江苏省宿迁市中考数学试卷解析版
精品解析:2023年江苏省宿迁市中考数学真题(解析版)

数学答题注意事项1.本试卷共6页,满分150分,考试时间120分钟.2.答案全部写在答题卡上,写在本试卷上无效.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案.注意不要答错位置,也不要超界.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1.2023的相反数是()A.12023 B.2023- C.2023 D.12023-【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.以下列每组数为长度(单位:cm)的三根小木棒,其中能搭成三角形的是()A.2,2,4B.1,2,3C.3,4,5D.3,4,8【答案】C【解析】【分析】根据三角形的三边关系逐项判断即可得.【详解】解:A、224+=,不满足三角形的三边关系,不能搭成三角形,则此项不符合题意;B、123+=,不满足三角形的三边关系,不能搭成三角形,则此项不符合题意;C、345+>,满足三角形的三边关系,能搭成三角形,则此项符合题意;D、348+<,不满足三角形的三边关系,不能搭成三角形,则此项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系:任意两边之和大于第三边、任意两边之差小于第三边.3.下列运算正确的是()A.21a a -= B.325a a a ⋅= C.()22ab ab = D.()426a a =【答案】B【解析】【分析】根据合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方法则逐项判断即可得.【详解】解:A 、2a a a -=,则此项错误,不符合题意;B 、325a a a ⋅=,则此项正确,符合题意;C 、()222ab a b =,则此项错误,不符合题意;D 、()428=a a ,则此项错误,不符合题意;故选:B .【点睛】本题考查了合并同类项、同底数幂的乘法、积的乘方与幂的乘方,熟练掌握各运算法则是解题关键.4.已知一组数据96,89,92,95,98,则这组数据的中位数是()A .89 B.94 C.95D.98【答案】C【解析】【分析】根据中位数的定义(将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)即可得.【详解】解:将这组数据按从小到大进行排序为89,92,95,96,98,则其中位数是95,故选:C .【点睛】本题考查了中位数,熟记中位数的概念是解题关键.5.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是()A.70︒B.45︒C.35︒D.50︒【答案】C【解析】【分析】先判断出110︒的内角是这个等腰三角形的顶角,再根据等腰三角形的定义求解即可得.【详解】解: 等腰三角形有一个内角为110︒,∴这个等腰三角形的底角是180110352︒-︒=︒,故选:C .【点睛】本题考查了等腰三角形的定义,三角形内角和定理,解题的关键是熟练掌握等腰三角形的两个底角相等.6.《孙子算经》中有个问题:若三人共车,余两车空:若两人共车,剩九人步,问人与车各几何?设有x 辆车,则根据题意可列出方程为()A.()3229x x +=- B.()3229x x +=+ C.()3229x x -=- D.()3229x x -=+【答案】D【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人乘一车,最终剩余9人无车可乘,进而表示出总人数得出等式即可;【详解】由题意可列出方程()3229x x -=+,故选D .【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.7.在同一平面内,已知O 的半径为2,圆心O 到直线l 的距离为3,点P 为圆上的一个动点,则点P 到直线l 的最大距离是()A.2B.5C.6D.8【答案】B【解析】【分析】过点O 作OA l ⊥于点A ,连接OP ,判断出当点P 为AO 的延长线与O 的交点时,点P 到直线l 的距离最大,由此即可得.【详解】解:如图,过点O 作OA l ⊥于点A ,连接OP ,3OA ∴=,2OP =,∴当点P 为AO 的延长线与O 的交点时,点P 到直线l 的距离最大,最大距离为325PA =+=,故选:B .【点睛】本题考查了圆的性质,正确判断出点P 到直线l 的距离最大时,点P 的位置是解题关键.8.如图,直线1y x =+、1y x =-与双曲线()0k y k x=>分别相交于点A B C D 、、、.若四边形ABCD 的面积为4,则k 的值是()A.34B.2C.45 D.1【答案】A【解析】【分析】连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =-与x 轴交于点M ,如图所示,根据函数图像交点的对称性判断四边形ABCD 是平行四边形,由平行四边形性质及平面直角坐标系中三角形面积求法,确定()11142四边形△ABC COD D S S OM DE CF ===⋅+,再求出直线1y x =-与x 轴交于点()1,0M ,通过联立1y x k y x =-⎧⎪⎨=⎪⎩求出C D 、纵坐标,代入方程求解即可得到答案.【详解】解:连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =-与x 轴交于点M,如图所示:根据直线1y x =+、1y x =-与双曲线()0k y k x=>交点的对称性可得四边形ABCD 是平行四边形,()11142四边形△ABC O D C D S S OM DE CF ∴===⋅+, 直线1y x =-与x 轴交于点M ,∴当0y =时,1x =,即()1,0M ,1y x =-与双曲线()0k y k x=>分别相交于点C D 、,∴联立1y x k y x =-⎧⎪⎨=⎪⎩,即1k y y =-,则20y y k +-=,由0k >,解得12y -±=,∴11111222⎡⎤⎛⎫-+--⨯⨯=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦2=,解得34k =,故选:A .【点睛】本题考查一次函数与反比例函数综合,涉及平行四边形的判定与性质,熟练掌握平面直角坐标系中三角形面积求法是解决问题的关键.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9.=________.【答案】2【解析】【分析】根据算术平方根进行计算即可求解.=2,故答案为:2.【点睛】本题考查了求一个数的算术平方根,熟练掌握算术平方根的定义是解题的关键.10.港珠澳大桥被誉为“新世界七大奇迹”之一,全长55000米.将数字55000用科学记数法表示是________.【答案】45.510⨯【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可.【详解】解:55000共有5位数,从而用科学记数法表示为45.510⨯,故答案为:45.510⨯.【点睛】本题考查科学记数法,按照定义,确定a 与n 的值是解决问题的关键.11.分解因式:2x 2x -=___.【答案】()x x 2-【解析】【分析】直接提取公因式x 即可【详解】解:()2x 2x x x 2-=-.故答案为:()x x 2-.12.不等式21x -≤的最大整数解是________.【答案】3【解析】【分析】根据一元一次不等式的解法即可得.【详解】解:不等式21x -≤的解集是3x ≤,则不等式21x -≤的最大整数解是3,故答案为:3.【点睛】本题考查了解一元一次不等式,熟练掌握一元一次不等式的解法是解题关键.13.七边形的内角和是______.【答案】900︒【解析】【分析】由n 边形的内角和是:180°(n -2),将n =7代入即可求得答案.【详解】解:七边形的内角和是:180°×(7-2)=900°.故答案为:900°.【点睛】此题考查了多边形的内角和,熟记n 边形的内角和公式是解题的关键.14.在平面直角坐标系中,点(2,3)P 关于x 轴对称的点的坐标是__________.【答案】(2,3)-【解析】【分析】根据关于x 轴的对称点的坐标计算即可;【详解】根据关于x 轴的对称点的特征,横坐标不变,纵坐标变为相反数可得:点(2,3)P 关于x 轴对称的点的坐标是(2,3)-;故答案是(2,3)-.【点睛】本题主要考查了平面直角坐标系中点的对称,准确计算是解题的关键.15.若圆锥的底面半径是2,侧面展开图是一个圆心角为120︒的扇形,则该圆锥的母线长是________.【答案】6【解析】【分析】先根据圆锥的底面半径求出底面圆周长,也就是侧面图扇形的弧长,再利用弧长公式求出扇形半径,也就是圆锥的母线.【详解】解:∵圆锥的底面半径是2,∴底面圆周长是4π,即展开后的扇形弧长是4π,根据弧长公式:180n r l =︒π,得1204180r ππ︒=︒,解得6r =,即该圆锥的母线长是6.故答案是:6.【点睛】本题考查扇形和圆锥的有关计算,解题的关键是掌握扇形的弧长公式,以及圆锥和侧面展开的扇形的关系.16.如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 、C 三点都在格点上,则sin ABC ∠=________.【答案】2【解析】【分析】取AB 的中点D ,连接,AC CD ,先根据勾股定理可得AC BC CD ===,再根据等腰三角形的三线合一可得CD AB ⊥,然后根据正弦的定义即可得.【详解】解:如图,取AB 的中点D ,连接,AC CD ,2222221310,1310,125AC BC CD =+==+=+ ,AC BC ∴=,又 点D 是AB 的中点,CD AB ∴⊥,52sin 210CD ABC BC ==∴∠,故答案为:22.【点睛】本题考查了勾股定理与网格问题、等腰三角形的三线合一、正弦,熟练掌握正弦的求解方法是解题关键.17.若实数m 满足()()22202320242025m m -+-=,则()()20232024m m --=________.【答案】1012-【解析】【分析】根据完全平方公式得()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m -=-+---+--,再代值计算即可.【详解】解: ()()22202320242025m m -+-=()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m ∴=-+--+----12025=-2024=-()()220232021041m m ∴=---故答案为:1012-.【点睛】本题考查完全平方公式的应用,求代数式值,掌握完全平方公式222()2a b a ab b ±=±+及其变式是解题本题的关键.18.如图,ABC 是正三角形,点A 在第一象限,点()0,0B 、()1,0C .将线段CA 绕点C 按顺时针方向旋转120︒至1CP ;将线段1BP 绕点B 按顺时针方向旋转120︒至2BP ;将线段2AP 绕点A 按顺时针方向旋转120︒至3AP ;将线段3CP 绕点C 按顺时针方向旋转120︒至4CP ;……以此类推,则点99P 的坐标是________.【答案】(-【解析】【分析】首先画出图形,然后得到旋转3次为一循环,然后求出点99P 在射线CA 的延长线上,点100P 在x 轴的正半轴上,然后利用旋转的性质得到99100CP =,最后利用勾股定理和含30︒角直角三角形的性质求解即可.【详解】如图所示,由图象可得,点1P ,4P 在x 轴的正半轴上,∴.旋转3次为一个循环,∵99333÷=∴点99P 在射线CA 的延长线上,∴点100P 在x 轴的正半轴上,∵()1,0C ,ABC 是正三角形,∴由旋转的性质可得,11AC CP ==,∴112BP OC CP =+=,∴()12,0P ,∴212BP BP ==,∴3223AP AP OP AO ==+=,∴433314CP CP CA AP ==+=+=,∴445BP BC CP =+=,∴()45,0P ,∴同理可得,()78,0P ,()1011,0P ,∴()100101,0P ,∴100101BP =,∴1001011100CP =-=,∴由旋转的性质可得,99100CP =,∴如图所示,过点99P 作99P E x ⊥轴于点E ,∵60ACB ∠=︒,∴9930EP C ∠=︒,∴991502EC P C ==,∴49EO EC OC =-=,99P E ==∴点99P 的坐标是(-.故答案为:(-.【点睛】本题考查了坐标与图形变化-旋转,勾股定理,等边三角形的性质.正确确定每次旋转后点与旋转中心的距离长度是关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.()013tan 60π+--︒.【答案】0【解析】【分析】根据去绝对值运算、零指数幂运算及特殊角的三角函数值分别计算后,再根据二次根式加减运算法则求解即可得到答案.()013tan 60π-+--︒11=-+0=.【点睛】本题考查二次根式加减运算,涉及去绝对值运算、零指数幂运算及特殊角的三角函数值,熟练掌握相关运算法则是解决问题的关键.20.先化简,再求值:21111m m m -⎛⎫-⋅ ⎪+⎝⎭,其中1m .【答案】1m -,原式=【解析】【分析】先根据分式的混合计算法则化简,然后代值计算即可.【详解】解:21111m m m-⎛⎫-⋅ ⎪+⎝⎭()()11111m m m m m+-+-=⋅+()()111m m m m m +-=⋅+1m =-,当1m时,原式11=-=.【点睛】本题主要考查了分式的化简求值,正确计算是解题的关键.21.如图,在矩形ABCD 中,BE AC ⊥,DF AC ⊥,垂足分别为E 、F .求证:AF CE =.【答案】证明见解析【解析】【分析】根据AAS 定理证出ADF CBE △≌△,再根据全等三角形的性质即可得证.【详解】证明: 四边形ABCD 是矩形,,AD CB AD CB ∴=∥,DAF BCE ∴∠=∠,BE AC ⊥ ,DF AC ⊥,90AFD CEB ∴∠=∠=︒,在ADF △和CBE △中,90AFD CEB DAF BCE AD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS ADF CBE ∴△≌△,AF CE ∴=.