋(1999 ),男,江西吉安人,硕士研究生,研究方向:兽医药理学与毒理学㊂∗通信作者,教授,博士,硕士生导㊀㊀红树林是一种处在热带和亚热带交界地带的木本植物群落,是海洋与陆地两大生态系统的过渡区域,其独特的地理环境导致其中的微生物及其产物具有特殊性,红树植物内生菌复杂多样的代谢产物可成为重要的抗菌活性物质来源㊂目前,从红树林植物如木榄㊁秋茄㊁红海榄和海桑等宿主植物中均发现抗菌化合物[1-2]㊂随着陆地来源的药物研发难度不断加大,以 蓝色海洋药库 为资源库研制新药物已成为当今医药研究的重要方向㊂海洋微生物天然产物的研究最早是从海洋真菌开始的,海洋细菌天然产物的研究相对较晚㊂植物内生菌主要是指定殖于植物组织器官以及细胞间隙中的内生细菌[3]㊂研究显示,植物内生菌其特殊的代谢途径使其次级代谢产物可以产生大量结构新颖㊁抑菌效果较好的生物活性物质,成为开发新型抗微生物药物的良好资源[4-5]㊂该试验从广东湛江红树林自然保护区采取红树植物根㊁茎㊁叶样品,分离对动物病原菌有抑菌活性的内生菌,对其进行分子鉴定和系统发育分析,为开发新型抗菌药物及其在动物疫病防治领域的应用提供理论依据㊂1㊀材料与方法1.1㊀试验材料1.1.1㊀培养基㊂M10培养基:可溶性淀粉10.0g,水解酪素0.5g,复合盐母液10mL,琼脂14.0g,去离子水1000mL,pH7.2 7.4,复合盐母液溶解㊂P3培养基:燕麦粉20.0g,复合盐母液10mL,琼脂14.0g,去离子水1000mL,pH7.2 7.4,复合盐母液溶解㊂复合盐母液:KNO31.000g,K2HPO40.500g,NH4NO30.100g,MgSO4㊃7H2O0.500g,NaCl0.500g,FeSO40.010g,MnCl2㊃H2O0.001g,ZnSO4㊃7H2O0.001g,去离子水10mL㊂LB液体培养基㊁LB固体培养基购自北京酷来博科技有限公司㊂1.1.2㊀指示菌㊂多杀性巴氏杆菌(批号CVCC393)㊁产气肠杆菌(批号ATCC13048)㊁粪肠球菌(批号ATCC29212)㊁铜绿安徽农业科学,J.AnhuiAgric.Sci.2024,52(4):1-10㊀㊀㊀1.2㊀试验方法1.2.1㊀样本采集㊂从广东湛江红树林自然保护区采集红树植物根㊁茎㊁叶各50份,装于密封袋,室温保存㊂1.2.2㊀样本的分组和处理㊂将采集的红树植物组织根㊁茎㊁叶样品各50份随机排序标记㊂将样本植物清洗干净,依次用5%次氯酸钠㊁75%乙醇浸泡3min,在消毒液浸泡后用无菌水冲洗多次㊂消毒完成后晾干,采用电动匀浆器将植物组织充分研磨,加入无菌水制成组织原液㊂1.2.3㊀菌株培养与分离㊂吸取植物组织原液0.1mL均匀涂布到M10㊁P3培养基上,28ħ培养7 21d,挑选单菌落,进一步纯化分离后的菌株-80ħ保存㊂1.2.4㊀有抑菌活性菌株的筛选㊂采用固体琼脂打孔法筛选红树植物根㊁茎㊁叶组织中有抑菌活性的菌株,将大肠杆菌㊁金黄色葡萄球菌㊁沙门氏菌㊁链球菌4种指示菌分别加入LB固体培养基,用无菌打孔器打孔,将分离菌株培养过夜并用LB液体培养基稀释至105CFU/mL,接种至孔中,28ħ培养24h,测量抑菌圈直径㊂1.2.5㊀16SrDNA测序和系统发育树分析㊂对筛选的有抑菌活性的菌株采用试剂盒提取细菌基因组DNA,进行16SrD⁃NA序列PCR扩增㊂扩增的引物设计如下:上游引物27F(5ᶄ-AGAGTTTGATCCTGGCTCAG-3ᶄ),下游引物1492R(5ᶄ-CTACGGCTACCTTGTTACGA-3ᶄ)㊂PCR扩增条件:94ħ预变性5min;94ħ变性30s,57ħ退火30s,72ħ延伸45s,30次循环;最后72ħ延伸10min㊂扩增产物经1%琼脂糖凝胶电泳检测,委托上海生工生物工程股份有限公司进行测序分析㊂序列经BioEditSequenceAlignmentEditor软件整理后,利用EzBioCloud数据库(https://www.ezbiocloud.net/)进行在线比对;选取同源性最高菌株的序列作为参比对象,运用MEGA10.0软件,采用Neighbor-Joining法构建系统发育树,Boostrap1000次检测各分支的置信值,对各菌株的系统发育地位进行分析㊂2㊀结果与分析2.1㊀分离菌株的抑菌效果㊀从红树植物根㊁茎㊁叶组织中分离出内生菌共857株,其中根227株,茎310株,叶320株㊂M10培养基共分离出具有抑菌活性菌株95株,从红树林植物根分离出具有抑菌活性菌株22株,如表1所示,菌株45-4对铜绿假单胞菌抑菌活性最强,菌株29-1对产气肠杆菌抑菌活性最强,菌株14-1对粪肠球菌和多杀性巴氏杆菌均表现出最强抑菌活性且呈现广谱抑菌效果;从红树林植物茎分离出具有抑菌活性菌株38株,如表2所示,菌株13-2对铜绿假单胞菌㊁粪肠球菌和多杀性巴氏杆菌均表现出最强抑菌活性且呈现广谱抑菌效果,菌株21-4对产气肠杆菌抑菌活性最强且具有广谱抑菌效果;从红树林植物叶分离出具有抑菌活性菌株35株,如表3所示,菌株32-5对铜绿假单胞菌和产气肠杆菌均表现出最强抑菌活性且具有广谱抑菌效果;菌株3-3对粪肠球菌具有最强的抑菌活性;菌株31-5对多杀性巴氏杆菌具有最强抑菌活性和广谱抑菌效果㊂P3培养基分离有抑菌活性细菌共47株,从红树林植物根分离出具有抑菌活性菌株30株,如表4所示,其中菌株7-3对铜绿假单胞菌抑菌活性最强,菌株11-1对粪肠球菌抑菌活性最强且具有广谱抑菌效果,菌株26-1对产气肠杆菌抑菌活性最强且具有广谱抑菌效果,菌株7-2对多杀性巴氏杆菌抑菌活性最强;从红树林植物茎分离出具有抑菌活性菌株7株,如表5所示,其中菌株12-4对铜绿假单胞菌㊁粪肠球菌㊁多杀性巴氏杆菌抑菌活性均最强且具有广谱抑菌效果,菌株14-4对产气肠杆菌抑菌活性最强;从红树林植物叶分离出具有抑菌性菌株10株,如表6所示,其中菌株14-1对铜绿假单胞菌抑菌活性最强,菌株31-4对粪肠球菌和产气肠杆菌抑菌活性均最强,菌株42-4对多杀性巴氏杆菌抑菌活性最强㊂表1㊀M10培养基从红树林植物根分离出具有抑菌活性的菌株Table1㊀StrainswithantibacterialactivityisolatedfrommangroveplantrootsusingM10culturemedium单位:mm试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida4-4 11 20-3 17 1212-3 13 44-1 13 28-2 12 2-2 14 14-11028121820-2 16 44-2 17 28-1 14 45-413 45-2 1441-311 29-412 40-612 13-512 41-69 31-412 36-111 46-19 41-5 12 29-1 13 ㊀注: 表示无抑菌圈或不明显㊂2㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年表2㊀M10培养基从红树林植物茎分离出具有抑菌活性的菌株Table2㊀StrainswithantibacterialactivityisolatedfrommangroveplantstemusingM10culturemedium单位:mm试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida44-1 21 1218-615 2123-221 2040-11918 1947-11614 3222-4 20 1613-22740206448-1-21120 49-1-21214 1413-11820 12-11314 2521-41316242816-1 16 28-2 19 20-72012182618-3 18 49-1-12016183022-7 19 22-118 1813-71825 12-2 36 18-4 18 47-21512231510-1 23 21-2 19201130-6 3018285-415 20 5-212 17 47-314 19945-511 35-3 10 135-313 48-312 7-110 48-610 48-510 39-112 39-311 ㊀注: 表示无抑菌圈或不明显㊂㊀Note: - indicatesnoantibacterialzoneorinconspicuous.