人教版初三数学圆的测试题及答案可编辑.doc

合集下载

人教版九年级数学下册 圆测试习题及答案【新改】

人教版九年级数学下册 圆测试习题及答案【新改】

专项训练六 圆一、选择题1.如图,∠O =30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是( )A .相离B .相交C .相切D .均有可能第1题图 第3题图 第4题图2.(贺州中考)已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A .2B .4C .6D .83.(兰州中考)如图,在⊙O 中,若点C 是AB ︵的中点,∠A =50°,则∠BOC 的度数为( ) A .40° B .45° C .50° D .60°4.(杭州中考)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB =3∠ADB ,则( )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB第5题图 第6题图 第7题图5.如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆周角的度数是( )A .60°B .120°C .60°或120°D .30°或150°6.(德州中考)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A .3步B .5步C .6步D .8步7.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( )A.π3B.π2C .πD .2π8.(滨州中考)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED ,其中一定成立的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤第8题图 第9题图 第10题图二、填空题9.(安顺中考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE =________. 10.(齐齐哈尔中考)如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C =________度.11.(贵港中考)如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE .若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________(结果保留π).12.(呼和浩特中考)在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为________.13.(成都中考)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.第11题图 第13题图 第14题图14.如图,在扇形OAB 中,∠AOB =60°,扇形半径为r ,点C 在AB ︵上,CD ⊥OA ,垂足为D ,当△OCD 的面积最大时,AC ︵的长为________.三、解答题15.(宁夏中考)如图,已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)若AB =4,BC =23,求CD 的长.16.(新疆中考)如图,在⊙O 中,半径OA ⊥OB ,过OA 的中点C 作FD ∥OB 交⊙O 于D 、F 两点,且CD =3,以O 为圆心,OC 为半径作弧CE ,交OB 于E 点.(1)求⊙O 的半径OA 的长; (2)计算阴影部分的面积.17.(西宁中考)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD . (1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,BC =6,AD BD =23,求BE 的长.18.★如图,在平面直角坐标系xOy中,直线y=3x-23与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案与解析1.C 2.D 3.A 4.D 5.C6.C 解析:根据勾股定理得斜边为82+152=17,则该直角三角形能容纳的圆形(内切圆)半径r =8+15-172=3(步),即直径为6步.7.C 解析:连接OE 、OF .∵CD 是⊙O 的切线,∴OE ⊥CD ,∴∠OED =90°.∵四边形ABCD 是平行四边形,∠C =60°,∴∠A =∠C =60°,∠D =120°.∵OA =OF ,∴∠A =∠OF A =60°,∴∠DFO =120°,∴∠EOF =360°-∠D -∠DFO -∠DEO =30°,∴FE ︵的长=30π·6180=π.8.D 解析:①∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD ,∴①正确;②∵∠AOC 是⊙O 的圆心角,∠AEC 是⊙O 的圆内部的角,∴∠AOC ≠∠AEC ,∴②错误;③∵OC ∥BD ,∴∠OCB =∠DBC .∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠DBC ,∴CB 平分∠ABD ,∴③正确;④∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD .∵OC ∥BD ,∴∠AFO =90°.∵点O 为圆心,∴AF =DF ,∴④正确;⑤由④有AF =DF ,∵点O 为AB 中点,∴OF 是△ABD 的中位线,∴BD =2OF ,∴⑤正确;⑥∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,∴⑥错误.9.4-7 解析:连接OC .