【点睛】本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握矩形的性质是解题关键.22.为了解某校九年级学生周末活动情况,随机抽取了部分学生进行调查,并绘制了如图所示的两幅不完整的统计表和统计图.学生参加周末活动人数统计表活动名称人数A .课外阅读40B .社会实践48C .家务劳动mD.户外运动nE.其它活动26请结合图表中提供的信息,解答下列问题:(1)m=________,n=________;(2)扇形统计图中A对应的圆心角是________度;(3)若该校九年级有800名学生,请估算该校九年级周末参加家务劳动的人数.【答案】(1)24,62(2)72(3)估算该校九年级周末参加家务劳动的人数为96名【解析】【分析】(1)先根据B的扇形统计图和统计表信息可求出抽取调查的学生总人数,再根据D的扇形统计图可求出n的值,然后利用抽取调查的学生总人数减去其他活动的人数可得m的值;(2)利用360︒乘以A的学生人数所占百分比即可得;(3)利用该校九年级的学生总人数乘以周末参加家务劳动的学生人数所占百分比即可得.【小问1详解】解:抽取调查的学生总人数为4824%200÷=(人),则31%20062n=⨯=(人),2004048622624m=----=(人),故答案为:24,62.【小问2详解】解:40360100%72200︒⨯⨯=︒,即扇形统计图中A对应的圆心角是72度,故答案为:72.【小问3详解】解:24800100%96200⨯⨯=(名),答:估算该校九年级周末参加家务劳动的人数为96名.【点睛】本题考查了统计表和扇形统计图、利用样本估计总体等知识点,熟练掌握统计调查的相关知识是解题关键.23.某校计划举行校园歌手大赛.九(1)班准备从A 、B 、C 三名男生和D 、E 两名女生中随机选出参赛选手.(1)若只选1名选手参加比赛,则女生D 入选的概率是________;(2)若选2名选手参加比赛,求恰有1名男生和1名女生的概率(用画树状图或列表法求解).【答案】(1)15(2)35【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有等可能的结果数,找出选中1名男生和1名女生的结果数,然后根据概率公式求解.【小问1详解】解:只选1名选手参加比赛,女生D 入选的概率15故答案为:15;【小问2详解】画树状图为如下:共有20种等可能的结果数,其中选中1名男生和1名女生的有12种AD ,AE ,BD ,BE ,CD ,CE ,DA ,DB ,DC ,EA ,EB ,EC ,所以恰好选中1名男生和1名女生的概率123205==.【点睛】本题考查了利用概率公式求概率,列表法与树状图法,利用列表法或树状图法展示所有可能的结果数,再从中选出符合事件的结果数,然后根据概率公式计算事件的概率.24.如图,在ABCD Y 中,5AB =,=AD 45A ∠=︒.(1)求出对角线BD 的长;(2)尺规作图....:将四边形ABCD 沿着经过A 点的某条直线翻折,使点B 落在CD 边上的点E 处,请作出折痕.(不写作法....,保留作图痕迹......)【答案】(113(2)作图见解析【解析】【分析】(1)连接BD ,过D 作DF AB ⊥于F ,如图所示,由勾股定理先求出32AF DF ===,在Rt BDF △中再由勾股定理,2213BD DF BF =+=;(2)连接EB ,根据轴对称性质,过点A 尺规作图作线段EB 的垂直平分线即可得到答案.【小问1详解】解:连接BD ,过D 作DF AB ⊥于F ,如图所示:在ABCD Y 中,32=AD 45A ∠=︒,32AF DF ∴==, 5AB =,532BF AB AF ∴=-=-=,在Rt BDF △中,90BFD ∠=︒,3DF =,2BF =,则22223213BD DF BF =+=+;【小问2详解】解:如图所示:【点睛】本题考查平行四边形背景下求线段长,涉及勾股定理、尺规作图作线段垂直平分线,熟练掌握勾股定理求线段长及中垂线的尺规作图是解决问题的关键.25.(1)如图,AB 是O 的直径,AC 与O 交于点F ,弦AD 平分BAC ∠,点E 在AC 上,连接DE 、DB ,________.求证:________.从①DE 与O 相切;②DEAC ⊥中选择一个....作为已知条件,余下的一个.....作为结论,将题目补充完整(填.写序号...),并完成证明过程.(2)在(1)的前提下,若6AB =,30BAD ∠=︒,求阴影部分的面积.【答案】(1)②①,证明见解析(或①②,证明见解析)(2273π382【解析】【分析】(1)一:已知条件为②DE AC ⊥,结论为①DE 与O 相切;连接OD ,先证出OD AC ∥,再根据平行线的性质可得DE OD ^,然后根据圆的切线的判定即可得证;二:已知条件为①DE 与O 相切,结论为②DE AC ⊥;连接OD ,先证出OD AC ∥,再根据圆的切线的性质可得DE OD ^,然后根据平行线的性质即可得证;(2)连接,OD OF ,先解直角三角形求出,,OD AE DE 的长,再根据等边三角形的判定与性质可得AF 的长,从而可得EF 的长,然后根据圆周角定理可得260DOF CAD ∠=∠=︒,最后根据阴影部分的面积等于直角梯形ODEF 的面积减去扇形ODF 的面积即可得.【详解】解:(1)一:已知条件为②DEAC ⊥,结论为①DE 与O 相切,证明如下:如图,连接OD ,OA OD = ,OAD ODA ∠=∠∴,弦AD 平分BAC ∠,OAD CAD ∴∠=∠,CAD ODA ∴∠=∠,OD AC ∴∥,DE AC ⊥ ,DE OD ∴⊥,又OD 是O 的半径,DE ∴与O 相切;二:已知条件为①DE 与O 相切,结论为②DEAC ⊥,证明如下:如图,连接OD ,OA OD = ,OAD ODA ∠=∠∴,弦AD 平分BAC ∠,OAD CAD ∴∠=∠,CAD ODA ∴∠=∠,OD AC ∴∥,DE 与O 相切,DE OD ∴⊥,DE AC ∴⊥;(2)如图,连接,OD OF,=6AB ,30BAD ∠=︒,3,cos30OA OD OF AD AB ∴====⋅︒=,30CAD ∠=︒,19cos3022DE AD AE AD ∴===⋅︒=,又30BAD CAD ∠=∠=︒ ,60BAC ∴∠=︒,OAF ∴ 是等边三角形,3AF OA ∴==,32EF AE AF ∴=-=,由圆周角定理得:260DOF CAD ∠=∠=︒,则阴影部分的面积为()260π32360ODEF ODF DE EF OD S S ⋅+⨯-=-直角梯形扇形333π2222⎛⎫+ ⎪⎝⎭=-3π2=.【点睛】本题考查了圆的切线的判定与性质、解直角三角形、扇形的面积、圆周角定理等知识点,熟练掌握圆的切线的判定与性质是解题关键.26.某商场销售A B 、两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B 种10件,销售总额为840元;如果售出A 种10件,B 种15件,销售总额为660元.(1)求A B 、两种商品的销售单价.(2)经市场调研,A 种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B 种商品的售价不变,A 种商品售价不低于B 种商品售价.设A 种商品降价m 元,如果A B 、两种商品销售量相同,求m 取何值时,商场销售A B 、两种商品可获得总利润最大?最大利润是多少?【答案】(1)A 的销售单价为30元、B 的销售单价为24元(2)当5m =时,商场销售A B 、两种商品可获得总利润最大,最大利润是810元.【解析】【分析】(1)设A 的销售单价为x 元、B 的销售单价为y 元,根据题中售出A 种20件,B 种10件,销售总额为840元;售出A 种10件,B 种15件,销售总额为660元列方程组求解即可得到答案;(2)设利润为w ,根据题意,得到()2105810w m =--+,结合二次函数性质及题中限制条件分析求解即可得到答案.【小问1详解】解:设A 的销售单价为x 元、B 的销售单价为y 元,则20108401015660x y x y +=⎧⎨+=⎩,解得3024x y =⎧⎨=⎩,答:A 的销售单价为30元、B 的销售单价为24元;【小问2详解】解: A 种商品售价不低于B 种商品售价,3024m ∴-≥,解得6m ≤,即06m ≤≤,设利润为w ,则()()()401030202420w m m =+⨯--+-⎡⎤⎣⎦210100560m m =-++()2105810m =--+,100-< ,w ∴在5m =时能取到最大值,最大值为810,∴当5m =时,商场销售A B 、两种商品可获得总利润最大,最大利润是810元.【点睛】本题考查二元一次方程组及二次函数解实际应用题,读懂题意,根据等量关系列出方程组,根据函数关系找到函数关系式分析是解决问题的关键.27.【问题背景】由光的反射定律知:反射角等于入射角(如图,即CEF AEF ∠=∠).小军测量某建筑物高度的方法如下:在地面点E 处平放一面镜子,经调整自己位置后,在点D 处恰好通过镜子看到建筑物AB 的顶端A .经测得,小军的眼睛离地面的距离 1.7m CD =,20m BE =,2m DE =,求建筑物AB 的高度.【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图):他让小军站在点D 处不动,将镜子移动至1E 处,小军恰好通过镜子看到广告牌顶端G ,测出12m DE =;再将镜子移动至2E 处,恰好通过镜子看到广告牌的底端A ,测出2 3.4m DE =.经测得,小军的眼睛离地面距离 1.7m CD =,10m BD =,求这个广告牌AG 的高度.【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB 的高度.他们给出了如下测量步骤(如图):①让小军站在斜坡的底端D 处不动(小军眼睛离地面距离 1.7m CD =),小明通过移动镜子(镜子平放在坡面上)位置至E 处,让小军恰好能看到塔顶B ;②测出 2.8m DE =;③测出坡长17m AD =;④测出坡比为8:15(即8tan 15ADG ∠=).通过他们给出的方案,请你算出信号塔AB 的高度(结果保留整数).【答案】[问题背景]17m AB =;[活动探究] 3.5m AG =;[应用拓展]20mAB ≈【解析】【分析】[问题背景]根据反射定理,结合两个三角形相似的判定与性质,列出相似比代值求解即可得到答案;[活动探究]根据反射定理,结合两个三角形相似的判定与性质,运用两次三角形相似,列出相似比代值,作差求解即可得到答案;[应用拓展]过点B 作BM AD ⊥于点M ,过点C 作CN AD ⊥于点N ,证DCN ABM ∽△△,得AM AB DN CD =,再由锐角三角函数定义得8tan 15AM ABM BM ∠==,设DN am =,m AM b =,则158a CN =,158b BM =,进而由勾股定理求出0.8m a =,然后由相似三角形的性质得BM EM CN EN=,即可解决问题.【详解】解:[问题背景]如图所示:CEF AEF ∠=∠,,,AB BD FE BD CD BD ⊥⊥⊥,,90AEB CED B D ∴∠=∠∠=∠=︒,ABE CDE ∴△∽△,AB CD BE DE∴=, 1.7m CD =,20m BE=,2m DE =,1.7202AB ∴=,解得17m AB =;[活动探究]如图所示:,GB BD CD BD ⊥⊥,90B D ∴∠=∠=︒,11GE B CE D∠=∠Q11GBE CDE ∴△∽△,11GB CD BE DE ∴=, 12m DE =,10m BD =,∴111028m BE BD DE =-=-=,1.7m CD = ,1.782GB ∴=,解得 6.8m GB =; ,GB BD CD BD ⊥⊥,90B D ∴∠=∠=︒,22AE B CE D∠=∠Q 22ABE CDE ∴△∽△,22AB CD BE DE ∴=, 2 3.4m DE =,10m BD =,∴2210 3.4 6.6m BE BD DE =-=-=,1.7m CD = ,1.76.6 3.4AB ∴=,解得 3.3m GB =;6.8 3.3 3.5m AG GB AB ∴=-=-=;[应用拓展]如图,过点B 作BM AD ⊥于点M ,过点C 作CN AD ⊥于点N,由题意得:BG DG ⊥,CD DG ⊥,90AGD CDG BMA CND ∴∠=∠=∠=∠=︒,BAM GAD ∠=∠ ,9090BAM GAD ∴︒-∠=︒-∠,即ABM ADG ∠=∠,90ADG DAG ∠∠+=︒ ,90ADG CDN ∠+∠=︒,CDN DAG ∴∠=∠,9090CDN DAG ∴︒-∠=︒-∠,即DCN ADG ∠=∠,DCN ADG ABM ∴∠=∠=∠,DCN ABM ∴∽△△,∴AM AB DN CD=,由题意得:17 2.814.2(m)AE AD DE =-=-=,8tan 15ADG ∠= ,8tan 15DN DCN CN ∴∠==,8tan 15AM ABM BM ∠==,设DN am =,m AM b =,则158a CN =,158b BM =,222CN DN CD += ,22215 1.78a a ⎛⎫∴+= ⎪⎝⎭,解得:0.8(m)a =(负值已舍去),2.80.82(m)EN DE DN ∴=-=-=,150.8 1.5(m)8CN ⨯==,∴0.8 1.7b AB =,178b AB ∴=,同【问题背景】得:BME CNE △∽△,∴BM EM CN EN =,∴1514.281.52bb +=,解得:426(m)45b =,1742620(m)845AB ∴=⨯≈,答:信号塔AB 的高度约为20m .【点睛】本题考查解直角三角形综合,涉及相似三角形的判定与性质、三角函数求线段长、勾股定理等知识,读懂题意,熟练掌握相似三角形测高、三角函数测高的方法步骤是解决问题的关键.28.规定:若函数1y 的图像与函数2y 的图像有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①1y x =+;②3y x =-;③21y x =-+,其中与二次函数2243y x x =--互为“兄弟函数”的是________(填写序号);(2)若函数()21520y ax x a =-+≠与21y x=-互为“兄弟函数”,1x =是其中一个“兄弟点”的横坐标.①求实数a 的值;②直接写出另外两个“兄弟点”的横坐标是________、________;(3)若函数1y x m =-(m 为常数)与22y x=-互为“兄弟函数”,三个“兄弟点”的横坐标分别为1x 、2x 、3x ,且123x x x <<,求()22312x x x +-的取值范围.