表3㊀M10培养基从红树林植物叶分离出具有抑菌活性的菌株Table3㊀StrainswithantibacterialactivityisolatedfrommangroveplantleafusingM10culturemedium单位:mm试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida32-1121414155-23250363415-1 12 9-5 2016121-1 103-3206038 27-3 3720 44-3 24 23-1 20 1630-2 18 30-313 33-22638 2331-31716 1941-2 34 6-21216131330-4 20 36-31317172246-73236421413-52022162534-31226 1212-31316 1318-41222123226-51516 47-21729161532-53826423248-11710 29-314 141620-2 28212331-51620303840-3 20 1833-5 141610-5 12 1049-3 141247-31623151620-31820149㊀注: 表示无抑菌圈或不明显㊂-352卷4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀谢星朋等㊀红树林植物内生菌分离鉴定及其抑菌活性研究表4㊀P3培养基从红树林植物根分离出具有抑菌活性的菌株Table4㊀StrainswithantibacterialactivityisolatedfrommangroveplantrootsusingP3culturemedium单位:mm试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida28-211 20-311 35-310 38-11411111448-211 18-113 47-211 19-31115121043-31119111435-411 24-1101515 40-214 36-1121911147-21238401915-31815161641-4122830 14-11521141511-11643371433-115 48-3152037165-1 26 34-11322 178-3191618 15-2102237 8-12128 1845-1152435138-418 26-11330421019-210 7-32419 ㊀注: 表示无抑菌圈或不明显㊂㊀Note: - indicatesnoantibacterialzoneorinconspicuous.表5㊀P3培养基从红树林植物茎分离出具有抑菌活性的菌株Table5㊀StrainswithantibacterialactivityisolatedfrommangroveplantstemusingP3culturemedium单位:mm试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida12-43156312916-11840162214-4 2036 15-2 1616 45-2 1929 23-23020192039-3 14㊀注: 表示无抑菌圈或不明显㊂㊀Note: - indicatesnoantibacterialzoneorinconspicuous.表6㊀P3培养基从红树林植物叶分离出具有抑菌活性的菌株Table6㊀StrainswithantibacterialactivityisolatedfrommangroveplantleafusingP3culturemedium单位:mm试验菌株编号TeststrainNo.铜绿假单胞菌Pseudomonasaeruginosa粪肠球菌Enterococcusfaecalis产气肠杆菌Enterobacteraerogenes多杀性巴氏杆菌Pasteurellamultocida31-4132420 33-2161491414-120 1048-1 2542-4 3034-1 258-1 2729-215 13-115 1313-21513 2.2㊀有抑菌活性菌株的基因测序和系统发育分析㊀分别对2种培养基分离筛选出的有抑菌活性的菌株构建Neighbor⁃Joining系统发育树,如图1 6所示㊂M10培养基从红树林植物根分离的菌株主要分为4个属,分别为变形杆菌属㊁肠球菌属㊁葡萄球菌属㊁芽孢杆菌属;从红树林植物茎分离的菌株主要为8个属,分别为芽孢杆菌属㊁肠球菌属㊁葡萄球菌属㊁草螺菌属㊁黄单胞菌属㊁不动杆菌属㊁肠杆菌属㊁分散泛菌属;从红树林植物叶分离的菌株主要为4个属,分别为分散泛菌属㊁黄单胞菌属㊁芽孢杆菌属㊁葡萄球菌属㊂P3培养基从红树林植物根分离的菌株主要分为6个属,分别为芽孢杆菌属㊁黄单胞菌属㊁肠球菌属㊁肠杆菌属㊁埃希氏菌属㊁分散泛菌属;从红树林植物茎分离的菌株主要为4个属,分别为芽孢杆菌属㊁肠球菌属㊁变形杆菌属㊁黄单胞菌属;从红树林植物叶分离的菌株主要为2个属,分别为芽孢杆菌属㊁葡萄球菌属㊂其中芽孢杆菌属为优势菌属,占分离菌株总数的48.6%㊂3㊀讨论与结论海洋环境具有高压㊁高盐㊁无光照等特殊性,海洋微生物在海洋生态独特环境下会产生独特的代谢产物,而这些特殊代谢产物作为新型抑菌物质在生物医药具有巨大的研究意义,目前已经有针对海洋微生物及其次级代谢产物研究[6]㊂许多研究显示海洋微生物中的优势菌属 芽孢杆菌属,可以产生具有抗菌作用的抑菌活性物质[7],如罗曼等[8]从南极海洋沉积物中分离纯化出草芽孢杆菌斯氏亚种对层生镰刀菌具有较强抑菌活性,Zhou等[9]从南大西洋的深海沉积物中分离筛选得到一株能抑制曲霉突变株菌丝生长的环状芽孢杆菌㊂红树林是一种处在热带和亚热带交界地带的木本植物群落,是海洋与陆地两大生态系统的过渡区域,其独特的4㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年图1㊀M10培养基分离的红树植物根有抑菌活性菌株的16SrRNA基因序列Neighbor-Joining系统发育树Fig.1㊀Neighbor⁃Joiningphylogenetictreeof16SrRNAgenesequenceofantibacterialactivitystrainsisolatedfromtherootsofmangroveplantsinM10medium树林植物如木榄㊁秋茄㊁红海榄和海桑等宿主植物中均发现抗菌化合物[1-2]㊂根据戴悦等[10]对红树林植物根际土壤细菌分离鉴定及其抑菌活性研究显示芽孢杆菌和肠杆菌为优势菌属,从红树林植物根际提取的内生菌具有产生活性物质的潜力㊂该试验从广东湛江红树林自然保护区采集的植物(95株)比P3培养基(47株)更多㊂戴悦等[10]从红树林植物根际土壤中分离得到108株具有抑菌活性的菌株,占分离菌株的16.5%,且P3培养基比M10培养基在分离具有抑菌性菌株中更具有优势㊂李静等[11]从海南东寨港红树林植物内生菌中共分离得到146株放线菌,其中40