∵弦CD ⊥AB 于点E ,CD =6,∴CE =ED =12CD =3.在Rt △OEC中,∠OEC =90°,CE =3,OC =4,∴OE =42-32=7,∴BE =OB -OE =4-7.10.45 解析:连接OD .∵CD 是⊙O 的切线,∴OD ⊥CD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD =90°.∵OA =OD ,∴∠A =∠ADO =45°,∴∠C =∠A =45°.11.π2解析:由题意可得△ABC ≌△ADE .∵∠C =90°,∠BAC =60°,AC =1,∴AB =2.∵∠DAE =∠BAC =60°,∴S 扇形BAD =60×π×22360=2π3,S 扇形△CAE =60π×12360=π6,∴S 阴影=S 扇形DAB +S △ABC -S △ADE-S 扇形ACE =2π3-π6=π2.12.24 解析:如图,设AB 与⊙O 相切于点F ,连接OF ,OD ,延长FO 交CD 于点E .∵2πR =26π,∴R =13,∴OF =OD =13.∵AB 是⊙O 的切线,∴OF ⊥AB .∵AB ∥CD ,∴EF ⊥CD ,即OE ⊥CD ,∴CE =ED .∵EF =18,OF =13,∴OE =5.在Rt △OED 中,∵∠OED =90°,OD =13,OE =5,∴ED =OD 2-OE 2=12,∴CD =2ED =24.13.392解析:作直径AE ,连接CE ,∴∠ACE =90°.∵AH ⊥BC ,∴∠AHB =90°,∴∠ACE =∠AHB .又∵∠B =∠E ,∴△ABH ∽△AEC ,∴AB AE =AH AC ,∴AB =AH ·AEAC.∵AC =24,AH =18,AE=2OC =26,∴AB =392.14.14πr 解析:∵OC =r ,CD ⊥OA ,∴DC =OC 2-OD 2=r 2-OD 2,∴S △OCD =12OD ·r 2-OD 2,∴()S △OCD 2=14OD 2·(r 2-OD 2)=-14OD 4+14r 2OD 2=-14(OD 2-r 22)2+r 416,∴当OD 2=r 22,即OD =22r时,△OCD 的面积最大,∴∠OCD =45°,∴∠COA =45°,∴AC ︵的长=45πr 180=14πr .15.(1)证明:∵ED =EC ,∴∠EDC =∠C .∵∠B +∠ADE =180°,∠EDC +∠ADE =180°,∴∠B =∠EDC ,∴∠B =∠C ,∴AB =AC ;(2)解:连接AE .∵AB 为直径,∴AE ⊥BC .由(1)知AB =AC ,∴AC =4,BE =CE =12BC = 3.∵∠C=∠C ,∠EDC =∠B ,∴△EDC ∽△ABC ,∴CE AC =CDBC,即CE ·BC =CD ·AC ,∴3·23=4CD ,∴CD=32.16.解:(1)连接OD .∵OA ⊥OB ,∴∠AOB =90°.∵CD ∥OB ,∴∠OCD =90°.在Rt △OCD 中,∵C 是AO 的中点,CD =3,∴OD =2OC .设OC =x ,∴x 2+(3)2=(2x )2,∴x =1,∴OD =2,∴⊙O 的半径为2;(2)∵sin ∠CDO =OC OD =12,∴∠CDO =30°.∵FD ∥OB ,∴∠DOB =∠CDO =30°,∴S 阴影=S △CDO+S 扇形OBD -S 扇形OCE =12×1×3+30π×22360-90π×12360=32+π12.17.(1)证明:连接OD .∵OB =OD ,∴∠OBD =∠BDO .∵∠CDA =∠CBD ,∴∠CDA =∠ODB .又∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°,∴∠ADO +∠CDA =90°,即∠CDO =90°,∴OD ⊥CD .∵OD 是⊙O 的半径,∴CD 是⊙O 的切线;(2)解:∵∠C =∠C ,∠CDA =∠CBD ,∴△CDA ∽△CBD ,∴CD BC =AD BD .∵AD BD =23,BC =6,∴CD=4.∵CE ,BE 是⊙O 的切线,∴BE =DE ,BE ⊥BC ,∴BE 2+BC 2=EC 2,即BE 2+62=(4+BE )2,解得BE =52.18.解:(1)原点O 在⊙P 外.理由如下:∵直线y =3x -23与x 轴、y 轴分别交于A ,B 两点,∴点A 的坐标为(2,0),点B 的坐标为(0,-23).在Rt △OAB 中,tan ∠OBA =OA OB =223=33,∴∠OBA =30°.如图①,过点O 作OH ⊥AB 于点H ,在Rt △OBH 中,OH =OB ·sin ∠OBA = 3.∵3>1,∴原点O 在⊙P 外;(2)如图②,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB =PC ,∴∠PCB =∠OBA =30°,∴⊙P被y 轴所截的劣弧所对的圆心角的度数为180°-30°-30°=120°,∴弧长为120°×π×1180=2π3;同理:当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧的长为2π3;(3)如图③,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,作PD ⊥x 轴,∴PD ∥y轴,∴∠APD =∠ABO =30°.在Rt △DAP 中,AD =DP ·tan ∠DP A =1×tan30°=33,∴OD =OA -AD =2-33,∴此时点D 的坐标为⎝⎛⎭⎫2-33,0;当⊙P 与x 轴相切时,且位于x 轴上方时,根据对称性可以求得此时切点的坐标为⎝⎛⎭⎫2+33,0.综上所述,当⊙P 与x 轴相切时,切点的坐标为⎝⎛⎭⎫2-33,0或⎝⎛⎭⎫2+33,0.。