【答案】(1)②(2)2a =;344+、344-(3)()2231216x x x +->【解析】【分析】(1)在平面直角坐标系中作出1y x =+;3y x =-;21y x =-+;2243y x x =--图像,结合“兄弟函数”定义即可得到答案;(2)①根据“兄弟函数”定义,当1x =时,求出y 值,列方程求解即可得到答案;②联立方程组求解即可得到答案;(3)根据“兄弟函数”定义,联立方程组,分类讨论,由()2231282x x x m =-++,按照讨论结果求解,即可得到答案.【小问1详解】解:作出1y x =+;3y x=-;21y x =-+;2243y x x =--图像,如图所示:∴3y x=-与2243y x x =--图像有三个不同的公共点,根据“兄弟函数”定义,与二次函数2243y x x =--互为“兄弟函数”的是②,故答案为:②;【小问2详解】解:① 函数()21520y ax x a =-+≠与21y x=-互为“兄弟函数”,1x =是其中一个“兄弟点”的横坐标,123,1y a y ∴=-=-,则31a -=-,解得2a =;②联立2122521y x x y x ⎧=-+⎪⎨=-⎪⎩,即3225210x x x -++=,1x = 是其中一个解,∴因式分解得()()212310x x x ---=,则22310x x --=,解得317x ±=∴另外两个“兄弟点”的横坐标是31744+、31744-;【小问3详解】解:在平面直角坐标系中作出1y x m =-(m 为常数)与22y x=-图像,如图所示:联立122y x m y x ⎧=-⎪⎨=-⎪⎩,即2x m x -=-,①当0x m -≥时,2x m x -=-,即220x mx -+=,当280m ∆=->时,282m m x ±-=;②当0x m -<时,()2x m x--=-,即220x mx --=,由①中280m ->,则280m ∆=+>,282m m x +=;由图可知,两个函数的交点只能在第二象限,从而0x <,再根据三个“兄弟点”的横坐标分别为1x 、2x 、3x ,且123x x x <<,2182m m x +∴=,2282m m x -=,2382m m x +-=,∴()2222232188822222x x m m m m m m x ⎛--+--+=+⨯ +⎪⎪⎭-(228m m m =-++228m =+28m =+,由280m ->得到2816m +>,即()2231216x x x +->.【点睛】本题考查函数综合,涉及新定义函数,搞懂题意,按照“兄弟函数”、“兄弟点”定义数形结合是解决问题的关键.。
最新江苏省宿迁市中考数学原题试卷附解析

江苏省宿迁市中考数学原题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图是一些相同的小\正方体构成的几何体的三视图:主视图左视图俯视图这些相同的小正方体的个数有()A.4 个B.5 个C.6 个D.7 个2.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面发散的A3.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正弦值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半4.下列命题中,正确的是()A.任意三点确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形;D.垂直弦的直线必过圆心5.一个凸多边形的外角和等于它的内角和的一半,那么这个多边形的边数为()A.4 B. 5 C.6 D.76.下列命题是真命题的是()A.三角形、四边形不是多边形B.内角和等于外角和的多边形不存在C.若多边形的边数增加,则它的外角和也增加D.若多边形边数减少,则其内角和也减少7.如图所示的四个几何体中,主视图是四边形的几何体共有()A.1 个B.2个 C.3个 D.4个8.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有()A. 1个B.2个C.3个D.4个9.如图,CD是△ABC的中线,DE是△ACD的中线,BF 是△ADE 的中线,若△AEF 的面积是 1cm2,则△ABC的面积是()A. 4cm2B.5 cm2C. 6 cm2D.8 cm210.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是()11.如图所示,已知∠1=∠2,AD=CB,AC,BD相交于点0,MN经过点O,则图中全等三角形的对数为()A.4对B.5对C.6对D.7对12.如图所示,若根据“SAS”来说明△ABC≌△DBC,已知BC是公共边,需要补充的条件是()A.AB=DB,∠l=∠2 B.AB=DB,∠3=∠4C.AB=DB,∠A=∠D D.∠l=∠2,∠3=∠413.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形 B.面积相等的三角形C.直角三角形 D.周长相等的三角形14.下列命题中①带根号的数是无理数;②无理数是开不尽方的数;③无论x 取什么值, 21x +都有意义; ④绝对值最小的实数是零. 正确的命题有( )A .1 个B .2 个C .3 个D . 4 个15.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320二、填空题16.如图,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)17. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0)18.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是 .19.一水池有2个进水速度相同的进水口,l 个出水口,单开一个进水口每小时可进水2 m 3,单开一个出水口每小时可出水3m 2.某天0 h 到6 h 水池的蓄水量与放水时间的关系如图所示(至少打开一个进水口),给出以下3个论断:①O h 到3 h 只进水不出水;②3 h 到4 h 时不进水只出水;③4 h 到6 h 不进水不出水. 则错误的论断是 (填序号).20.已知点A(4,5),向上平移2个单位长度,再向右平移4个单位长度后的坐标为 .21. 如图 ,∠B=∠DEF ,AB=DE ,要证明△ABC ≌△DEF,(1)若以“ASA ”为依据,需添加的条件是 ;(2)若以“SAS ”为依据,需添加的条件是 .三、解答题22.某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组出哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?23.巳知直线y =kx +b 经过点A(3,0),且与抛物线y =ax 2相交于B(2,2)和C 两点.(1)求直线和抛物线的函数解析式,并确定点C 的坐标;(2)在同一直角坐标系内画出直线和抛物线的图象;(3)若抛物线上的点D ,满足S △OBD =2S △OAD ,求点D 的坐标.24.如图,在△ABC 中,D 、E 分别是 AB 、AC 上的点,DC 交 BE 于 F ,且13AD AB =,12AE EC =. 试证明:△ADE ∽△ABC.25.如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,AE=CF ,则BE=DF ,请你说明理由.26.若2228162n n ⨯⨯=,则n 的值是多少?27.如图所示,草原上两个居民点A ,B 在河流l 的同旁,一汽车从A 出发到B ,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短?在图中画出该点.28.海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系. 下面是某港口从0时到 12时的水深情况统计图.(1)6时水深 米,12时水深 米;(2)大约 时港口的水最深,深度约是 米;(3)大约 时港口的水最浅,深度约是 米;(4)根据该折线统计图,说一说这个港口从 0时到12时水深的变化情况.29.如图是武汉市目前水资源结构的扇形统计图,请根据图形回答下列问题:(1)图中各个扇形分别代表了什么?你知道地下水所占的百分比是多少吗?(2)从统计图中你能确定武汉市的供水资源主要来自哪里?30.某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.3.C4.C5.C6.D7.B8.C9.D10.A11.C12.B13.B14.B15.C二、填空题16. (3001002)m + 17.242b b ac a-±-,≥ 18.42x y =-⎧⎨=-⎩19. ②20.(8,7)21.∠A = ∠D ,BC=EF(或BE=CF)三、解答题22.共 6 对,恰好选出小敏和小强的概率是16. 23.(1) y =-2x +6, y =12x 2,C(-6,18); (2)略;(3)D 1(-1, 12 ),D 2 (12 ,18). 24. ∵12AE EC =,13AE AC =,∵13AD AB =,∴AD AE AB AC=.∵∠DAE=∠BAC ,∴△ADE ∽△ABC. 25.说明Rt △ABE ≌Rt △CDF26.因为2228162n n ⨯⨯=,所以34222(2)(2)2n n ⨯⨯=,34222222n n ⨯⨯=,1342222n n ++=,即7122n +=,解得3n =27.作点A 关于直线l 的对称点A ′,连结A ′B 交直线l 于点P ,则点P 即是要找的那一点 28.(1) 5,5; (2) 3,8; (3) 9,2;(4)午夜,0时至3时海水上涨,从3时至9时海水连续下降(退潮),从9时至 12时海水又上涨29.(1)长江水,地下水,水库水,湖泊水;7% (2)长江水30.解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥, 解得:1133x ≥.由于x 是车的数量,应为整数,所以x 的最小值为14.答:至少需要14台B 型车.。
最新江苏省宿迁市中考数学附解析

江苏省宿迁市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下图中几何体的左视图是 ( )2.如图,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知100BOD ∠=,则DCE ∠的度数为( )A .40°B .60°C .50°D .80° 3.下列图形中的角是圆周角的是( )4.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 25.如图,正方形ABOC 的边长为2,反比例函数k y x =过点A ,则k 的值是( ) A .2B .2-C .4D .4- 6.函数ky x =-中,3x =时,y =-4,则 h 等于( )A .34B .43-C .43D .143-7.如图,一张矩形纸片沿BC 折叠,顶点A 落在A ′处,第二次过A ′再折叠,使折痕DE ∥BC ,若AB=2,AC=3,则梯形BDEC 的面积为( )A .8B .9C .10D .11DOB C E8.小明将若干个苹果向若干只篮子里分放,若每只篮子分4个苹果,还剩20个未分完;若每只篮子里分放 8 个苹果,则还有一只篮子没有放满,那么小明共有苹果的个数为( )A .44 个B .42 个C .40 个D .38 个9.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为( )A .4 种B . 6 种C . 10 种D . 12 种 10.如图是小明家一年的费用统计图,从该统计图中可以看出的信息是( )A .小明家有3口人B .小明家一年的费用需要2万元C .小明家生活方面费用占总费用的35%D .小明家的收入很高11.在中央电视台举办的青年业余歌手比赛中,8 位评委给某选手所评分数如下表: 评委1 2 3 4 5 6 7 8 得分 9.0 9. 1 9.6 9. 5 9. 3 9.49. 8 9. 2 计分方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分,则该选手最后得分是( )A . 9. 36B . 9.35C . 9.45D .9.28二、填空题12.抛物线y=2(x-2)2-6的顶点为C ,已知y=-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 .13.若将二次函数245y x x =-+,配方成为2()y x k h =++的形式(其中k h ,为常数),则y = .14.如图所示,抛物线2y ax bx c =++与 x 轴相交于A 、B ,与 y 轴相交于点 C ,如果QB=OC=12OA ,那么b= .15.a是数据l,2,3,4,5的中位数,b是数据2,3,3,4的方差,则点P(a,b)关于x 轴的对称点的坐标为 .16.三角形两边长分别是 3、5,第三边是整数,则第三边长为.17.如图,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF= .18.7公斤桃子的价钱等于1公斤苹果与 2公斤梨的价钱和;7公斤苹果的价钱等于10公斤梨与1公斤桃子的价钱和,则购买12公斤苹果所需的钱可以购买梨公斤.19.如图,△ABC≌△CDA,A与C对应,D与B对应,则∠1与是对应角.20.如图,△ABC是不等边三角形,DE=BC,以D ,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_______个.21.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 .22.过一点M可以画条直线,过两点M,N可以画条直线.23.若2++-=,则a b= .a b(2)3024.自由下落物体的高度h(米)与下落的时间t(秒)的关系为2=.现有一铁球从离地h t4.9面19米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.