株具有抗菌活性,552卷4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀谢星朋等㊀红树林植物内生菌分离鉴定及其抑菌活性研究图2㊀M10培养基分离的红树植物茎有抑菌活性菌株的16SrRNA基因序列Neighbor-Joining系统发育树Fig.2㊀Neighbor⁃Joiningphylogenetictreeof16SrRNAgenesequenceofantibacterialactivitystrainsisolatedfromthestemofmangrove6㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年图3㊀M10培养基分离的红树植物叶有抑菌活性菌株的16SrRNA基因序列Neighbor-Joining系统发育树Fig.3㊀Neighbor⁃Joiningphylogenetictreeof16SrRNAgenesequenceofantibacterialactivitystrainsisolatedfromtheleavesofmangrove752卷4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀谢星朋等㊀红树林植物内生菌分离鉴定及其抑菌活性研究图4㊀P3培养基分离的红树植物根有抑菌活性菌株的16SrRNA基因序列Neighbor-Joining系统发育树Fig.4㊀Neighbor⁃Joiningphylogenetictreeof16SrRNAgenesequenceofantibacterialactivitystrainsisolatedfromtherootsofmangrove8㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年图5㊀P3培养基分离的红树植物茎有抑菌活性菌株的16SrRNA基因序列Neighbor-Joining系统发育树Fig.5㊀Neighbor⁃Joiningphylogenetictreeof16SrRNAgenesequenceofantibacterialactivitystrainsisolatedfromthestemofmangroveplantsinP3medium中提取的内生菌产生抑菌活性物质研究具有巨大的潜力㊂通过分子鉴定和系统发育树分析,在属水平上,有抑菌活性菌株共10个属,分别是芽孢杆菌属㊁肠球菌属㊁葡萄球菌属㊁草螺菌属㊁黄单胞菌属㊁不动杆菌属㊁肠杆菌属㊁分散泛菌属㊁埃希氏菌属㊁变形杆菌属,其中芽孢杆菌属为优势菌属,占分离菌株总数的48.6%,在M10和P3培养基中,M10培养基在叶部提取分离芽孢杆菌属菌株数量最多,在根部提取芽孢杆菌属菌株数量最少,P3培养基在根部提取分离出菌,其中芽孢杆菌为优势菌属㊂张雅慧等[13]从山口红树林根际土壤中获得117株细菌,其中芽孢杆菌为优势属,占所有菌株的28.20%㊂Varghese等[14]研究表明海洋大型藻类相关异养细菌芽孢杆菌属细菌萎缩芽孢杆菌具有较好的抗菌活性,其中萎缩芽孢杆菌SHB2097(MW821482)对临床上重要的病原体表现出显著的抗菌活性㊂这与该试验结果一致,优势菌属皆为芽孢杆菌属㊂以上数据表明湛江红树林植物各组织内生菌具有产生952卷4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀谢星朋等㊀红树林植物内生菌分离鉴定及其抑菌活性研究图6㊀P3培养基分离的红树植物叶有抑菌活性菌株的16SrRNA基因序列Neighbor-Joining系统发育树Fig.6㊀Neighbor⁃Joiningphylogenetictreeof16SrRNAgenesequenceofantibacterialactivitystrainsisolatedfromtheleavesofmangroveplantsinP3medium参考文献[1]徐志勇,冯昭,徐静.红树林微生物抗菌活性成分研究进展[J].中国抗生素杂志,2017,42(4):241-254.[2]闫璧滢,陈渝川,雷丽娟,等.海南东寨港红树林植物和沉积物真菌多样性及其药用活性[J].中国抗生素杂志,2023,48(2):158-171.[3]方珍娟,张晓霞,马立安.植物内生菌研究进展[J].长江大学学报(自科版),2018,15(10):41-45.[4]EL⁃SAYEDMOURADMH.NewbioactivecompoundsfromVerticilliumal⁃boatrumandVerticilliumleptobactrum[J].Australianjournalofbasic&ap⁃pliedsciences,2010,4(8):2166-2175.[5]JOUDAJB,MAWABOIK,NOTEDJIA,etal.Anti⁃mycobacterialactivityofpolyketidesfromPenicilliumsp.endophyteisolatedfromGarcinianobilisagainstMycobacteriumsmegmatis[J].Internationaljournalofmycobacteri⁃ology,2016,5(2):192-196.[6]李贺,林学政,何培青,等.南极抗细菌活性菌株的筛选及系统发育分析-aureusandinvivoevaluationusingembryoniczebrafishtestsystem[J].In⁃dianjournalofpharmaceuticalsciences,2016,78(3):417-422.[8]罗曼,万婧倞,黄仕新,等.南极沉积物来源抗菌细菌的筛选及抑菌物质的鉴定[J].微生物学通报,2020,47(6):1787-1794.[9]ZHOUY,WANGJY,GAOXJ,etal.Isolationofanoveldeep⁃seaBacil⁃luscirculusstrainanduniformdesignforoptimizationofitsanti⁃aflatoxi⁃genicbioactivemetabolitesproduction[J].Bioengineered,2019,10(1):13-22.[10]戴悦,张汝军,张腾月,等.红树林植物根际土壤细菌分离鉴定及其抑菌活性的研究[J].黑龙江畜牧兽医,2023(3):73-78.[11]李静,戴素娟,庹利,等.海南东寨港真红树植物内生放线菌多样性及其抗菌活性[J].微生物学通报,2016,43(8):1753-1765.[12]李蜜,候师师,银江林,等.北部湾徐闻海域红树内生细菌物种多样性及其杀线虫活性研究[J].广西植物,2020,40(3):301-310.[13]赵雅慧,张舒琳,吴家法,等.山口红树林根际土壤可培养细菌多样性及其活性筛选[J].海洋学报,2018,40(8):138-151.01㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年。
红树林沉积物来源链霉菌HA6菌株发酵条件的优化
现其抗革兰 氏阳性 细菌 的活性 明显强于其 他分离
本 实验 室 从 福 建 漳 州 红 树 林 环 境 筛 选 得 到 一 株放线菌 H 6菌株 , A 在前期的抗菌活性初筛 中, 发
112 培养基 G M培养基: .. Y 葡萄糖质量为 40 , .0g 酵母 提 取 物 质 量 为 4 0 , 芽 提 取 物 质 量 为 . 0g 麦
第3 0卷
第 4期
台
Байду номын сангаас
湾
海
峡
Vo . 0.No 4 13 .