初三数学圆测试题及答案

初三数学圆测试题及答案

九年级上册圆单元测试一、选择题(本大题共10小题,每小题3分,共计30分)1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )A.0个B.1个C.2个D.3个2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<55.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )A.42 °B.28°C.21°D.20°6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cmB.4cmC.6cmD.8cm7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )A. B. C. D.8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有( )A.2个B.4个C.5个D.6个9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数根,则直线与⊙O的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( )A. B. C. D.二、填空题(本大题共5小题,每小4分,共计20分)11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需________________的包装膜(不计接缝,取3).12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.13.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.14.(北京)如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.15.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S1、S2,若圆心到两弦的距离分别为2和3,则|S1-S2|=__________.三、解答题(16~21题,每题7分,22题8分,共计50分)16.(丽水)为了探究三角形的内切圆半径r与周长、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分别为点D、E、F.(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长和面积S.(结果精确到0.1厘米)AC BC AB r S图甲0.6图乙 1.0(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?17.(成都)如图,以等腰三角形的一腰为直径的⊙O交底边于点,交于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除外)是:(1)________________;(2)________________;(3)________________.18.(黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?19.(山西)如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .20.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ 与⊙O的位置关系,并说明理由.21.(武汉)有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.请探究下列变化:变化一:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.说明:RQ为⊙O的切线.变化二:运动探求.(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:_________.(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?22.(深圳南山区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案与解析:一、选择题1.B2.C3.D4.A5.B6.C7.C 提示:易证得△AOC≌△BOD,8.D 9.B 10.B二、填空题11.12000 12.第二种13.6cm 14.(2,0) 15.24(提示:如图,由圆的对称性可知,等于e的面积,即为4×6=24)三、解答题16.(1)略;(2)由图表信息猜测,得,并且对一般三角形都成立.连接OA、OB、OC,运用面积法证明:17.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).18.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,所以圆形凳面的最大直径为25(-1)厘米.19.扇形OAB的圆心角为45°,纸杯的表面积为44.解:设扇形OAB的圆心角为n°弧长AB等于纸杯上开口圆周长:弧长CD等于纸杯下底面圆周长:可列方程组,解得所以扇形OAB的圆心角为45°,OF等于16cm纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即S纸杯表面积==20.连接OP、CP,则∠OPC=∠OCP.由题意知△ACP是直角三角形,又Q是AC的中点,因此QP=QC,∠QPC=∠QCP.而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.21.解:连接OQ,∵OQ=OB,∴∠OBP=∠OQP又∵QR为⊙O的切线,∴OQ⊥QR即∠OQP+∠PQR=90°而∠OBP+∠OPB=90°故∠PQR=∠OPB又∵∠OPB与∠QPR为对顶角∴∠OPB=∠QPR,∴∠PQR=∠QPR∴RP=RQ变化一、连接OQ,证明OQ⊥QR;变化二、(1)结论成立 (2)结论成立,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR. 22.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5(2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2在⊙O′中,∵ O′O= O′D ∴∠1=∠3∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.(3)不同意. 理由如下:①当AO=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5∴AH=4,∴OH =1求得点P1(1,3) 同理可得:P4(9,3)②当OA=OP时,同上可求得:P2(4,3),P3(4,3)因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

初三圆试题及答案数学

初三圆试题及答案数学

初三圆试题及答案数学一、选择题(每题3分,共30分)1. 已知圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含答案:C2. 下列命题中,正确的是()。

A. 圆的两条半径的夹角是直角B. 圆的两条直径互相垂直C. 圆的半径都相等D. 圆的直径是圆的最长弦答案:D3. 已知圆心为O的圆经过点A和点B,且∠AOB=120°,则弦AB所对的圆心角的度数为()。

A. 60°B. 120°C. 240°D. 360°答案:B4. 已知圆的半径为10,圆心到直线的距离为8,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含5. 已知圆的半径为5,圆心到直线的距离为4,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含答案:C6. 已知圆的半径为10,圆心到直线的距离为12,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含7. 已知圆的半径为6,圆心到直线的距离为5,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含答案:C8. 已知圆的半径为8,圆心到直线的距离为6,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含9. 已知圆的半径为7,圆心到直线的距离为5,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含答案:C10. 已知圆的半径为9,圆心到直线的距离为7,则直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内含二、填空题(每题4分,共20分)11. 已知圆的半径为5,圆心到直线的距离为4,则直线与圆相交于两点,这两点之间的距离为________。

答案:612. 已知圆的半径为10,圆心到直线的距离为8,则直线与圆相交于两点,这两点之间的距离为________。

答案:813. 已知圆的半径为8,圆心到直线的距离为6,则直线与圆相交于两点,这两点之间的距离为________。

初三数学圆测试题及答案[2]

初三数学圆测试题及答案[2]

(完整word版)初三数学圆测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)初三数学圆测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)初三数学圆测试题及答案(word版可编辑修改)的全部内容。

九年级上册圆单元测试一、选择题(本大题共10小题,每小题3分,共计30分)1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有()A.0个 B。

1个 C.2个 D。

3个2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B。

相切 C.相交D。

内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A。

35° B。

70° C.110° D.140°4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A。

3≤OM≤5 B。

4≤OM≤5 C.3<OM<5 D.4<OM<55.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠AOC=84°,则∠E等于( )A.42 ° B。