(精确到0.1秒)三、解答题25.某汽车油箱的容积为 70 L,小王把油箱注满油后准备驾驶汽车从县城到300 km 外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱注满油后,汽车能够行驶的总路程 a(km)与每千米平均耗油量 b(L)之间有怎样的函数关系?(2)小王以平均每千米耗油 0.1 L 的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时每行驶1 km的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至少还需加多少油?26.写出“等腰三角形的顶角平分线垂直于底边”的逆命题,若逆命题为真,请给出证明,若为假,请举反例说明理由.27.(1)如图,由∠1=∠2,∠3=∠4,你能得出哪些结论?(2)根据图形编题解题.28.已知关于x的方程5(2)324(1)x k x k+-=--的解为正数,试确定k的取值范围.k<-629.某班 34 个同学去春游,共收款 80 元,由小军去买点心,要求每人1 包.已知有 3元一包和 2 元一包两种点心,试问 3 元一包的点心最多能买几包?30.某厂加工学生书包,每人每天可裁剪书包 60个或缝制书包20个,现有技工 12人,问应安排几人裁剪、几人缝制,才能使裁剪出来的书包正好缝制完.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.B5.D6.C7.B8.A9.B10.C11.B二、填空题12.113.()221y x=-+14.12-15.(3,1 2 -)16.3,4,5,6,717.20018.1819.∠320.421.222)(2baabba+=++22.无数条,123.-824.2.0三、解答题25.(1)70 ab =(2)实际耗油量= 300×< 0.1I + 300× 0.2=90>70,90- 70=20(L)∴油箱里的油不够用,还需加 20 L 油.26.逆命题:若一个三角形的一个角的平分线垂直于这个角的对边,则这个三角形是等腰三角形,命题为真命题,证略27.(1)证明AB ∥CD ,BC ∥AD .△ABC ≌△CDA .AB=CD ,BC=DA ,四边形ABCD 是平行四边形,∠B=∠D 等;(2)略28.6k <-29.12包30.设裁剪、缝制的人数分别为x 、y 时,才能使裁剪出来的书包正好缝制完,则126020x y x y +=⎧⎨=⎩, 解这个方程组,得39x y =⎧⎨=⎩,经检验,符合题意. 答:裁剪、缝制的人数分别为 3、9时,才能使裁剪出来的书包正好缝制完.。
最新江苏省宿迁市中考数学必修综合测试试题附解析

江苏省宿迁市中考数学必修综合测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知AB=AD ,BC=CD ,AC ,BD 相交于点E ,下列结论中错误..的是( ) A .AC ⊥BD B .AC 平分BD C .AC 平分∠DCB D .BD 平分∠ABC2.仔细思考下列各对量:①胜2局与负 3局;②气温上升3℃与气温为-3℃;③下降3 米与后退5米.其中具有相反意义的量有( )A . 1 对B .2对C .3对D .0对3.在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( )A .32+x=2×18B .32+x=2(38-x )C .52-x =2(18+x )D .52-x=2×184.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对5.如图所示,不能通过基本图形平移得到的是( )6.下列四个式子中,结果为1210的有( )①661010+;②10102(25)⨯;③56(2510)10⨯⨯⨯;④34(10)A . ①②B . ③④C . ②③D . ①④7.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A .对应点连线与对称轴垂直 A CB A 'B 'C '图2图1B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行8.在□ABCD 中,对角线AC ,BD 的长分别为6和8,则边AB 的取值范围为( )A .2<AB<14B .1<AB<7C .1<AB<5D .2<AB<109.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .503mC .100mD .1003m10.在等腰三角形ABC 中,∠C=90°,BC=2 cm ,如果以AC 的中点O 为旋转中心,将这个三角形旋转180°,点B 落在点B ′处,那么点B ′与点B 相距( )A .3cmB .23cmC .5cmD .25cm (每小题3分,共30分) 11.二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确...的是( ) A .240b ac -> B .0a > C .0c > D .02b a-< 12.如图所示的两同心圆中,大圆的半径 OA 、OB 、oO 、OD 分别交小圆于E 、F 、G 、H , ∠AOB =∠GOH ,则下列结论错误的是( )A .EF=GHB .⌒EF = ⌒GHC .∠AOG=∠BOD D . ⌒AB =⌒GH13.如图,用两根等长的钢条AC 和BD 交叉构成一个卡钳,可以用来测量工作内槽的宽度.设OA OB m OC OD==,且量得CD b =,则内槽的宽AB 等于( ) A .mb B .m b C .b m D .1b m + 14.已知抛物线21(4)33y x =--的部分图象如图所示,图象再次与x 轴相交时的坐标是( ) A .(5,0) B .(6,0) C .(7,0) D .(8,0)15. 如图,以点O 为圆心的同心圆中,大圆的弦AB 切小圆于点C ,两圆的半径分别为5cm 和3cm ,则AB=( )A .8cmB .4cmC .234cmD 34cm16.把分式方程12121=----x x x 的两边同时乘以(x-2),约去分母,得( ) A .1-(1-x )=1B .1+(1-x )=lC .1-(1-x )=x-2D .l+(1-x )=x-2 二、填空题17.如图所示,摄像机 1、2、3、4 在不同位置拍摄了四幅画面,A 图象是 号摄像机所拍,B 图象是 号摄像机所拍,C 图象是 号摄像机所拍,D 图象是号摄像机所拍.18.如图,∠ACB=∠CDB=6O °,则△ABC 是 三角形.19.池塘中放养了鲤鱼8000条,鲢鱼若干.在几次随机捕捞中,共抓到鲤鱼320条,鲢鱼400条.估计池塘中原来放养了鲢鱼_______条.20.地面气温是20℃,若每升高100 m ,气温下降6℃,则气温t(℃)与高度h(m)的函数解析式是 .21.已知函数3()2f x x =+,则(1)f = . 22.如图是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写出一个代数恒等式 .23.如图,曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后在横线上填上恰当的图形.24.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯.已知这种地毯每平方米售价30元,主楼梯宽2 m ,其侧面如图所示,则购买地毯至少需要 元.三、解答题25.在梯形ABCD 中,AB ∥CD ,090A ∠=,AB=2,BC=3,CD=1,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.26.某工厂有甲、乙两个相邻的长方体的水池,甲池的水均匀地流人乙池;如图,是甲、乙两个水池水的深度y(m)与水流动时间t(h)的函数关系的图象.(1)分别求两个水池水的深度y(m)与水流动时间x(h)的函数解析式,并指出变量x 的取值范围;(2)求水流动几小时后,两个水池的水深度相同.27.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球实验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.⑴估计从袋中任意摸出一个球,恰好是红球的概率是多少?⑵请你估计袋中红球接近多少个?0个红球10个白球2个红球8个白球5个红球5个白球9个红球1个白球10个红球0个白球28.小明在解的一道教学题是:“已知关于x,y的方程组23127x yax y-=⎧⎨+=⎩的解满足35x y+=,求a的值.”小华认为这道题可以理解为关于x,y的方程组23135x yx y-=⎧⎨+=⎩的解满足方程27ax y+=.你认为小华的理解对吗?试说明理由,并解答该题.29.下面第一排表示了各盒子中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来.30.无论x取何值,代数式2233x mx nx x-++-+的值总是 3,试求m、n的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.B4.D5.D6.B7.B8.B9.D10.D11.D12.D13.A14.C15.A16.D二、填空题17.2,3,4,118.等边19.1000020.=-21.200.06t h122.22+=-+23.a b a b ab()()4略24.480三、解答题25.⊥.EC EB延长CE、BA相交于点F,证明△DCE≌△AFE,得CE=FE,DC=AF,∴BF=BC=3,∴BE⊥CE26.(1)243y x =-+甲(0≤x ≤6),123y x =+乙(0≤x ≤6);(2)2小时 27.(1)20×400=8000,∴摸到红球的频率为75.080006000=. ∵试验次数很大,∴频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是0.75.(2)设袋中红球有x 个,根据题意得:75.05=+x x , 解得 x=15,经检验x=15是原方程的解,∴估计袋中红球接近15个. 28.对, 2.5a =29.略.30.m=1, n =3。
江苏省宿迁市2022年中考:数学考试真题与答案解析

江苏省宿迁市2022年中考:数学考试真题与答案解析一、选择题本大题共8小题,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上。
1. -2的绝对值是()A. 2B. C. D. 1212-2-答案:A答案解析:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A .2. 下列运算正确的是()A. B. 21m m -=236·m m a =C. D. ()222mn m n =()235m m =答案:C答案解析:解:,故A 不符合题意;2m m m -=,故B 不符合题意;235m m m ⋅=,故C 符合题意;()222mn m n =,故D 不符合题意;故选:C()236m m =3. 如图,AB ∥ED ,若∠1=70°,则∠2的度数是()A. 70°B. 80°C. 100°D. 110°答案:D答案解析:解:∵AB∥ED,∴∠3+∠2=180°,∵∠3=∠1,∠1=70°,∴∠2=180°-∠3=180°-∠1=180°-70°=110°,故选:D..4. 下列展开图中,是正方体展开图的是()A. B.C. D.答案:C答案解析:解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.5. 若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A. 8cmB. 13cmC. 8cm或13cmD. 11cm或13cm 答案:D答案解析:解:当3是腰时,∵3+3>5,∴3,3,5能组成三角形,此时等腰三角形的周长为3+3+5=11(cm),当5是腰时,∵3+5>5,5,5,3能够组成三角形,此时等腰三角形的周长为5+5+3=13(cm),则三角形的周长为11cm或13cm.故选:D6. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是()A. B. C. D. ()7791x y x y-=⎧⎨-=⎩()7791x y x y +=⎧⎨-=⎩7791x y x y +=⎧⎨-=⎩7791x y x y-=⎧⎨-=⎩答案:B 【详解】解:设该店有客房x 间,房客y 人;根据题意得:,故选:B .()7791x y x y +=⎧⎨-=⎩7. 如果,那么下列不等式正确的是()x y <A. B. C. D. 22x y<22x y -<-11x y ->-11x y +>+答案:A答案解析:解:A 、由x <y 可得:,故选项成立;22x y <B 、由x <y 可得:,故选项不成立;22x y ->-C 、由x <y 可得:,故选项不成立;11x y -<-D 、由x <y 可得:,故选项不成立;11x y +<+故选A.8. 如图,点A 在反比例函数的图像上,以为一边作等腰直角三角形,其()20=>y x x OA OAB 中∠=90°,,则线段长的最小值是()OAB AO AB =OB A. 1B. C.D. 4答案:C二、填空题本大题共10小题,不需写出解答过程,请把答案直接填写在答题卡相应位置上。
2023年中考真题精品解析数学(江苏宿迁卷)精编版