NO V..2 011
21 0 1年 1 1月
J OURNAL F O OC ANOGR HY I T W AN S RAI E AP N AI T T
红 树 林 沉 积 物 来 源 链 霉 菌 H 6菌 株 发 酵 条 件 的优 化 A
寻 找新 型 微 生 物 药 物 成 为 研 究 的必 然 趋 势 . 树 红 林 处 于咸 淡 水 交 汇 的 特 殊 环 境 , 具 海 洋 与 陆 地 兼 的性 质 , 藏 着 极 为 丰 富 独 特 的产 活 性 物 质 的微 蕴
生 物 资源 .
1 11 菌株 ..
放 线 菌 H 6菌 株 由本 实 验 室 从 漳 A
肖 静, 洪 专
( 国家海洋局第三海洋 研究 所 , 福建 厦 门 3 10 ) 60 5
摘要: A H 6菌株是分离 自 红树林沉积物 中具有强抗 菌活性 的链霉 菌. 为提 高其抗菌活性物质 的产 量, 通过单 因子试验及正交试验法对其 包括发 酵培养基的组成、 接种量、 气量和发酵时间等发酵 通 条件进行优化. 究表 明其最佳摇瓶发 酵培养基配方为 : 芽提取物质量为 2 0 、 研 麦 .0g 可溶性淀粉质
从海洋微生物中探寻新的药物
从海洋微生物中探寻新的药物作者:张立新, 王书锦, 胡江春, 张偲作者单位:张立新(中国科学院微生物研究所,美国SynerZ药业,Correspondingauthor:lzhang03@rcn.Com), 王书锦(中国科学院微生物研究所,中国科学院沈阳生态所), 胡江春(中国科学院沈阳生态所), 张偲(中国科学院南海海洋研究所)1.学位论文韦华生海洋硫酸盐还原菌抗菌活性菌株筛选及活性物质分离研究2006海洋微生物资源丰富,是抗生素的重要来源。
海洋微生物拥有独特的代谢途径,可以产生大量结构新颖、作用独特的代谢产物,被誉为“天然药物的资源宝库”,已成为世界各国开发新型药物的热点领域。
海洋硫酸盐还原细菌属于海洋微生物中一类特殊类群。
该类群微生物严格厌氧,能够进行非O2受体的产能代谢。
其参与新陈代谢的酶系与海洋好氧微生物有较多的不同,产生的次生代谢产物理论上也会有较大差异,因此具有新抗生素筛选的巨大潜力。
本研究中从大连附近近海海域采集到16份海水样品和9份海泥样品,分离培养出海洋硫酸盐还原细菌125株,进一步纯化得到70株纯菌株;对70株纯菌株进行了抗细菌和抗真菌活性测试,得到10株具有明显活性的硫酸盐还原细菌菌株,占纯菌株的14﹪。
结果显示,海洋硫酸盐还原细菌具有新药开发的巨大潜力。
从黑石礁海域海水中分离到的菌株SRB18对枯草芽孢杆菌具有强烈的抑制作用。
通过对菌株SRB18的形态、生理生化、遗传等特征的研究,得出菌株SRB18归属于脱硫弧菌属,且与Desulfovibriodesulfuricans的亲缘关系最近,16SrDNA的同源性高达99.9﹪。
综合各种鉴定指标,将SRB18鉴定为脱硫脱硫弧菌(Desulfovibriodesulfuricans)的一个海洋菌株。
进一步对SRB18活性菌株进行了扩大培养,将30L菌液进行减压浓缩,应用有机溶剂对浓缩液进行液相萃取,得到乙酸乙酯相和正丁醇相粗提物。
红树林凋落物产生过程及其营养物质形式研究概述
红树林凋落物产生过程及其营养物质形式研究概述周如琼【摘要】红树林凋落物的产生与植物本身的代谢功能,与各种气象因子如气温、湿度、风速等以及土壤理化条件,与人类和动物干扰等因素有关.红树林凋落物一般包括叶、花、果、枝四个主要部分,叶相对占有很大的比重.红树林凋落物经过淋溶、微生物和其他潮间带生物三个分解作用,以有机碎屑和可溶性物质的形式进入生态系统中,为红树林区域和邻近浅海域的海洋生物提供有机碎屑和可溶性物质和能量.【期刊名称】《广西科学院学报》【年(卷),期】2011(027)001【总页数】3页(P62-64)【关键词】红树林;凋落物;营养物质【作者】周如琼【作者单位】广西大学林学院,广西南宁,530004;广西红树林研究中心,广西北海,536000【正文语种】中文【中图分类】Q948.1红树林是生长在热带、亚热带地区海岸潮间带滩涂上由木本植物组成的乔木和灌木林木[1],是潮间带内具有较高的第一性生产者并具有良好的生态效益、社会效益、经济效益。
作为海岸生态系统重要的初级生产者,红树林是生产力较高的群落类型之一[2]。
凋落物是红树林生态系统初级生产力的组成部分,经过淋溶、微生物和其他潮间带内腐食性生物的分解,为近岸海域的海洋生物提供有机物质和能量,也是潮间带生态系统物流和能流的关键环节[3]。
目前国内外对红树林凋落物开展的研究,主要对不同地区和不同红树林的凋落物的产量、季节变化、生态意义等方面。
本文概述红树植物凋落物的特征,以期说明红树林对于生态系统内物质和能量的贡献和邻近海域的海洋生物的重要性,并对合理利用红树林资源,促进红树林区水产渔业发展提供重要的科学依据。
凋落物的产生实际是与植物本身的代谢功能,与各种气象因子如气温、湿度、风速等以及土壤理化条件而产生,与人类和动物干扰亦有关系。
红树林自身的正常生理代谢是引起凋落物形成的主要因素。
各种气象因子(温度、风力、降水等)中,温度因子对红树植物凋落物的产生占主导地位,风的影响主要是强制性的机械作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizersS.Ravikumar a,*,K.Kathiresan b ,S.Thadedus Maria Ignatiammal c ,M.Babu Selvam a ,S.Shanthy aaDepartment of Marine Microbiology,Centre for Marine Science and Technology,Manonmaniam Sundaranar University,Rajakkamangalam-629502,Tamil Nadu,India bCentre of Advanced Study in Marine Biology,Parangipettai-608502,Tamil Nadu,IndiacDepartment of Botany,Holy Cross College,Nagercoil-629004,Kanyakumari District,Tamil Nadu,IndiaReceived 30December 2003;received in revised form 2April 2004;accepted 29May 2004AbstractA dearth of information is available for nitrogen-fixing bacteria in coastal mangroves,and hence,the present study has been undertaken to analyse 44root and associated soil samples,derived from a mangrove habitat of southeast coast of India.The root samples exhibit high counts of total heterotrophic bacteria and azotobacters along with high rates of nitrogen fixation,as compared to the rhizosphere soil samples.Among the plant species,Bruguiera cylindrica records high microbial counts and nitrogen fixation.From the samples analysed,three species of Azotobacter ,viz.,A.chroococcum,A.virelandii and A.beijerinckii were isolated,purified and identified.These species exhibit high growth,nitrogen fixation and in vitro production of phytohormone (Indole Acetic Acid,IAA)at NaCl salinity of 30g l À1.The azotobacters,which were inoculated with Rhizophora seedlings,increased significantly the average root biomass up to by 98.2%,the root length by 48.45%,the leaf area by 277.86%,the shoot biomass by 29.49%as compared to controls and they also increased the levels of total chlorophylls and carotenoids up to by 151.0%and 158.73%,respectively.Thus,azotobacterisation is beneficial in raising vigorous seedlings of mangroves in coastal wetlands.D 2004Elsevier B.V .All rights reserved.Keywords:Azotobacter ;Biofertilizer;Mangroves;Nitrogen fixation;Rhizophora0022-0981/$-see front matter D 2004Elsevier B.V .All rights reserved.doi:10.1016/j.jembe.2004.05.020*Corresponding author.Tel.:+91-4652-253078(O),+91-4652-261320(R);fax:+91-4652-221214.E-mail address:ravibiotech201320@ (S.Ravikumar)/locate/jembeJournal of Experimental Marine Biology and Ecology312(2004)5–171.IntroductionMangroves represent a unique and ecologically important coastal habitat in the tropical and sub-tropical belts (Chapman,1984).A number of static and dynamic biological,physical and chemical factors are known to influence the development and stability of the mangrove community.These factors and their interactions play a significant role in the nutrient flows in the system and it is necessary to understand various processes interacting with them (Kathiresan and Bingham,2001).Nitrogen is one of the most important limiting factors affecting the development of mangrove vegetation (Chandramohan,1988).The nitrogen is present in low concentration in particulate matter,mainly in the mangrove plant detritus,which is exported from the ecosystem through tidal action.Despite the export of large quantities of the particulate matter,loss of nitrogen is relatively small (in the order of 3.7g N À1year À1)which is equivalent to 13%of average annual net primary production of mangrove forests (Botto and Bunts,1982;Botto and Robertson,1990;Lakshmanaperumalsamy,1987).In view of this,there is a need to determine the microorganisms involved with such nitrogen transformations and the rates at which these transformations occur in situ.In India,azotobacters have been isolated from the roots of several plants (Sadasivam,1963;Thomas,1991),but only a few from saline soil (Lakshmanaperumalsamy,1987;Ravikumar et al.,2002).No such studies are available with salt tolerant azotobacters in