28°C。

21° D.20°6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cmB.4cm C。

初三数学圆测试题及答案

初三数学圆测试题及答案

九年级上册圆单元测试一、选择题(本大题共10小题,每小题3分,共计30分)1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )A.0个B.1个C.2个D.3个2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<55.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )A.42 °B.28°C.21°D.20°6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cmB.4cmC.6cmD.8cm7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )A. B.C.D.8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有( )A.2个B.4个C.5个D.6个9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数根,则直线与⊙O的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( )A. B.C.D.二、填空题(本大题共5小题,每小4分,共计20分)11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需________________的包装膜(不计接缝,取3).12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.13.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.14.(北京)如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.15.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S1、S2,若圆心到两弦的距离分别为2和3,则|S1-S2|=__________.三、解答题(16~21题,每题7分,22题8分,共计50分)16.(丽水)为了探究三角形的内切圆半径r与周长、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC 的内切圆,切点分别为点D、E、F.(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长和面积S.(结果精确到0.1厘米)(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?17.(成都)如图,以等腰三角形的一腰为直径的⊙O交底边于点,交于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除外)是:(1)________________;(2)________________;(3)________________.18.(黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?19.(山西)如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .20.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ 与⊙O的位置关系,并说明理由.21.(武汉)有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.请探究下列变化:变化一:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.说明:RQ为⊙O的切线.变化二:运动探求.(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:_________.(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?22.(深圳南山区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案与解析:一、选择题1.B2.C3.D4.A5.B6.C7.C 提示:易证得△AOC≌△BOD,8.D 9.B 10.B二、填空题11.1200012.第二种13.6cm 14.(2,0) 15.24(提示:如图,由圆的对称性可知,等于e的面积,即为4×6=24)三、解答题16.(1)略;(2)由图表信息猜测,得,并且对一般三角形都成立.连接OA、OB、OC,运用面积法证明:17.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).18.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,所以圆形凳面的最大直径为25(-1)厘米.19.扇形OAB的圆心角为45°,纸杯的表面积为44.解:设扇形OAB的圆心角为n°弧长AB等于纸杯上开口圆周长:弧长CD等于纸杯下底面圆周长:可列方程组,解得所以扇形OAB的圆心角为45°,OF等于16cm纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即S纸杯表面积==20.连接OP、CP,则∠OPC=∠OCP.由题意知△ACP是直角三角形,又Q是AC的中点,因此QP=QC,∠QPC=∠QCP.而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.21.解:连接OQ,∵OQ=OB,∴∠OBP=∠OQP又∵QR为⊙O的切线,∴OQ⊥QR即∠OQP+∠PQR=90°而∠OBP+∠OPB=90°故∠PQR=∠OPB又∵∠OPB与∠QPR为对顶角∴∠OPB=∠QPR,∴∠PQR=∠QPR∴RP=RQ变化一、连接OQ,证明OQ⊥QR;变化二、(1)结论成立 (2)结论成立,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR. 22.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5(2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2在⊙O′中,∵ O′O= O′D ∴∠1=∠3∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.(3)不同意. 理由如下:①当AO=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5∴AH=4,∴OH =1求得点P1(1,3) 同理可得:P4(9,3)②当OA=OP时,同上可求得:P2(4,3),P3(4,3)因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.。

人教版初三圆试题及答案

人教版初三圆试题及答案

人教版初三圆试题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 相交B. 相切B. 相离D. 无法确定2. 圆的周长是圆的直径的几倍?A. π倍B. 2倍C. 3倍D. 4倍3. 已知点A到圆心O的距离为6,点B到圆心O的距离为4,那么点A 和点B在圆上的位置关系是什么?A. 都在圆上B. 点A在圆外,点B在圆内C. 点A在圆内,点B在圆上D. 点A和点B都不在圆上二、填空题1. 圆的面积公式为__________。

2. 已知圆的半径为r,圆的直径为d,则d=__________。

3. 圆的切线与半径垂直,且切线的长度等于__________。

三、解答题1. 已知圆的半径为7,求圆的周长和面积。

解:圆的周长公式为C=2πr,代入r=7,得C=2×π×7=14π。

圆的面积公式为A=πr²,代入r=7,得A=π×7²=49π。

2. 已知点P在圆O上,OP=10,PA=6,求圆O的半径。

解:根据勾股定理,PA²+r²=OP²,即6²+r²=10²,解得r²=10²-6²=64,所以r=8。

四、应用题1. 某圆形花坛的周长为628厘米,求花坛的直径。

解:根据圆的周长公式C=πd,代入C=628,得d=628/π。

2. 一个圆的半径为8厘米,求这个圆的面积。

解:根据圆的面积公式A=πr²,代入r=8,得A=π×8²=64π。

结束语:本次试题涵盖了圆的基本性质和公式,通过选择题、填空题、解答题和应用题的形式,全面考察了学生对圆的理解和应用能力。

希望同学们能够通过练习,加深对圆的理解和掌握,提高解题技巧。

人教版九年级数学 第二十四章: 圆 单元测试卷(含答案)