2023年中考真题精品解析数学(江苏宿迁卷)精编一、选择题(共8小题)1.﹣2旳绝对值是()A .﹣2B .12-C .12D .22.下列四个几何体中,左视图为圆旳几何体是()A .B .C .D .3.地球与月球旳平均距离为384000km ,将384000这个数用科学记数法表达为()A .3.84×103B .3.84×104C .3.84×105D.3.84×1064.下列计算对旳旳是()A .235a a a+=B.236a a a ⋅=C .235()a a=D .523a a a÷=5.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2旳度数为()A .50°B .60°C .120°D.130°6.一组数据5,4,2,5,6旳中位数是()A .5B .4C .2D .67.如图,把正方形纸片AB CD沿对边中点所在旳直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A落在MN 上旳点F处,折痕为BE .若AB旳长为2,则F M旳长为()A .2C .D .18.若二次函数22y ax ax c =-+旳图象通过点(﹣1,0),则方程220ax ax c -+=旳解为()A .13x =-,21x =-B.11x =,23x =C .11x =-,23x =D .13x =,21x =-二、填空题(共8小题)9.因式分解:228a -=.10.计算:211x x x x ---=.11.若两个相似三角形旳面积比为1:4,则这两个相似三角形旳周长比是.12.若一元二次方程220x x k -+=有两个不相等旳实数根,则k 旳取值范围是.13.某种油菜籽在相似条件下发芽试验旳成果如表:那么这种油菜籽发芽旳概率是(成果精确到0.01).14.如图,在△A BC 中,已知∠ACB =130°,∠BAC =20°,B C=2,以点C 为圆心,CB 为半径旳圆交AB 于点D ,则BD 旳长为.15.如图,在平面直角坐标系中,一条直线与反比例函数8y x=(x >0)旳图象交于两点A 、B ,与x轴交于点C ,且点B 是AC 旳中点,分别过两点A 、B 作x 轴旳平行线,与反比例函数2y x=(x >0)旳图象交于两点D 、E ,连接D E,则四边形AB ED 旳面积为.16.如图,在矩形AB CD 中,A D=4,点P 是直线AD 上一动点,若满足△P BC是等腰三角形旳点P有且只有3个,则AB旳长为.三、解答题(共10小题)17.计算:12sin 30321)4-++-.18.解不等式组:2132(1)x x x x >+⎧⎨<+⎩.19.某校对七、八、九年级旳学生进行体育水平测试,成绩评估为优秀、良好、合格、不合格四个等第.为理解这次测试状况,学校从三个年级随机抽取200名学生旳体育成绩进行记录分析.有关数据旳记录图、表如下:根据以上信息处理下列问题:(1)在记录表中,a旳值为,b旳值为;(2)在扇形记录图中,八年级所对应旳扇形圆心角为度;(3)若该校三个年级共有2023名学生参与考试,试估计该校学生体育成绩不合格旳人数.20.在一只不透明旳袋子中装有2个白球和2个黑球,这些球除颜色外都相似.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一种球是黑球旳事件为“必然事件”,则m旳值为;(2)若将袋子中旳球搅匀后随机摸出1个球(不放回),再从袋中余下旳3个球中随机摸出1个球,求两次摸到旳球颜色相似旳概率.21.如图,已知BD是△ABC旳角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E =CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观测灯塔P在北偏东60°方向,该海轮向正东方向航行8海里抵达点B处,这时观测灯塔P恰好在北偏东45°方向.假如海轮继续向正东3≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD旳外接圆.(1)求证:A C是⊙O旳切线;(2)当BD是⊙O旳直径时(如图2),求∠CAD旳度数.24.某景点试开放期间,团体收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增长1人,人均收费减少1元;超过m人时,人均收费都按照m人时旳原则.设景点接待有x名游客旳某团体,收取总费用为y元.(1)求y有关x旳函数体现式;(2)景点工作人员发现:当接待某团体人数超过一定数量时,会出现伴随人数旳增长收取旳总费用反而减少这一现象.为了让收取旳总费用伴随团体中人数旳增长而增长,求m 旳取值范围.25.已知△ABC 是等腰直角三角形,AC =BC =2,D是边AB 上一动点(A 、B 两点除外),将△CAD 绕点C 按逆时针方向旋转角α得到△C EF,其中点E是点A旳对应点,点F 是点D旳对应点.(1)如图1,当α=90°时,G是边A B上一点,且BG =AD ,连接GF .求证:GF ∥AC ;(2)如图2,当90°≤α≤180°时,A E与DF 相交于点M .①当点M 与点C、D不重叠时,连接CM ,求∠C MD 旳度数;②设D为边AB 旳中点,当α从90°变化到180°时,求点M 运动旳途径长.26.如图,在平面直角坐标系xOy 中,将二次函数21y x =-旳图象M沿x 轴翻折,把所得到旳图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N 旳函数体现式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径旳圆上一动点,二次函数旳图象M 与x 轴相交于两点A 、B ,求22PA PB +旳最大值;(3)若一种点旳横坐标与纵坐标均为整数,则该点称为整点.求M与N 所围成封闭图形内(包括边界)整点旳个数.ﻬ一、选择题(共8小题)1.﹣2旳绝对值是()A.﹣2B.12 C.12D.2【答案】D.【解析】试题分析:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.考点:绝对值.2.下列四个几何体中,左视图为圆旳几何体是()A.B.C.D.【答案】A.考点:简朴几何体旳三视图.3.地球与月球旳平均距离为384000km ,将384000这个数用科学记数法表达为()A .3.84×103B .3.84×104C .3.84×105D .3.84×106【答案】C .【解析】试题分析:384000=3.84×105.故选C .考点:科学记数法—表达较大旳数.4.下列计算对旳旳是()A .235a a a +=B .236a a a ⋅=C .235()a a=D .523a a a÷=【答案】D.考点:同底数幂旳除法;合并同类项;同底数幂旳乘法;幂旳乘方与积旳乘方.5.如图,已知直线a 、b被直线c 所截.若a∥b ,∠1=120°,则∠2旳度数为()A.50°B.60°C.120°D.130°【答案】B.【解析】试题分析:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选B.考点:平行线旳性质.6.一组数据5,4,2,5,6旳中位数是()A.5B.4C.2D.6【答案】A.【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据旳中位数是5,故选A.考点:中位数;记录与概率.7.如图,把正方形纸片ABCD沿对边中点所在旳直线对折后展开,折痕为MN,再过点B折叠纸片,使点A 落在MN上旳点F处,折痕为BE.若AB旳长为2,则FM旳长为()A .2B 3C 2D .1【答案】B .考点:翻折变换(折叠问题).8.若二次函数22y ax ax c =-+旳图象通过点(﹣1,0),则方程220ax ax c -+=旳解为()A .13x =-,21x =-B.11x =,23x =C .11x =-,23x =D .13x =,21x =-【答案】C .【解析】试题分析:∵二次函数22y ax ax c =-+旳图象通过点(﹣1,0),∴方程220ax ax c -+=一定有一种解为:x =﹣1,∵抛物线旳对称轴为:直线x =1,∴二次函数22y ax ax c =-+旳图象与x轴旳另一种交点为:(3,0),∴方程220ax ax c -+=旳解为:11x =-,23x =.故选C .学科网考点:抛物线与x 轴旳交点.二、填空题(共8小题)9.因式分解:228a -=.【答案】2(a +2)(a ﹣2).【解析】试题分析:228a -=22(4)a -=2(a+2)(a ﹣2).故答案为:2(a +2)(a ﹣2).考点:提公因式法与公式法旳综合运用.10.计算:211x x x x ---=.【答案】x .【解析】试题分析:211x x x x ---=21x x x --=(1)1x x x --=x .故答案为:x .考点:分式旳加减法.11.若两个相似三角形旳面积比为1:4,则这两个相似三角形旳周长比是.【答案】1:2.考点:相似三角形旳性质.12.若一元二次方程220x x k -+=有两个不相等旳实数根,则k 旳取值范围是.【答案】:k <1.【解析】试题分析:∵一元二次方程220x x k -+=有两个不相等旳实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 旳取值范围是:k <1.故答案为:k <1.考点:根旳鉴别式.13.某种油菜籽在相似条件下发芽试验旳成果如表:那么这种油菜籽发芽旳概率是(成果精确到0.01).【答案】0.95.【解析】试题分析:观测表格得到这种油菜籽发芽旳频率稳定在0.95附近,则这种油菜籽发芽旳概率是0.95,故答案为:0.95.考点:运用频率估计概率.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径旳圆交AB于点D,则BD旳长为.【答案】3考点:垂径定理.15.如图,在平面直角坐标系中,一条直线与反比例函数8yx=(x>0)旳图象交于两点A、B,与x轴交于点C,且点B是AC旳中点,分别过两点A、B作x轴旳平行线,与反比例函数2yx=(x>0)旳图象交于两点D、E,连接DE,则四边形ABED旳面积为.【答案】9 2.考点:反比例函数系数k旳几何意义.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形旳点P有且只有3个,则AB旳长为.【答案】4.【解析】试题分析:如图,当AB =AD 时,满足△PB C是等腰三角形旳点P 有且只有3个,△P 1BC ,△P 2B C是等腰直角三角形,△P 3BC 是等腰直角三角形(P 3B=P 3C ),则AB =AD =4,故答案为:4.考点:矩形旳性质;等腰三角形旳性质;勾股定理;分类讨论.三、解答题(共10小题)17.计算:102sin 3031)-++- .【答案】13.考点:实数旳运算;零指数幂;负整数指数幂;特殊角旳三角函数值.18.解不等式组:2132(1)x x x x >+⎧⎨<+⎩.【答案】1<x <2.【解析】试题分析:根据解不等式组旳措施可以求得不等式组旳解集,从而可以解答本题.试题解析:2 1 32(1)x x x x >+⎧⎨<+⎩①②,由①得,x >1,由②得,x <2,由①②可得,原不等式组旳解集是:1<x<2.考点:解一元一次不等式组;方程与不等式.19.某校对七、八、九年级旳学生进行体育水平测试,成绩评估为优秀、良好、合格、不合格四个等第.为理解这次测试状况,学校从三个年级随机抽取200名学生旳体育成绩进行记录分析.有关数据旳记录图、表如下:根据以上信息处理下列问题:(1)在记录表中,a 旳值为,b 旳值为;(2)在扇形记录图中,八年级所对应旳扇形圆心角为度;(3)若该校三个年级共有2023名学生参与考试,试估计该校学生体育成绩不合格旳人数.【答案】(1)28,15;(2)108;(3)200.【解析】试题分析:(1)根据学校从三个年级随机抽取200名学生旳体育成绩进行记录分析和扇形记录图可以求得七年级抽取旳学生数,从而可以求得a旳值,也可以求得九年级抽取旳学生数,进而得到b旳值;(2)根据扇形记录图可以求得八年级所对应旳扇形圆心角旳度数;绩不合格旳有200人.考点:扇形记录图;用样本估计总体;记录与概率.20.在一只不透明旳袋子中装有2个白球和2个黑球,这些球除颜色外都相似.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一种球是黑球旳事件为“必然事件”,则m旳值为;(2)若将袋子中旳球搅匀后随机摸出1个球(不放回),再从袋中余下旳3个球中随机摸出1个球,求两次摸到旳球颜色相似旳概率.【答案】(1)2;(2)1 3.【解析】试题分析:(1)由必然事件旳定义可知:透明旳袋子中装旳都是黑球,从袋子中随机摸出一种球是黑球旳案为:2;(2)设红球分别为H 1、H 2,黑球分别为B 1、B2,列表得:总共有12种成果,每种成果旳也许性相似,两次都摸到球颜色相似成果有4种,因此两次摸到旳球颜色相似旳概率=412=13.考点:列表法与树状图法;随机事件.21.如图,已知BD 是△ABC 旳角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:B E=CF .【答案】证明见解析.【解析】试题分析:先运用平行四边形性质证明DE =CF ,再证明EB =ED ,即可处理问题.试题解析:∵ED ∥BC ,EF ∥A C,∴四边形EFCD 是平行四边形,∴DE =CF,∵BD 平分∠ABC ,∴∠E BD=∠D BC ,∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB,∴EB =ED ,∴E B=CF .考点:平行四边形旳鉴定与性质.22.如图,大海中某灯塔P 周围10海里范围内有暗礁,一艘海轮在点A 处观测灯塔P 在北偏东60°方向,该海轮向正东方向航行8海里抵达点B处,这时观测灯塔P恰好在北偏东45°方向.假如海轮继续向正东方向航行,会有触礁旳危险吗?试阐明理由.73)【答案】没有触礁旳危险.【解析】试题分析:作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△PAC中运用正切旳定义列方程,求出x旳值,即得到AC旳值,然后比较AC与10旳大小即可判断海轮继续向正东方向航行,与否有触礁旳危险.试题解析:没有触礁旳危险.理由如下:考点:解直角三角形旳应用-方向角问题;应用题.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD旳外接圆.(1)求证:AC是⊙O旳切线;(2)当BD是⊙O旳直径时(如图2),求∠CAD旳度数.【答案】(1)证明见解析;(2)22.5°.【解析】试题分析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O旳直径,连接DE,由已知条件得出∠ABC=∠CA D,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角旳关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.考点:切线旳鉴定;圆周角定理;三角形旳外接圆与外心.24.