mangroves.Generally,one would not expect high abundance of azotobacters in the mangrove sediment as the tannin-rich conditions in that sediment are unfavourable for the growth of bacteria (Ravikumar,1995).Therefore,a thorough study is necessary on the occurrence,distribution and activity of halophilic azotobacters from the mangrove environment.Strains of azotobacters have been reported to secrete growth promoting hormones such as auxins,gibberellins and cytokinin into their culture media (Brown and Burlingham,1968;Azeon and Barea,1975).By virtue of this attribute,pre-treatment of seeds with a suspension of azotobacters has been shown to improve seed germination and plant growth (Brown and Burlingham,1968;Barea and Brown,1974).These experiments have been done with crop plants,but not with mangrove seedlings which pose a serious problem of poor growth (Kathiresan and Veera Ravi,1990)due to high salinity and anaerobic soil conditions (McKee,1993).The present study has also made an attempt to improve the growth of mangroves by using azotobacters derived from mangrove habitat.2.Materials and methods2.1.Isolation of bacteria and analysis of chemical constituentsRoot and adjoining soil samples were collected from 16plant species viz.Acanthus illicifolius L.(Acanthaceae),Aegiceras corniculatum L.Blanco (Myrsinaceae),Avicen-nia marina (Frosk.)Vierh.(Avicenniaceae),Avicennia officinalis L.,Bruguiera cylin-drica L.Bl.(Rhizophoraceae),Ceriops decandra (Griff.)Ding Hou (Rhizophoraceae),S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–176S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–177 Excoecaria agallocha L.(Euphorbiaceae),Lumnitzera racemosa Willd,(Combretaceae), Rhizophora mucronata Poir.(Rhizophoraceae),Rhizophora apiculata Blume(Rhizo-phoraceae),Rhizophora annamalayana Kathir.(Rhizophoraceae),Sesuvium portulacas-trum L.(Aizoaceae),Sonneratia apetala J.Smith(Sonneratiaceae),Salicornia brachiata Roxb.(Chenopodiaceae),Suaeda maritima(L.)Dumort(Chenopodiaceae), Xylocarpus granatum Koen.(Meliaceae)from a mangrove forest of Pichavaram (11j27V N;79j47V E)on the southeast coast of India.All the samples were transferred to clean and previously unused polythene bags and brought to the laboratory.Total counts of heterotrophic bacteria and azotobacters from collected samples were enu-merated by serial dilution and plating(Holt et al.,1994).About5g of the rhizosphere soil and root samples was separately inoculated into the nitrogen-free Winogradsky’s medium as mentioned in Bergey’s Manual(Holt et al.,1994). The inoculated samples were incubated at28F2j C for a week.After attaining visible growth,azotobacters were isolated by repeated streaking on nitrogen-free agar plates and maintained on nitrogen-free agar slants.The isolates were identification at species level (Holt et al.,1994).Various parameters viz.pH,salinity,nitrogen,phosphorus,potassium (Anon,1975),total amino acids and total sugars(Ravikumar,1995)from the rhizosphere soils were analysed.All the determinations were carried out in triplicate and the results are expressed as counts per gram dry weight of soil or root sample.2.2.In vitro nitrogen fixation by azotobactersThe effect of salinity on the rate of nitrogen fixation was examined in the following manner.The salinity regimes of0,5,10,15,20,25,30and35g lÀ1NaCl were attained by adjusting the salinity in50ml nitrogen-free broth in different flasks.Liquid cell suspensions of Azotobacter chroococcum,A.beijerinckii and A.vinelandii at cell density of108cells/ml were inoculated separately into65ml of sterile glass vials containing25 ml of sterilized liquid Winogradksy’s broth.Once visible growth was observed,the cotton plugs,which allowed air exchange,were removed and the bottles were sealed with rubber stoppers.From these bottles,10%of the gaseous phase was removed and the same volume of acetylene gas was injected.After12h of incubation,the amount of ethylene was analysed in the gas chromatograph(GC)(Chemito,3800,flame ionising detector,Poropak-T column3and 3.1-mm stainless steel,80–100mesh,ignition temperature150j C,flow rate of gas45.16in.À1hydrogen16lb in.À1oxygen25lb in.À1).Control bottles were maintained without the bacterial samples.Triplicate samples were maintained for each treatment for each species of azotobacter.The rate of nitrogen fixation was calculated by using the following formula(Ravikumar et al.,2002). Nitrogenase activity(nM ethylene produces hÀ1)=peak length(mm)Âattenua-tionÂrangeÂ0.0000006Âvolume of gas inside the flask/h of incubationÂvolume of gas sample injected into the GC.2.3.In situ acetylene reduction assay for root and soilFive grams of the root and soil samples was transferred separately into120ml of sterilized serum bottles each containing50ml of filtered mangrove water and wassealed.Triplicates were maintained for each sample.Two control samples were maintained,one without acetylene and another one with mangrove water alone.The rates of nitrogen fixation in each of the samples were analysed by following the above method (Ravikumar et al.,2002).Triplicates were maintained for each treatment.2.4.In vitro production of IAA by azotobactersThe effect of salinity on Indole Acetic Acid (IAA)production was examined in the following manner.The salinity regimes of 0,5,10,15,20,25,30and 35g l À1NaCl were attained by adjusting the salinity in 50ml phosphate buffer (pH 7.0)withTable 1Counts of total heterotrophic bacteria and azotobacters in root and rhizosphere soil samples of mangrove habitat Name of plant speciesCounts of THB Counts of azotobacters Root (107)Rhizosphere soil (Â106)Root (Â102)Rhizosphere soil (Â101)AcanthaceaeAcanthus Illicifolius 52.1222.3834.9550.00MyrsinaceaeAegiceras corniculatum 71.2432.2522.3510.67Avicenniaceae Avicennia marina82.2643.3732.7818.26Avicennia marina (pneumatophore)96.2452.2435.2521.33Avicennia officinalis94.2239.2613.237.66Avicennia officinalis pneumatophore 