第二十四章 圆 单元测试卷一、单选题1.在长10厘米,宽8厘米的长方形中画一个最大的圆,这个圆的半径是( )厘米.A.10B.8C.5D.42.如图,⊙O 的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP =4,∠APO =30°,则弦AB 的长为( )A .BC .D 3.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题即:“如图所示,CD垂直平分弦AB ,CD=1寸,AB=10寸,求圆的直径”(1尺=10寸)根据题意直径长为( )A.10寸B.20寸C.13寸D.26寸4.下列说法正确的是( ) A.等弧所对的弦相等 B.平分弦的直径垂直弦并平分弦所对的弧C.相等的弦所对的圆心角相等D.相等的圆心角所对的弧相等5.如图,半径为10的⊙A 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若12DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .18B .16C .10D .86.如图,点A ,B ,C 在⊙O 上,∠AOB=72°,则∠ACB 等于( )A .28°B .54°C .18°D .36°7.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=o ,6OC =,则CD 的长为( )A.B. C.6 D.128.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A 的半径为2.那么下列说法中不正确的是( )A .当1a <时,点B 在A 外 B .当15a <<时,点B 在A 内C .当5a <时,点B 在A 内D .当5a >时,点B 在A 外9.直线AB 、CD 相交于点O ,射线OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是( )A.相离B.相切C.相交D.不确定10.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A.πB.32πC.6﹣π π11.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A.3πB.2πC.9πD.6π- 12.今年寒假期间,小明参观了中国扇博物馆,如图是她看到的纸扇和团扇. 已知纸扇的骨柄长为30cm ,扇面有纸部分的宽度为18cm ,折扇张开的角度为150°,若这两把扇子的扇面面积相等,则团扇的半径为 ( )A .B .C .D .二、填空题13.如图,在⊙O中,点C是弧AB的中点,∠A=50°,则∠BOC等于_____度.14.如图,PA、PB分别切⊙O于A、B,连接AB,若AP=3cm,∠P=60°,则AB的长为___cm.15.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为_____cm.16.如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为_____.三、解答题17.如图,AB 是圆O 的直径,C 是BA 延长线上一点,点D 在圆O 上,且CD OA =,CD 的延长线交圆O 于点E ,若20C ∠=o ,求∠BOE 的度数.18.如图,O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EC ,已知8,2AB CD ==.(1)求OA 的长.(2)求CE 的长.19.如图,四边形ABCD内接于O,AC为O的直径,D为AC的中点,过点D作DE AC,交BC的延长线于点E.(1)判断DE与O的位置关系,并说明理由;AB ,求CE的长.(2)若O的半径为5,820.如图,AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求证:AE是⊙O的切线;(2) 连接OC,当BC=3时,求劣弧AC的长和扇形B0C的面积.21.如图,AB为⊙O的直径,点C,D在⊙O上,且BC=6 cm,AC=8 cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.22.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若OF⊥BD于点F,且OF=2,BD=答案1.D2.A3.D4.A5.B6.D7.A8.C9.A10.C11.A12.D 13.40.14.315.6π16.1.17.连接OD,∵CD=OA=OD, 20C ∠=o , ∴∠ODE=240C ∠=o , ∵OD=OE ,∴∠E=∠EDO=40o ,∴∠EOB=∠C+∠E=40+20=60o o o . 18.(1)解:∵⊥OD AB ,8AB = ∴118422AC BC AB ===⨯=, 设OA r =,则2OC r =- 在Rt ACO ∆中,()22242r r =+- ∴=5r∴5OA =,3OC =(2)连接BE∵O 、C 分别是AE 、AB 的中点 ∴26BE OC ==,BE OC∴90ABE ACO ∠=∠=︒ 在Rt BCE V 中,CE ===19.(1)DE 与O 相切,理由如下: 如图,连接OD ,∵AC 为O 的直径,∴90ADC ∠=, ∵D 为AC 的中点,∴AD CD =, ∴AD CD =,∴45ACD ∠=, ∵OA 是AC 的中点,∴45ODC ∠=o , ∵DE AC ,∴45CDE DCA ∠=∠=o , ∴90ODE ∠=,∴DE 与O 相切;(2)∵O 的半径为5,∴10AC =,∴AD CD ==∵AC 为O 的直径,∴90ABC ∠=, ∵8AB =,∴6BC =,∵BAD DCE ∠=∠,45ABD CDE ∠=∠=o , ∴ABD CDE ∆∆:,∴AB AD CD CE =,CE=,∴254CE =. 20.(1)∵AB 是圆O 直径∴∠ACB=90°又∵∠D=60°∴∠B=60°∴∠CAB=30°又∵∠EAC =60°∴∠EAC+∠CAB=90°∴∠BAE=90°∴AE 是⊙O 的切线(2)如图∵∠D=60°∴∠AOC=120°∴∠BOC=60°又∵OB=OC∴△BOC为等边三角形∴OC=3∴劣弧AC的长=1203 180π⋅=2π∵∠BOC=60°∴扇形BOC的面积=2 603360π⋅=32π21.(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.22.(1)证明:连接OD,如图所示:∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:∵OF⊥BD,∴BF =12BD =OB =4, ∴OF =12OB ,∴∠OBF =30°, ∴∠BOF =60°, ∴∠BOD =2∠BOF =120°,∴S 阴影=S 扇形OBD ﹣S △BOD =21204360π⨯ ﹣12××2=163π ﹣.。

初三圆的测试题及答案

初三圆的测试题及答案【篇一:人教版初三数学圆的测试题及答案】名:班级:得分:一、选择题(每题3分,共30分)2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()a 1∶2∶3b 1∶2∶3c 3∶2∶1d 3∶2∶13.在直角坐标系中,以o(0,0)为圆心,以5为半径画圆,则点a(?3,4)的位置在()a⊙o内b⊙o上 c ⊙o外d 不能确定4.如图,两个等圆⊙o和⊙o′外切,过o作⊙o′的两条切线oa、ob,a、b是切点,则∠aob等于()a 2∶3b 3∶4c 4∶9d 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于()7.已知两圆的圆心距d= 3 cm,两圆的半径分别为方程x?5x?3?0的两根,则两圆的位置2京翰教育1对1家教 /关系是()a 相交 b相离 c 相切 d 内含8.四边形中,有内切圆的是()a 平行四边形b 菱形c 矩形d 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于d,连结ad,那么()c ∠bad =∠cadd ∠bada?∠cadcb.10.下面命题中,是真命题的有()①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