某景点试开放期间,团体收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增长1人,人均收费减少1元;超过m人时,人均收费都按照m人时旳原则.设景点接待有x名游客旳某团体,收取总费用为y元.(1)求y有关x旳函数体现式;(2)景点工作人员发现:当接待某团体人数超过一定数量时,会出现伴随人数旳增长收取旳总费用反而减少这一现象.为了让收取旳总费用伴随团体中人数旳增长而增长,求m旳取值范围.【答案】(1)y=120 (030)[120(30)] (30)[120(30)] (100)x xx x x mm x m x<≤⎧⎪--<≤⎨⎪--<≤⎩;(2)30<m≤75.【解析】试题分析:(1)根据收费原则,分0<x≤30,30<x≤m,m<x≤100分别求出y与x旳关系即可.考点:二次函数旳应用;分段函数;最值问题;二次函数旳最值.25.已知△AB C是等腰直角三角形,A C=B C=2,D 是边AB 上一动点(A 、B 两点除外),将△C AD 绕点C按逆时针方向旋转角α得到△CEF ,其中点E 是点A旳对应点,点F 是点D 旳对应点.(1)如图1,当α=90°时,G是边AB 上一点,且BG =AD ,连接G F.求证:GF ∥A C;(2)如图2,当90°≤α≤180°时,AE 与DF 相交于点M.①当点M 与点C、D 不重叠时,连接CM ,求∠CMD 旳度数;②设D为边AB 旳中点,当α从90°变化到180°时,求点M 运动旳途径长.【答案】(1)证明见解析;(2)①135°;②2.【解析】试题分析:(1)欲证明G F∥A C,只要证明∠A =∠F GB 即可处理问题.(2)①先证明A、D 、M 、C四点共圆,得到∠CMF =∠CAD=45°,即可处理问题.∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.学科网∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径旳⊙O上,运动途径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴CD旳长=901180π⨯=2π,∴当α从90°变化到180°时,点M运动旳途径长为2π.考点:几何变换综合题.26.如图,在平面直角坐标系xOy 中,将二次函数21y x =-旳图象M 沿x轴翻折,把所得到旳图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N .(1)求N 旳函数体现式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径旳圆上一动点,二次函数旳图象M与x 轴相交于两点A 、B ,求22PA PB +旳最大值;(3)若一种点旳横坐标与纵坐标均为整数,则该点称为整点.求M与N 所围成封闭图形内(包括边界)整点旳个数.【答案】(1)245y x x =-++;(2)3817+;(3)25.【解析】试题分析:(1)根据二次函数N 旳图象是由二次函数M 翻折、平移得到因此a =﹣1,求出二次函数N旳顶点坐标即可处理问题.(2)由22PA PB +=222OP +可知O P最大时,22PA PB +最大,求出OP 旳最大值即可处理问题.(3)画出函数图象即可处理问题.最大,∴O P旳最大值=OC +PO 1,∴22PA PB +最大值=21)2++=38+学科网(3)M与N 所围成封闭图形如图所示:由图象可知,M与N所围成封闭图形内(包括边界)整点旳个数为25个.考点:二次函数综合题;最值问题;压轴题;几何变换综合题.。
2022年江苏省宿迁市中考数学试卷(解析版)
2022年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2022•宿迁)﹣2的绝对值是()A.﹣2B.﹣C.D.22.(3分)(2022•宿迁)下列运算正确的是()A.2m﹣m=1B.m2•m3=a6C.(mn)2=m2n2D.(m3)2=m5 3.(3分)(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°4.(3分)(2022•宿迁)下列展开图中,是正方体展开图的是()A.B.C.D.5.(3分)(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 6.(3分)(2022•宿迁)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.7.(3分)(2022•宿迁)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+18.(3分)(2022•宿迁)如图,点A在反比例函数y=(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.C.2D.4二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)(2022•宿迁)分解因式:3x2﹣12=.10.(3分)(2022•宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是.11.(3分)(2022•宿迁)已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是.12.(3分)(2022•宿迁)满足≥k的最大整数k是.13.(3分)(2022•宿迁)若关于x的一元二次方程x2﹣2x+k=0有实数根,则实数k的取值范围是.14.(3分)(2022•宿迁)用半径为6cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径是cm.15.(3分)(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是.16.(3分)(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.17.(3分)(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.18.(3分)(2022•宿迁)如图,在矩形ABCD中,AB=6,BC=8,点M、N分别是边AD、BC的中点,某一时刻,动点E从点M出发,沿MA方向以每秒2个单位长度的速度向点A匀速运动;同时,动点F从点N出发,沿NC方向以每秒1个单位长度的速度向点C匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF,过点B作EF 的垂线,垂足为H.在这一运动过程中,点H所经过的路径长是.三、简答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)19.(8分)(2022•宿迁)计算:()﹣1+﹣4sin60°.20.(8分)(2022•宿迁)解方程:.21.(8分)(2022•宿迁)如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.22.(8分)(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m=,n=;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.23.(10分)(2022•宿迁)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).24.(10分)(2022•宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).25.(10分)(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O 与边BC交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.26.(10分)(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?27.(12分)(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中,,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.28.(12分)(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.2022年江苏省宿迁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2022•宿迁)﹣2的绝对值是()A.﹣2B.﹣C.D.2【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选:D.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择B.2.(3分)(2022•宿迁)下列运算正确的是()A.2m﹣m=1B.m2•m3=a6C.(mn)2=m2n2D.(m3)2=m5【分析】根据幂的乘方与积的乘方,同底数幂的乘法,合并同类项的法则进行计算,逐一判断即可解答.【解答】解:A、2m﹣m=m,故A不符合题意;B、m2•m3=m5,故B不符合题意;C、(mn)2=m2n2,故C符合题意;D、(m3)2=m6,故D不符合题意;故选:C.【点评】本题考查了幂的乘方与积的乘方,同底数幂的乘法,合并同类项,熟练掌握它们的运算法则是解题的关键.3.(3分)(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠1=180°﹣70°=110°,故选:D.【点评】本题主要考查了平行线的性质以及对顶角相等的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.4.(3分)(2022•宿迁)下列展开图中,是正方体展开图的是()A.B.C.D.【分析】根据正方形的展开图得出结论即可.【解答】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故A选项和D选项都不符合题意;四个连成一排的小正方形可以围成前后左右四面,剩下的两面必须分在上下两面才能围成正方体,故B选项不符合题意,C选项符合题意,故选:C.【点评】本题主要考查正方体展开图的知识,熟练掌握正方体的侧面展开图是解题的关键.5.(3分)(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.【点评】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(3分)(2022•宿迁)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.【分析】设该店有客房x间,房客y人;根据“一房七客多七客,一房九客一房空”得出方程组即可.【解答】解:设该店有客房x间,房客y人;根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组.根据题意得出方程组是解决问题的关键.7.(3分)(2022•宿迁)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+1【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.8.(3分)(2022•宿迁)如图,点A在反比例函数y=(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.C.2D.4【分析】根据三角形OAB是等腰直角三角形,当OB最小时,OA最小,再根据两点间的距离公式解答即可.【解答】解:∵三角形OAB是等腰直角三角形,∴当OB最小时,OA最小,设A点坐标为(a,),∴OA=,∵≥0,即:﹣4≥0,∴≥4,∴当a2=时,OA有最小值,解得a1=,a2=﹣(舍去),∴A点坐标为(,),∴OA=2,∵三角形OAB是等腰直角三角形,OB为斜边,∴OB=OA=2.故选:C.【点评】本题主要考查了反比例函数,熟练掌握反比例函数的性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)(2022•宿迁)分解因式:3x2﹣12=3(x﹣2)(x+2).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.10.(3分)(2022•宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是 1.462×105.【分析】根据科学记数法的形式改写即可.【解答】解:146200用科学记数法表示是1.462×105,故答案为:1.462×105.【点评】本题主要考查科学记数法的知识,熟练掌握记数法的形式是解题的关键.11.(3分)(2022•宿迁)已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是5.【分析】根据众数的定义求解即可.【解答】解:这组数据中5出现3次,次数最多,所以这组数据的众数是5,故答案为:5.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.12.(3分)(2022•宿迁)满足≥k的最大整数k是3.【分析】根据无理数的估算分析解题.【解答】解:∵3<<4,且k≤,∴最大整数k是3.故答案为:3.【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.13.(3分)(2022•宿迁)若关于x的一元二次方程x2﹣2x+k=0有实数根,则实数k的取值范围是k≤1.【分析】先计算根的判别式,根据一元二次方程解的情况得不等式,求解即可.【解答】解:∵Δ=(﹣2)2﹣4×1×k=4﹣4k.又∵关于x的一元二次方程x2﹣2x+k=0有实数根,∴4﹣4k≥0.∴k≤1.故答案为:k≤1.【点评】本题考查了根的判别式,掌握“Δ=b2﹣4ac”及根的判别式与一元二次方程解的情况是解决本题的关键.14.(3分)(2022•宿迁)用半径为6cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径是2cm.【分析】设这个圆锥的底面圆的半径为rcm,利用扇形的弧长等于圆锥的底面圆的周长,列出方程,解方程即可得出答案.