100.2648.5822.389.30RhizophoraceaeBruguiera cylindrica 150.2568.6566.3536.67Rhizophora mucronata25.2411.36 3.01 1.24Rhizophora mucronata (stilt root)30.1413.72 5.5 2.00Rhizophora apiculata36.3813.2313.7 4.03Rhizophora apiculata (stilt root)46.2615.2515.72 6.37Rhizophora annamalayana48.4215.7222.38 6.67Rhizophora annamalayana (Stilt root)50.2618.4818.128.24Ceriops decandra 72.2234.9521.2212.33EuphorbiaceaeExcoecaria agallocha 102.7255.2542.6724.66CombretaceaeLumnitzera racemosa 69.3434.2825.2210.66AizoaceaeSesuvium portulacastrum 18.46 5.5010.00 2.56SonneratiaceaeSonneratia apetala39.2618.2815.25 6.24Sonneratia apetala (pneumatophore)74.7535.7818.227.00ChenopodiaceaeSalicornia brachiata 10.02 3.010.480.32Suaeda maritima 12.73 2.240.460.22MeliaceaeXylocarpus granatum66.3830.0925.2618.33Values are average of three samples.All standard errors values are less than 10%of mean values.Values between the samples are significant at 5%level.S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–1780.005M DL tryptophan and5.0g sucrose.Five millilitres of cell suspension(108cells mlÀ1)of A.chroococcum,A.beijerinckii and A.vinelandii were added separately into each flask and incubated in dark at28F2j C for24h.Triplicates were maintained for each treatment.After incubation,the culture was filtered through Whatman No.42 filter paper and50ml of filtrate was adjusted to pH3.0using2N HCl.The filtrate was evaporated in a vaccum flask evaporator and the residue was dissolved in2ml methanol.Indole acetic acid in the methanol fraction was determined by employing salper reagent(Gorden and Paleg,1957).To1.5ml of distilled water in a test tube, 0.5ml of methanol residue was mixed.Four millilitres of fresh Salper reagent was rapidly added and kept in complete darkness for1h and read the optical density at 535nm in a spectrophotometer(220s,HITACHI,Japan).A standard graph was Table2Chemical properties of rhizosphere soils from16mangrove plant speciesName of plant species Total phosphate(mg gÀ1)Total nitrogen(mg gÀ1)Total organiccarbon(mg gÀ1)Salinity(x)pHAcanthaceaeAcanthus Illicifolius0.38270.813.0618.237.2 MyrsinaceaeAegiceras corniculatum0.383278.213.03513.447.3 AvicenniaceaeAvicennia marina0.408306.214.00227.727.5 Avicennia marina(pneumatophore)0.408312.814.01529.007.2 Avicennia officinalis0.401297.613.05326.207.6 Avicennia officinalis pneumatophore0.405301.513.09227.807.5 RhizophoraceaeBruguiera cylindrica0.415320.814.03716.647.6 Rhizophora mucronata0.358264.613.6515.127.6 Rhizophora mucronata(stilt root)0.372270.413.6915.208.2 Rhizophora apiculata0.374264.213.6821.767.7 Rhizophora apiculata(stilt root)0.382269.113.6920.267.3 Rhizophora annamalayana0.365269.213.6412.147.4 Rhizophora annamalayana(Stilt root)0.379267.413.7012.287.8 Ceriops decandra0.390285.213.38426.247.6 EuphorbiaceaeExcoecaria agallocha0.413314.614.0258.327.1 CombretaceaeLumnitzera racemosa0.385278.512.7024.267.2 AizoaceaeSesuvium portulacastrum0.352269.212.6324.567.1 SonneratiaceaeSonneratia apetala0.302282.213.0719.608.0 Sonneratia apetala(pneumatophore)0.397291.813.07516.648.8 ChenopodiaceaeSalicornia brachiata0.377260.212.6227.527.1 Suaeda maritima0.301257.812.5823.687.2 MeliaceaeXylocarpus granatum0.381272.412.7816.647.8 Values are average of three samples.All standard errors values are less than10%of mean values.Values between the samples are significant at5%level.S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–179prepared for IAA (Sigma,USA)for its use in calculating the IAA level in the culture filtrates.2.5.Biofertilizer treatmentThe bacterial species of A.chroococcum ,A.vinelandii and A.beijerinckii (which were isolated from mangrove environments)were inoculated separately into 200ml of Winogradsky’s broth and were cultured at 28F 2j C for 3days in a shaker.The liquid culture was centrifuged at 12,000rpm for 15min in a centrifuge (Hewlett-Packard,USA).The pellet was suspended in phosphate buffer (pH 7.0)and washed repeatedly with the buffer and were resuspended in the same buffer solution.To study the influence of bacterial species on the growth of Rhizophora seedlings,100ml of suspended culture (108cells ml À1)of A.chroococcum ,A.beijerinckii and A.vinelandii were mixed separately with 1kg of sterilized soil and were kept in sterilized polybags.Propagules of mangrove plants species [R.apiculata (27F 2cm);R.mucronata (35F 2cm)]were planted into the soil and were irrigated with sterile water (100ml per bag per kg of soil with 30g À1NaCl salinity).The propagules without bacterial treatments were maintained as control.Ten propagules were maintained for each treatment.After 45days,the growth characteristics of mangrove seedlings such as average root length,root biomass,shoot biomass and leaf area were recorded.Levels of total chlorophylls and carotenoids,which were extracted in 80%ice cold acetone from leaves,were measured by following respectively the methods of Arnon (1949)and Ridely (1977).The results were statistically analysed by following the two-way analysis of variance for significance at 99%and 95%confidence levels.3.Results3.1.Bacterial counts and chemical parametersTotal heterotrophic bacterial (THB)counts ranged from 2.24to 68.65Â106g À1in rhizosphere soil and they varied from 10.02to 150.25Â107g À1in the root samples.Azotobacter counts varied from 0.22to 36.67Â101g À1in rhizosphere soil samples and they ranged from 0.46to 66.35Â102g À1in root samples.In general,counts of THB and azotobacters were higher in root samples than those in their corresponding soil samples.Among the plant species,the bacterial counts were the highest in B.cylindrica and lowest in S.maritima (Table 1).The chemical parameters varied with the rhizosphere soil samples (Table 2).Salinity in the rhizosphere soils ranged from 8.32to 29g kg À1.The pH varied from 7.1to 8.9.Total nitrogen ranged from 260to 320.8A g g À1,total phosphate from 0.301to 0.415mg g À1and total organic carbon from 12.58to 14.03mg g À1.The maximum pH (8.8)was recorded in S.apetala (Pneumatophore)and the highest levels of total nitrogen (320.8A g g À1),total phosphate (0.415mg g À1),total organic carbon (14.037mg g À1)wereS.