a 1个b 2个c 3个 d4个二、填空题(每题3分,共24分)12.现用总长为80m的建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛的面积最大;13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形,菱形的边长是 1 cm ,那么徽章的直径是;14.如图,弦ab的长等于⊙o的半径,如果c是?amc上任意一点,则京翰教育1对1家教15.一条弦分圆成2∶3两部分,过这条弦的一个端点引远的切线,则所成的两弦切角为16.如图,⊙a、⊙b、⊙c、⊙d、⊙e相互外离,它们的半径都为1.顺次连接五个圆心得到五边形abcde,则图中五个阴影部分的面积之和是;17.如图:这是某机械传动部分的示意图,已知两轮的外沿直径分别为2分米和8分米,轴心距为6分米,那么两轮上的外公切线长为分米。

人教版初中数学圆的经典测试题含答案

人教版初中数学圆的经典测试题含答案一、选择题1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( )A .3cmB .2cmC .23cmD .4cm【答案】A【解析】【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm ,OG ⊥BC ,∵六边形ABCDEF 是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC ,OG ⊥BC ,∴∠BOG=∠COG=12∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG=12BC=12×2=1cm , ∴OB=sin 30BG =2cm , ∴OG=2222213OB BG -=-=,∴圆形纸片的半径为3cm ,故选:A .【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( )A .123B .1536π-πC .30312π-D .48336π-π【答案】C【解析】【分析】易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.【详解】连接OE ,OF .∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.3.如图,已知AB 是⊙O 是直径,弦CD ⊥AB ,AC 2,BD =1,则sin ∠ABD 的值是( )A .2B .13C .23D .3【答案】C【解析】【分析】 先根据垂径定理,可得BC 的长,再利用直径对应圆周角为90°得到△ABC 是直角三角形,利用勾股定理求得AB 的长,得到sin ∠ABC 的大小,最终得到sin ∠ABD【详解】解:∵弦CD ⊥AB ,AB 过O ,∴AB 平分CD ,∴BC =BD ,∴∠ABC =∠ABD ,∵BD =1,∴BC =1,∵AB 为⊙O 的直径,∴∠ACB =90°,由勾股定理得:AB ()22222213AC BC +=+=, ∴sin ∠ABD =sin ∠ABC =23AC AB = 故选:C .【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解4.已知下列命题:①若a >b ,则ac >bc ;②若a=1a ;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则a=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.5.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】 本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.7.如图,ABC ∆是O 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2C .3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.8.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( ) A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2【答案】D【解析】试题解析:根据圆锥的侧面展开图的面积计算公式得:S =RL π=15π故选D.9.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A .43B .34C .35D .45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC ,再根据勾股定理求得AB=5,即可求sin ∠ABD 的值.【详解】∵AB 是⊙O 的直径,CD ⊥AB ,∴弧AC=弧AD ,∴∠ABD=∠ABC .根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.10.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC=1,则⊙O的半径为()A.2 B3C.23D.1【答案】B【解析】【分析】先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1得AC=2DC=2,∠C=60°,再由3【详解】∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=ACtanC=3,∴⊙O3,故选:B.【点睛】本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.11.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4 B.3 C.7 D.8【答案】A【解析】【分析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.【详解】解:如图,连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC22,34∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∴∠APB=90°,∴AB长度的最小值为4,故选:A.【点睛】本题考查了圆切线的性质、坐标和图形的性质、圆周角定理、勾股定理,找到OP的最小值是解题的关键.12.如图,在Rt△ABC中,∠ABC=90°,AB=23BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A .5342π-B .5342π+C .23π-D .432π-【答案】A【解析】【分析】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD=2AH ,∠AHO=90°,在Rt △ABC 中,利用∠A 的正切值求出∠A=30°,继而可求得OH 、AH 长,根据圆周角定理可求得∠BOC =60°,然后根据S 阴影=S △ABC -S △AOD -S 扇形BOD 进行计算即可.【详解】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD=2AH ,∠AHO=90°,在Rt △ABC 中,∠ABC=90°,AB=23,BC=2,tan ∠A=23323BC AB ==, ∴∠A=30°,∴OH=12OA=32,AH=AO•cos ∠A=33322⨯=,∠BOC=2∠A=60°, ∴AD=2AH=3,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =()26031132323222360π⨯⨯⨯-⨯⨯-=5342π-, 故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.13.如图,已知ABC ∆和ABD ∆都O 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】 考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.14.如图,点I 是Rt △ABC 的内心,∠C =90°,AC =3,BC =4,将∠ACB 平移使其顶点C 与I 重合,两边分别交AB 于D 、E ,则△IDE 的周长为( )A .3B .4C .5D .7【答案】C【解析】【分析】 连接AI 、BI ,根据三角形的内心的性质可得∠CAI =∠BAI ,再根据平移的性质得到∠CAI =∠AID ,AD =DI ,同理得到BE =EI ,即可解答.【详解】连接AI 、BI ,∵∠C=90°,AC=3,BC=4,∴AB=22+=5AC BC∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选C.【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线15.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是( )A.22°B.26°C.32°D.68°【答案】A【解析】试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC可得:∠OBC=∠OCB=22°.考点:圆周角的计算16.如图,AB是⊙O的直径,弦CD⊥AB于E点,若AD=CD= 23BC的长为()A .3πB .23πC .33πD .233π 【答案】B【解析】【分析】根据垂径定理得到3CE DE ==,BC BD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD ,∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23,∴3CE DE ==,BC BD = ,∠A=30°, ∴∠DOE=60°,∴OD=2sin 60DE =, ∴BC 的长=BD 的长=60221803ππ⨯=, 故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.17.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程长为( )A .3mB .33mC .35mD .4m【答案】C【解析】【分析】【详解】 如图,由题意得:AP =3,AB =6,90.BAP ∠=∴在圆锥侧面展开图中223635.BP m =+= 故小猫经过的最短距离是35.m故选C.18.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC 的度数为( )A .30°B .45°C .60°D .90°【答案】B【解析】 分析:接OB ,OC ,根据四边形ABCD 是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB ,OC ,∵四边形ABCD 是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°. 故选B .点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.19.如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A .23B .13C .4D .32【答案】B【解析】【分析】如下图,作AD ⊥BC ,设半径为r ,则在Rt △OBD 中,OD=3-1,OB=r ,BD=3,利用勾股定理可求得r.【详解】如图,过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ;∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt △OBD 中,根据勾股定理,得:22BD OD 13+故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.20.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD , ∴BE =DF ,又∵OB =OD , ∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.。