【解答】解:设这个圆锥的底面圆的半径为rcm,由题意得:2πr=,解得:r=2,∴这个圆锥的底面圆的半径为2cm,故答案为:2.【点评】本题考查了圆锥的计算,理解扇形的弧长等于圆锥的底面圆的周长,从而列出方程是解决问题的关键.15.(3分)(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是﹣x39.【分析】观察指数规律与符号规律,进行解答便可.【解答】解:根据前几项可以得出规律,奇数项为正,偶数项为负,第n项的数为(﹣1)n+1×x2n﹣1,则第20个单项式是(﹣1)21×x39=﹣x39,故答案为:﹣x39.【点评】此题主要考查了规律型:数字的变化类,关键是分别找出符号与指数的变化规律.16.(3分)(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是y=﹣x+2(答案不唯一).【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图象经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.17.(3分)(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM =2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是4.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF =AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.【点评】本题考查了正多边形和圆,掌握正六边形的特点,等边三角形的性质,直角三角形的性质,勾股定理等知识是解决问题的关键.18.(3分)(2022•宿迁)如图,在矩形ABCD中,AB=6,BC=8,点M、N分别是边AD、BC的中点,某一时刻,动点E从点M出发,沿MA方向以每秒2个单位长度的速度向点A匀速运动;同时,动点F从点N出发,沿NC方向以每秒1个单位长度的速度向点C匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF,过点B作EF 的垂线,垂足为H.在这一运动过程中,点H所经过的路径长是π.【分析】如图1中,连接MN交EF于点P,连接BP.首先证明PN=2,利用勾股定理求出BP.由∠BPH=90°,推出点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.求出∠HON,再利用弧长公式求解.【解答】解:如图1中,连接MN交EF于点P,连接BP.∵四边形ABCD是矩形,AM=MD,BN=CN,∴四边形ABNM是矩形,∴MN=AB=6,∵EM∥NF,∴△EPM∽△FPN,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BPH=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.【点评】本题考查矩形的性质,轨迹,相似三角形的判定和性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、简答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)19.(8分)(2022•宿迁)计算:()﹣1+﹣4sin60°.【分析】先计算()﹣1、,再代入sin60°算乘法,最后加减.【解答】解:原式=2+2﹣4×=2+2﹣2=2.【点评】本题考查了实数的运算,掌握负整数指数幂的意义、二次根式的化简及特殊角的函数值是解决本题的关键.20.(8分)(2022•宿迁)解方程:.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可.【解答】解:=1+,2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣1.【点评】此题考查了解分式方程,用到的知识点是解分式方程的步骤:去分母化整式方程,解整式方程,最后要把整式方程的解代入最简公分母进行检验.21.(8分)(2022•宿迁)如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.【分析】由平行四边形的性质可得AB∥CD,AB=CD,由中点的性质可得AE=CF,可证四边形AECF是平行四边形,即可求解.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E、F分别是边AB、CD的中点,∴AE=BE=CF=DF,∴四边形AECF是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的判定和性质,灵活运用平行四边形的判定是解题的关键.22.(8分)(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m=200,n=30;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.【分析】(1)根据各部分所占百分比之和为1可求得n的值,由参加“综合与实践”活动为2天的人数及其所占百分比可得m的值;(2)用总人数乘以活动天数为3天的学生人数所占百分比可得对应人数,从而补全图形;(3)用总人数乘以样本中参加“综合与实践”活动4天及以上的人数所占百分比即可得.【解答】解:(1)n%=1﹣(15%+5%+25%+25%)=30%,∴n=30,m=10÷5%=200;故答案为:200,30;(2)参加“综合与实践”活动天数为3天的学生人数为200×15%=30(名),补全条形图如下:(3)估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为2000×(1﹣5%﹣15%)=1600(名).【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.(10分)(2022•宿迁)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).【分析】(1)根据题意可知甲一定参加比赛,再从其余3名学生中任意选取1名,有3种可能性,其中选中丙的有1种可能性,从而可以求得恰好选中丙的概率;(2)根据题意可以画出相应的树状图,从而可以求得一定有乙的概率.【解答】解:(1)由题意可得,甲一定参加比赛,再从其余3名学生中任意选取1名,有3种可能性,其中选中丙的有1种可能性,故恰好选中丙的概率是,故答案为:;(2)树状图如下:由上可得,一共有12种可能性,其中一定有乙的可能性有6种,故一定有乙的概率是=.【点评】本题考查列表法与树状图法、随机事件,解答本题的关键是明确题意,求出相应的概率.24.(10分)(2022•宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).【分析】过点A作AE⊥CD,垂足为E,根据题意可得AB=DE=20m,先在Rt△ADE 中,利用锐角三角函数的定义求出AE的长,然后在Rt△AEC中,利用锐角三角函数的定义求出CE的长,进行计算即可解答.【解答】解:过点A作AE⊥CD,垂足为E,由题意得:AB=DE=20m,在Rt△ADE中,∠EAD=30°,∴AE===20(m),在Rt△AEC中,∠CAE=45°,∴CE=AE•tan45°=20×1=20(m),∴CD=CE+DE=(20+20)m,∴信号塔的高度为(20+20)m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.(10分)(2022•宿迁)如图,在△ABC中,∠ABC=45°,AB=AC,以AB为直径的⊙O与边BC交于点D.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.【分析】(1)根据等腰三角形的性质和三角形内角和定理可得∠BAC=90°,可得结论;(2)根据图中阴影部分的面积=S△ABC﹣S△BOD﹣S扇形OAD可得结论.【解答】解:(1)直线AC与⊙O相切,理由如下:∵∠ABC=45°,AB=AC,∴∠ABC=∠C=45°,∴∠BAC=180°﹣2×45°=90°,∴BA⊥AC,∵AB是⊙O的直径,∴直线AC与⊙O相切;(2)连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴△ABD是等腰直角三角形,∠AOD=90°,∵AO=OB,AB=4,∴S△ABD=•AB•OD=×4×2=4,∴图中阴影部分的面积=S△ABC﹣S△BOD﹣S扇形OAD=×4×4﹣×4﹣=8﹣2﹣π=6﹣π.【点评】本题考查了切线的判定,勾股定理,扇形的面积,等腰三角形的性质.解题的关键:(1)熟练掌握切线的判定;(1)利用等腰三角形的性质解决问题.26.(10分)(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为300元;乙超市的购物金额为240元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【分析】(1)利用总价=单价×数量,可求出购买30件这种文化用品所需原价,再结合两超市给出的优惠方案,即可求出在两家超市的购物金额;(2)设购买x件这种文化用品,当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为8x元,显然在乙超市支付的费用较少;当x>40时,在甲超市的购物金额为(6x+160)元,在乙超市的购物金额为8x元,分6x+160>8x,6x+160=8x及6x+160<8x三种情况,可求出x的取值范围或x的值,综上,即可得出结论.【解答】解:(1)∵10×30=300(元),300<400,∴在甲超市的购物金额为300元,在乙超市的购物金额为300×0.8=240(元).故答案为:300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为0.8×10x=8x(元),∵10x>8x,∴选择乙超市支付的费用较少;当x>40时,在甲超市的购物金额为400+0.6(10x﹣400)=(6x+160)(元),在乙超市的购物金额为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.【点评】本题考查了一元一次不等式的应用以及一元一次方程的应用,根据两超市给出的优惠方案,用含x的代数式表示出在两家超市的购物金额是解题的关键.27.(12分)(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,tan∠BAC=,在Rt△CDE中,tan∠DCE=,所以tan∠BAC=tan∠DCE.所以∠BAC=∠DCE.因为∠ACP+∠DCE=∠ACB=90°,所以∠ACP+∠BAC=90°,所以∠APC=90°,即AB⊥CD.【拓展应用】(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.。
2023年江苏省宿迁市中考数学测评考试试卷附解析
2023年江苏省宿迁市中考数学测评考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( ) A .150mB .503mC .100mD .1003m2.如图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 3<S 1<S 2 D .S 1=S 2=S 33.如图,O 为□ABCD 的对角线交点,E 为AB 的中点,DE 交AC 于点F ,若S □ABCD =12,则S △DOE 的值为( )A .1B .32C .2D .94 4.下列推理正确的是( ) A .∵a>0,b>0,∴a>b B .∵a>0,b>a ,∴b>0 C .∵a>0,a>6,∴b>0 D .∵a>0,a>b ,∴ab>O5.实数a 、b 在数轴上的对应位置如图所示,则(a -b)2+|b|的值为( ) A .a -2bB .aC .-aD .a +2b6.下列图形中,不能表示长方体平面展开图的是( )A .B .C .D .7.小强、小亮、小文三位同学玩投硬币游戏,三人同时各投出一枚均匀硬币,若出现3个正面向上或3个反面向上,则小强赢;若出现2个正面向上,1 个反面向上,则小亮赢;若出现 1 个正面向上,2个反面向上,则小文赢. 下面说法正确的是( ) A .小强赢的概率最小 B .小文赢的概率最小 C .亮赢的概率最小D.三人赢的概率都相等8.4a2b3-8a4b2+10a3b因式分解时,应提公因式()A.2a2b B.2a2b2 C.4a2b D.4ab29.用长为4 cm、5 cm、6 cm的三条线段围成三角形的事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是10.小王只带20元和50元两种面值的人民币,他买一件学习用品要支付270元,则付款的方式有()A.1种B.2种C.3种D.4种11.如果22129k xy x-+是一个完全平方式,那么k应为()A.2 B.4 C.22y D.44y12.按键能计算出的是()A.32÷(-5)×2. 4 B.-32÷5×2. 4C.- 32÷ 5×(-2. 4)D.32÷5 ×(-2.4)二、填空题13.如图,在直角三角形中,AB=8,BC=6,M是斜边AC上的中点,则BM的长是 .14.在□ABCD中,AB=2,BC=3,∠B、∠C的平分线分别交AD于点E、F,则EF的长是_______.15.请写出两根分别为-2,3的一个一元二次方程 .16.判断题(对的打“√”,错的打“×”(1)511 6021530450663⨯=⨯= ( )(2)1333113÷=÷== ( )(3)2275279162 3103102⨯=⨯== ( )(4)772995.210 5.210410201.3101.310⨯⨯==⨯=⨯⨯( )17.如图,如果所在位置的坐标为(-1,-2),所在位置的坐标为(2,-2),那么所在位置的坐标为.18.棱长是1cm的小立方体共10块,组成如图所示的几何体,那么这个几何体的表面积是 cm2.19.和对应相等的两个直角三角形全等,简写成“斜边直角边”或“”.20.如图,若 AB∥CD,可得∠B+ =180°,理由.21.