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–1710S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–1711recorded in B.cylindrica(Table2).Level of total amino acids ranged from2.215to20.214 mg gÀ1.The level of total sugars varied from1.47to7.268mg gÀ1(Table3).The total sugars(7.268mg gÀ1)in R.mucronata(Stilt root)and the total amino acid(18.06mg gÀ1)in rhizosphere soil samples of B.cylindrica were found to be the maximum among the soil samples.Among the chemical parameters,the content of nitrogen has a highly significant positive correlation with the counts of THB(r=0.95)and azotobacters (r=0.80).3.2.In situ nitrogen fixationNitrogen fixation in44roots and associated soil samples was analysed.Of the22root samples tested,B.cylindrica showed the highest nitrogenase activity(72.64nM hÀ1gÀ1) Table3Levels of total amino acids and total sugars in rhizosphere soils from16mangrove plant speciesName of plant species Total amino acids(mg gÀ1)Total sugars(mg gÀ1) AcanthaceaeAcanthus illicifolius12.82 3.42MyrsinaceaeAegiceras corniculatum14.48 2.97 AvicenniaceaeAvicennia marina17.26 2.83Avicennia marina(pneumatophore)16.52 1.94Avicennia officinalis16.23 2.63Avicennia officinalis pneumatophore17.21 1.83 RhizophoraceaeBruguiera cylindrica18.06 6.12Rhizophora mucronata16.22 6.53Rhizophora mucronata(stilt root)17.257.27Rhizophora apiculata 4.24 2.64Rhizophora apiculata(stilt root) 4.62 3.15Rhizophora annamalayana7.26 3.28Rhizophora annamalayana(Stilt root)Ceriops decandra 2.21 2.13 EuphorbiaceaeExcoecaria agallocha17.63 1.47 CombretaceaeLumnitzera racemosa 2.21 2.13AizoaceaeSesuvium portulacastrum10.83 5.12 SonneratiaceaeSonneratia apetala7.83 1.49Sonneratia apetala(pneumatophore)7.84 5.38 ChenopodiaceaeSalicornia brachiata 4.63 1.98Suaeda maritima 4.09 4.47MeliaceaeXylocarpus granatum14.53 2.163Values are average of three samples.All standard errors values are less than10%of mean values.Values between the samples are significant at5%level.followed by Excoeceria agallocha (63.3nM h À1g À1).A.corniculatum (57.21nM h À1g À1)and A.officinalis (Pneumatophore)(49.6nM h À1g À1)(Table 4).However,the activity was minimum in S.brachiata ,S.maritima and Sesuviam portulacastrum .In the soil samples,B.cylindrica showed the maximum nitrogenase activity (19.5nM h À1g À1)followed by E.agallocha (12.48nM h À1g À1),A.corniculatum (10.46nM h À1g À1)and A.officinalis (8.28nM h À1g À1).However,nitrogenase activity was not recorded in rhizosphere soil samples of R.mucronata ,R.annamalayana ,S.maritima ,S.portulacas-trum ,S.brachiata and X.granatum (Table 4).The variation in the rate of nitrogen fixation among the plant species seems to be due to the variation in the nitrogen-fixing bacterial counts (Table 1).There is also a significant correlation between azotobacter counts andTable 4Rates of nitrogen fixation in root and rhizosphere samples of mangrove plant species Name of plant speciesRate of nitrogen fixation (nM ethylene h À1g À1dry weight)Root Rhizosphere soil AcanthaceaeAcanthus illicifolius 26.24 1.40MyrsinaceaeAegiceras corniculatum 57.2110.46Avicenniaceae Avicennia marina37.90 2.60Avicennia marina (pneumatophore)39.30 4.26Avicennia officinalis42.50 5.80Avicennia officinalis pneumatophore 49.608.28RhizophoraceaeBruguiera cylindrica 72.6419.50Rhizophora mucronata20.49NA Rhizophora mucronata (stilt root)22.84NA Rhizophora apiculata43.99 2.91Rhizophora apiculata (stilt root)29.90 1.34Rhizophora annamalayana 22.63NA R .annamalayana (Stilt root)24.26NA Ceriops decandra 37.90 2.24EuphorbiaceaeExcoecaria agallocha 63.3012.48CombretaceaeLumnitzera racemosa 31.60 2.60AizoaceaeSesuvium portulacastrum 1.95NA SonneratiaceaeSonneratia apetala16.90NA Sonneratia apetala (pneumatophore)30.10NA ChenopodiaceaeSalicornia brachiata 2.10NA Suaeda maritima 1.23NA MeliaceaeXylocarpus granatum16.92NANA –No activity;Values are average of 3samples;All standard errors values are less than 10%of mean values.Values between the samples are significant at 5%level.S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–1712S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–1713 Table5Effect of salinity on in vitro Indole Acetic Acid(IAA)production by Azotobacter speciesConcentration of NaCl(g lÀ1)Level of IAA production(A g mlÀ1)A.chroococcum A.beijerinckii A.vinelandii 012.2(35)12(30)11.0(22) 513.0(58)12.4(40)12.2(40) 1013.8(61)12.8(50)12.4(48) 1514.0(82)13.0(70)13.1(55) 2018.5(94)16.5(88)13.8(70) 2517.3(98)16.0(88)12.5(88) 3016.3(123)15.0(98)12.3(102) 3515.8(106)14.3(92)11.5(98) Values in parenthesis are colony forming unitsÂ103mlÀ1.Values are average of three samples and significant at 1%level between species and at5%level between salinities.nitrogen fixation in root samples(r=0.88;Y=8.06+67.44x)as well as in rhizosphere soil samples(r=0.72;Y=À231+13.33x).3.3.Effect of salinity on in vitro IAA production and nitrogenase activity by azotobactersThe effect of NaCl on the level of IAA production by Azotobacter species(Table5) revealed that A.chroococcum exhibited maximum IAA production(18.5A g mlÀ1)followed by A.beijerinckii(16.5A g mlÀ1)and A.vinelandii(13.8A g mlÀ1).At the salinity of20g lÀ1,the maximum production of IAA was recorded.The IAA production was maintained relatively higher at salinities above than below20g lÀ1.However,the rates of nitrogen fixation by A.chroococcum decreased at20and25g lÀ1NaCl.Further nitrogenease activity was arrested at30g lÀ1NaCl(Table6)in A.chroococcum and at20g lÀ1in A.beijerinckii and A.vinelandii.The rate of nitrogen fixation by A.chroococcum was the highest(9.4nM C2H4hÀ1mlÀ1)followed by A.beijerinckii(4.2nM C2H4hÀ1mlÀ1)at salinity of15g1À1 (Table6).Table6Effect of salinity on the rates of nitrogen fixation(nM C2H4Â108cells mlÀ1)by