初三数学圆测试 题和答案


已经助攻冲到 B 点 . 有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门
.仅
从射门角度考虑,应选择 ________种射门方式 .
13. 如果圆的内接正六边形的边长为 6cm,则其外接圆的半径为 ___________.
14 如图,直角坐标系中一条圆弧经过网格点 在圆的圆心坐标为 _____________.
.
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
.
A. 相离或相切
B. 相切或相交
C. 相离或相交
D. 无法确定
10.如图,把直角△ ABC的斜边 AC放在定直线 上,按顺时针的方向在直线 上转动两次,使它转到 △A2B2C2 的位置,设 AB= , BC=1,则顶点 A 运动到点 A2 的位置时,点 A 所经过的路线为 ( )
A.
B.
C.
D.
二、填空题
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD <∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

A 1个B 2个C 3个D 4个 二、填空题(每题3分,共24分)11.一个正多边形的内角和是720°,则这个多边形是正 边形;12.现用总长为m 80的建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛的面积最大;13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形, 菱形的边长 是 1 cm ,那么徽章的直径是 ;14.如图,弦AB 的长等于⊙O 的半径,如果C 是AmC 上任意一点,则sinC = ;15.一条弦分圆成2∶3两部分,过这条弦的一个端点引远的切线,则所成的两弦切角为 ;BCA16.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都为1. 顺次连接五个圆心得到五边形ABCDE ,则图中五个阴影部分的面积 之和是 ;17.如图:这是某机械传动部分的示意图,已知两轮的 外沿直径分别为2分米和8分米,轴心距为6分米,那 么两轮上的外公切线长为 分米。

18.如图,ABC 是圆内接三角形,BC 是圆的直径,∠B=35°,MN 是过A 点的切线,那么∠C=________;∠CAM=________; ∠BAM=________;三、解答题19.求证:菱形的各边的中点在同一个圆上.已知:如图所示,菱形ABCD 的对角线AC 、BD 相交于O ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:E 、F 、G 、H 在同一个圆上.20.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 和⊙O 在点C 的切线相垂直,垂足为D ,延长AD 和BC 的延长线交于点E ,求证:AB=AE .21.如图,⊙O以等腰三角形ABC一腰AB为直径,它交另一腰AC于E,交BC于D.求证:BC=2DE22.如图,过圆心O的割线PAB交⊙O于A、B,PC切⊙O于C,弦CD⊥AB于点H,点H 分AB所成的两条线段AH、HB的长分别为2和8.求PA的长.23.已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.圆测试题题答案一、选择题1.D.提示:设两个半圆交点为D.连接CD,CD⊥AB. 阴影的面积为两个半圆的面积减去直角三角形的面积。

3.则CD=3,AD=1,BD=3.2.C.提示:设圆的半径为R,则三角形边长为3R, 正方形边长为2R, 正六边形的边长为R.3.B.提示:用勾股定理可以求出点A到圆心的距离为5.4.C. 提示:连接O’A,O’B. O’O.O’A⊥OA, O’B⊥OB.则OO’=2R,sin2A B∠=2RR,∠AOB=60°.5.A.提示:绕直线AC旋转一周时,底面边长6,高为8.表面积S1=π(r2+r l)=96π. 绕直线AB旋转一周时,底面边长8,高为6.表面积S1=π(r2+r l)=144π.6.D.提示:2πr=2360lπα︒.侧面展开图的圆心角等于216°.7.D.提示:设两圆的半径r1,r2. r1+r2=22ba=ba=5.r1-r21-r2. 两圆内含.8.B.提示:从圆的圆心引两条相交直径,再过直径端点作切线,可以得到菱形。