three species of Azotobacter at different salinity regimesConcentration of NaCl(g lÀ1)Rate of nitrogen fixation(nM C2H4Â108cells mlÀ1)A.chroococcum A.beijerinckii A.vinelandii0 6.2(35) 3.3(30) 2.5(22)57.6(88) 4.0(40) 2.8(40)107.9(61) 4.0(50) 3.0(48)159.4(82) 4.2(20) 3.0(55)207.5(94)Nil(88)Nil(70)257.5(98)Nil(88)Nil(88)30Nil(123)Nil(98)Nil(102)35Nil(106)Nil(92)Nil(98) Values in parenthesis are colony forming unitsÂ103mlÀ1.Values are average of triplicate samples and are significant between species at1%and between salinities at5%level.3.4.Biofertilizer effectThe bacterial inoculation increased the root growth in R .mucronata treated with A.vinelandii by enhancing average root biomass by 98.27%and root length by 98.57%(Table 7).The azotobacters stimulated the leaf area in both species of Rhizophora treated with all species of Azotobacter .For instance,the leaf area was higher by 277.86%in R.mucronata treated with Azotobacter beijerinckii and by 72.18%in R.apiculata treated with A.chroococcum .The shoot biomass was higher by 29.06%in R.mucronata treated with A.vinelandii and by 29.9%in R.apiculata inoculated with A.chroococcum (Table 7).The levels of photosynthetic pigment were higher in both the species of Rhizophora treated with A.chroococcum .The total chlorophyll content was 38.28%more in R.Table 8Effect of azotobacterisation on the levels of leaf pigments in 45-day-old seedlings of Rhizophora species Bacterialspecies treated Content of chl-a (mg g À1dry tissue)Content of chl-b (mg g À1dry tissue)Content of total chlorophyll(mg g À1dry tissue)Content of carotenoids (mg g À1dry tissue)R.mucronata A.chroococcum 0.990.6523.250.49A .beijerinckii 0.730.189.260.22A .vinelandii 1.250.6218.390.49Control 0.840.299.260.19R.apiculata A.chroococcum 1.820.7325.490.41A .beijerinckii 1.600.7223.240.40A .vinelandii 1.390.7020.830.36Control1.320.5218.430.32Values are average of 10samples and are significant at 1%level between treatments for total chlorophyll,chl-b and at 5%level for chl-a and carotenoids.Table 7Effect of azotobacterisation on root and shoot characteristics of 45-day-old seedlings of Rhizophora species Bacterialspecies treated Average length of primary root (cm seedling À1)Root biomass (g seedling À1)Leaf area(cm 2seedling À1)Shoot biomass (g seedling À1)R.mucronata A.chroococcum 8.860.3921.10 1.08A .beijerinckii 5.590.3928.00 1.72A .vinelandii 11.980.6619.02 2.28Control 8.070.347.41 1.77R.apiculata A.chroococcum 9.160.3854.27 2.56A .beijerinckii 7.380.3852.34 1.09A .vinelandii 11.260.3145.53 1.37Control10.280.5531.52 1.98Values are average of 10samples and are significant between treatments at 5%level for root length,root biomass and shoot biomass and at 1%level for leaf area.S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–1714S.Ravikumar et al./J.Exp.Mar.Biol.Ecol.312(2004)5–1715 apiculata and151%in R.mucronata over control.The levels of carotenoid pigment were higher by158.73%in R.mucronata and by26.77%in R.apiculata than their respective controls(Table8).4.DiscussionGenerally,the root samples exhibit higher rates of nitrogen fixation than rhizosphere soil.This nitrogen fixation among plant species was positively correlated with bacterial counts.There were about10-fold higher bacterial counts and nitrogen fixation of the root surface than those of rhizosphere soil(Tables1and4).Similar observations have been made in crop plants,attributing the reason to the growth promoting substances exuded from the roots,which in turn influence microbial counts(Parthasarathy and Mahadevan, 1985).Total counts of nitrogen-fixing Azospirillum enumerated from the samples of rhizosphere soil and root have been shown to have10-fold higher microbial counts in root than in the soil samples(Ravikumar et al.,2002).This may be attributed to the quantity and quality of root-derived carbon,which supports the biomass expansion.As the root grows through the soil,it releases photosynthetically derived carbon into the soil in a variety of soluble and insoluble forms,the totality of which is referred to as‘rhizodepo-sition’(Hiltner,1904;Kathiresan and Ravikumar,1995).Although there is a positive correlation between bacterial counts and nitrogen fixation,it is not a direct evidence of cause effect.The differences in nitrogen fixation rates observed among different species of mangroves may be due to the different species composition of bacteria,which are associated with nitrogen fixation and the nitrogen fixation is also controlled by light, temperature and seasonal variations,i.e.low in winter and high in the summer(Mann and Steinke,1993).Sengupta and Choudhuri(1991)studied nitrogen-fixing bacteria in a Ganges River mangrove community.They have found high numbers in the rhizospheres of plants in inundated areas,but plants on occasionally inundated ridges and in degraded areas have fewer rhizosphere bacteria.Ogan(1990)found similar distinct differences in nodulation and nitrogenase activity among sites and among species in a Nigerian mangal.Azotobacters have positive effects on the growth characteristics and pigments of mangroves(Tables7and8).This promotory effect may be attributed to ability of the azotobacters to fix atmospheric nitrogen and making it available to the growing seedlings of mangroves.In the present study,all of the three species of Azotobacter were capable of fixing nitrogen and also synthesising the phytohormone(Indole Acetic Acid—IAA), which are required for better growth and pigment production of mangrove seedlings (Kathiresan and Veera Ravi,1990;Ravikumar,1995).Similar findings have already been reported with azotobacter isolated from terrestrial soils which also produce IAA for promoting growth of crop plants(Azeon and Barea,1975;Ravikumar et al.,2002).5.ConclusionAmong the species,A.chroococcum has been found to be the most efficient in fixing nitrogen and in producing phytohormone(IAA).The same species is very effective in。