9.C.提示:AB是直径,所以AD垂直BD.ABC是等腰三角形。

AB=AC, ∠BAD =∠CAD. . 10.A.提示:④正确。

①错在两条直径平分但不互相垂直。

②面积之比为3∶2。

③直径垂直于过直径端点的切线。

⑤这三点可能在同一直线上。

二、填空题11.6.提示:根据多边形的内角和公式,180°(n-2)=720°,n=6.12.20.提示:设半径为r,则弧长为(80-2r),S=1(802)2r r-=r(40-r)=-r2+40r=-(r-20)2+400,r=20时,S取得最大值。

13.2.设矩形长为a,宽为b,则有22a b+=4r2,解得a2+b2=r2.菱形的边长22()()22a b+=1。

r=1.14.12。

提示:连接OA,OB,则△OAB是正三角形.∠AOB=60°.AB=60°, ∠C=30°.15.72°。

提示:如图。

劣弧AB=144°,∠AOB=144°, ∠OBA=18°, ∠ABC=72°,OCBA16.32π,五边形ABCDE的内角和为540°,五个阴影部分的扇形的圆心角为540°, 540°的扇形相当于32个圆。

图中五个阴影部分的面积之和是32π。

17.。

提示:将两圆圆心与切点连接起来,并将两圆的圆心联结起来,两圆的半径差是3,可抽象出如下的图形。

过O作OC⊥O’B,OO’=6, O’C=CBAO'O18.55°, 35°,125°.提示:∠C与∠B互余,∠C=55°,∠CAM是弦切角,∠CAM=∠B. ∠BAM=90°+35°=125°.三、解答题19.证明:连结OE、OF、OG、OH.∵AC、BD是菱形的对角线,∴AC⊥BD于O.∴△AOB、△BOC、△COD、△DOA都是直角三角形.又OE、OF、OG、OH都是各直角三角形斜边上的中线,∴OE=12AB,OF=12BC,OG=12CD, OH=12AD∵AB=BC=CD=DA,∴OE=OF=OG=OH.∴E、F、G、H都在以O为圆心,OE为半径的圆上.应当指出的是:由于我们是在平面几何中研究的平面图形,所以在圆的定义中略去了“平面内”一词.更准确而严格的定义应是,圆是平面内到定点的距离等于定长的点的集合.证明四点共圆的另一种方法是证明这四个点所构成的四边形对角互补。

20.提示:AB与AC位于同一个三角形中,所以只需证明∠B=∠E.圆中有直径的,通常要将圆上的一点与直径的端点连接起来,构造直角三角形。

我们发现∠ACD是弦切角,∠ACD =∠B。

∠ACD与∠CAD互余。

在△ACE中,∠CAD与∠E互余,所以∠B=∠E.证明:连结AC.∵CD是⊙O的切线,∴∠ACD=∠B.又∵AB是⊙O的直径,∴∠ACB=∠ACE=90°,∴∠CAB+∠B=90°,∠CAE+∠E=90°.又∵CD⊥AE于D,∴∠ADC=90°.∴∠ACD+∠CAE=90°,∴∠ACD=∠E,∴∠B=∠E,∴AB=AE.21.提示:由等腰三角形的性质可得∠B=∠C,由圆内接四边形性质可得∠B=∠DEC,所以∠C=∠DEC,所以DE=CD,连结AD,可得AD⊥BC,利用等腰三角形“三线合一”性质得BC=2CD,即BC=2DE.证明:连结AD∵AB是⊙O直径∴AD⊥BC∵AB=AC∴BC=2CD,∠B=∠C∵⊙O内接四边形ABDE∴∠B=∠DEC(四点共圆的一个内角等于对角的外角)∴∠C=∠DEC∴DE=DC∴BC=2DE22.提示:圆中既有切线也有割线,考虑使用切割线定理。

PC2=PA∙PB=PA(PA+PB)=PA2+10PA.又有相交弦,故也考虑用相交弦定理,AH∙BH=CH2解:∵PC为O的切线,∴PC2=PA∙PB=PA(PA+AB)=PA2+10PA又∵AB⊥CD,∴CH2=AH∙BH=16PC2=CH2+PH2=16+(PA+2)2=PA2+4PA+20∴PA2+10PA=PA2+4PA+20∴PA=10 323.提示:因为切线垂直于过切点的半径,为求公切线的长AB ,首先应连结O 1A 、O 2B ,得直角梯形O 1ABO 2.这样,问题就转化为在直角梯形中,已知上、下底和一腰,求另一腰的问题了. 解:连结O 1A 、O 2B ,则O 1A ⊥AB ,O 2B ⊥AB.过O 1作O 1C ⊥O 2B ,垂足为C ,则四边形O 1ABC 为矩形,于是有O 1C ⊥CO 2,O 1C=AB,O 1A=CB. 在Rt △O 1CO 2中, O 1O 2=13, O 2C=O 2B-O 1A=5, ∴O 1C=1251322=-(cm). ∴AB=12cm.由圆的对称性可知,图中有两条外公切线,并且这两条外公切线的长相等.。

相关文档
最新文档