已知(x-3)2+│2x-3y+7│=0,则x=________,y=_________.3,13 322.已知2x-3y=1,则10-2x+3y=.三、解答题23.据资料记载,位于意大利的比萨余塔在1918~1958年这41年间,平均每年倾斜1.1 mm;1959~1969年这ll年间,平均每年倾斜1.26 mm.那么1918~1969年这52年间,比萨斜塔平均每年倾斜约多少mm (精确到0.01mm)?24.从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00.乙生产零件的尺寸:10.00,9.97,10.03,10.00.(1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?25.为了了解学生的身高情况,抽测了某校50名17岁男生的身高,并将其身高情况绘制成统计图如图所示.回答下面的问题:(1)观察图形,50名17岁男生身高的众数、中位数分别是多少? (2)用计算器计算出这50名学生的平均身高(精确到0.Ol m).26.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店购买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好 !售货员:同学,你好,想买点什么?李小波:我只有 100 元,请帮我安排买 10枝钢笔和 15 本笔记本. 售货员:好,每枝钢笔比每本笔记本贵 2元.退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?27.某运输公司经营货物托运,有火车和汽车两种运输方式,主要参考数据如下:(1)本市某货主要托运一批粮食到A 市,选择汽车运输的费用比选择火车费用多1100元,求本市与A 市之间的路程是多少千米.(2)如果B 市与本市之间的路程为S 千米,货主要托运鲜蔬菜,由于蔬菜会失水或腐烂,运输过程中的损耗平均为200元/时,又知道火车与汽车在路上需临时停车耽误的时间分别为2小时和3.1小时, 且选择汽车与火车运输的总费用相同,求B 市与本市之间的路程S 是多少千米.运输工具 途中平均速度(千米/时) 运费(元/千米) 装卸费用(元) 火车 100 15 2000 汽车802090028.在第26届国际奥林匹克运动会上,获得金牌前七名的国家的奖牌情况如下:(1)?(2)你从这些数据中获得了关于比赛的哪些信息和结论?29.当2x =-时,多项式31ax bx ++的值是 6. 求当2x =时,代数式31ax bx ++的值.30.用科学记数法表示下列各数: (1)700900; (2)一50090000;(3)人体中约有25000000000000个细胞; (4)地球离太阳约有一亿五千万米;(5)在1:50000000的地图上量得两地的距离是1.3厘米,则两地的实际距离为多少米?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.B4.B5.C6.D7.A8.A9.B10.C11.D12.A二、填空题 13. 514.115.如(2)(3)0x x +-=等16.(1)× (2)×(3)× (4)×17.(-3,1)18.3619.斜边,直角边,HL20.∠C ;两直线平行,同旁内角互补21.22. 9三、解答题 23. 1.13 mm24.(1)10.00x =甲mm ,10.00x =乙mm ;(2)200002S =甲.mm 2 ,2000045S =乙.mm 2,甲做得较好25.(1)众数:1.70m ,中位数:1.70 m ;(2)1.68m26.设钢笔每枝x 元,笔记本每本y 元,则 210151005x y x y =+⎧⎨+=-⎩,解得53x y =⎧⎨=⎩27.(1)设本市与A 市之间的路程是x 千米,则15x+2000=20x+900-1100 解得x=440 答:本市与A 市之间的路程是440千米. (2)由题意列方程:200(2)152000200( 3.1)2090010080s ss s +++=+++ 解这个方程,得s=160答:B 市与本市之间的路程为160千米.28.(1)统计员通过观察或调查得到表中的数据 (2)例:金牌最多的国家为美国,奖牌数最多的国家为美国,按金牌数的排序前三名依次为美国、俄罗斯、德国29.把2x =-代入多项式,得318216ax bx a b ++=--+=,由此可得825a b +=-,把2x =代入多项式,得31821514ax bx a b ++=++=-+=- 30.(1)7.009 ×103 (2)-5.OO9×1O 7 (3)2. 5×1013个 (4) 1.5×lO 8 米 (5) 6.5×lO 5米。
2023年江苏省宿迁市中考数学全优试卷附解析
2023年江苏省宿迁市中考数学全优试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨D . 明天本市下雨的可能性是70%2.如图,有一张矩形纸片ABCD ,AB=2.5,AD=1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则CF 的长为( ) A .0.5B .0.75C .1D .1.253.已知二次函数223y ax x =-+的图象如图所示,则一次函数3y x =+的图象不经过( )A .第一象限B . 第二象限C .第三象限D .第四象限4.下列说法正确的是( )A .平行四边形面积公式s ab =(a 、b 分别是一条边长和这条边上的高),S 与a 成反比例B .功率P UI =中,当 P 是非零常数时,U 与I 成反比例C .11y x =-中,y 与x 成反比例 D .12x y -=中,y 与x 成正比例 5.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( ) A .32 B .33 C .34 D .36.如图,在□ABCD 中,∠ABC 的平分线与∠BCD 的平分线相交于点O ,则∠BOC 的度数为( ) A .90°B .60°C .120°D .不能确定7.下面几何图形中,是直棱柱体的是( ) FADE BCA .①②B .①③C .②◎D .②④8.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( ) A . 15°B .30°C . 50°D . 65°9.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( ) A .15025%x =⨯B .25%150x ⋅=C .15025%xx-= D .15025%x -=10.下列各多项式中,在有理数范围内可用平方差公式分解因式的是( ) A .24a +B .22a -C .24a -+D .24a --二、填空题11.抛物线22y x =与24y kx =-的形状相同,则k= .12.如图,在等腰梯形ABCD 中,AD BC ∥,60B ∠=,AD AB =.点E F ,分别在AD ,AB 上,AE BF =,DF 与CE 相交于P ,则DPE ∠= .13.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 互相垂直,AC=9,中位线长215,则对角线BD 的长是 .14.已知一个样本的最大值是182,最小值是130,样本容量不超过100.若取组距为10,则画频数分布直方图时应把数据分成 组.15.质检部门对200件产品进行检查,将所得数据整理后,分成五组,已知其中四个小组的频率分别为0.04,0.12,0.16,0.4.则还有一组的频数为 .16.10位学生分别购买如下尺码的鞋子:2O 、20、2l 、22、22、22、22、23、23、24(单位:cm).这组数据的平均数、中位数、众数三个指标中鞋店老板最不喜欢的是 ,最喜欢的是 .17.如图,在△ABC 中,∠BAC=90°,∠C=30°, AD ⊥BC 于D ,BC=12,则BD= .18.计算y xx y x y---= .19.小明通过计算得知方程7766x kx x--=--有增根,则k的值为 .20.全等三角形的对应边,对应角.21.(23a4b7-19a2b6)÷(-13ab3)2=_ .22.M、N是线段AB的三等分点,P是NB的中点,若AB=12cm,则PA= cm.23.若向南走2m记作2m-,则向北走3m记作m.三、解答题24.补全图 1中实物的三视图.25.已知:如图①,⊙O 的半径是 8,直线 PA、PB 为⊙O的切线,A、B两点为切点.(1)当 OP为何值时,∠APB=90°;(2)如图②,若∠APB =50°,求 AP 的长度. (结果保留三位有效数字)(参考数据:sin50°= 0. 7660, cos50°=0. 6428 , tan5O° =1.1918 , sin25°= 0.4226 ,cos25°= 0. 9063 , tan25°= 0.4663)①②26.对一批西装质量抽检情如下表:抽检件数20040060080010001200CDA B(1)填写表格中次品的概率;(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装 2000 件,为了方便购买次品西装的顾客前来调换,至少应进多少件西装?27.如图,∠A=30°,BC =12 cm ,求⊙O 的半径.28.如图,矩形ABCD 中,对角线AC ,BD 交于点0,DE 平分∠ADC ,交BC 于点E ,∠BDE 的度数为15°.求∠COD 的度数.29.由两个等腰直角三角形拼成的四边形(如图),已知AB 3 (1)四边形ABCD 的周长; (2)四边形ABCD 的面积.正品件数 190 390 576 773 967 1160次品的概率30.画图并回答.(1)以C为顶点在三角形ABC外画∠ACE=∠A,猜测CE与AB的位置关系怎样?(2)过A点画AP上CE,垂足为P,过B点画BQ∥AP,交EC的延长线于点Q;(3)探索:EC与BQ有何位置关系?四边形ABQP是什么四边形(并用三角板来验证).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.C4.B5.B6.A7.D8.A9.C10.C二、填空题11.2±12.120°13.1214.615.5616.平均数,众数17.318.-119.120.相等,相等21.ba22.62-110或823.3三、解答题24.25.(1)连结OA.∵PA、PB 是⊙O的切线,∴∠PAO=90°,∠APO=∠BPO,∵∠APB=90°,∴∠APO=45°,∴∠AOP=45°,∴OA=PA=8,∴OP =(2)连结OA.∵PA 、PB 是⊙O 的切线,∴01252APO BPO APB ∠=∠=∠=, ∵tan 25o OA PA =,∴817.20.4663tan5o OA PA ==≈. 26.(1)见表格 (2)130(3)12000(1)206930÷-≈(件)27.⊙O 的半径为 12 cm.28.60°29.(1)634+,(2)4.5.30.(1)CE ∥AB (2)图略 (3)EC ⊥BQ ,ABQP 是长方形。
2023年江苏省宿迁市中考数学试卷附解析
2023年江苏省宿迁市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在Rt △ABC 中,∠C=90°,AB=12,AC=5,则sinA 的值是( )A .512B .513C .1213D .119122.已知∠BAC=45°,一动点O 在射线AB 上运动,设OA=x ,如果半径为1的⊙O 与射线AC 有公共点,那么x 的取值范围是( )A .20≤≤x B .21≤x < C .21<x ≤ D .2>x 3.已知(-1,y 1),(-2,y 2),(-4,y 3)在抛物线y=-2x 2+8x+m 上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2>y 1>y 3D .y 2>y 3>y 1 4.如图,已知等腰梯形ABCD 中,AD ∥BC ,∠A=110°,则∠C=( )A .90°B .80°C .70°D .60° 5.直角梯形的一腰长为l0 cm ,这条腰与底所成的角为30°,则它的另一腰长为 ( ) A .2.5 cmB .5 cmC .10 cmD .15 cm 6.下列方程一定是一元二次方程的是( ) A .0ax bx c ++=B .22321x x mx -+=C .11x x +=D .22(1)230a x x +--=7.当4α<-时,2|2(2)|a -+的值为( )A .4a +B .a -C .4a --D .a8.如图,在下列三角形中,若AB=AC ,则不能被一条直线分成两个小等腰三角形的是( )A .B .C .D . 9. 下列语句错误的是( )A .连结两点的线段长度叫做两点间的距离B .两点之间,直线最短C .两条平行线中,-条直线上的点到另一条直线的距离叫两条平行线间的距离D .平移变换中,各组对应点连成两线段平行且相等10.如图,AB=AC, EB= EC,那么图中的全等三角形共有( )A .1 对B . 2 对 C. 3 对 D .4 对11.在①(2)(2)a b b a -+;②(34)(43)a b b a -+--;③2(2)(22)x y x y +-;④()()a b b a --的计算中,能利用平方差公式计算的有( )A .1 个B .2 个C .3 个D . 4 个12.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A .1个B 2个C .3个D .4个13.下列说法:④如果“a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是l2、25、21,那么此三角必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c (a>b=c ),那么a 2 :b 2:c 2=2:1:1.其中正确的是( )A .①②B .①③C .①④D .②④二、填空题14.如图中ABC △外接圆的圆心坐标是 .15.平行四边形的一边长为6 cm ,其长度恰是周长的29,则此平行四边形的另一边长为 .16.请你从式子24a ,2()x y -,1,2b 中,任意选两个式子作差,并将得到的式子进行因式分解: .17.如图,在△ABC 中,AD ,AE 分别是BC 边上的中线和高,且BD=4cm ,AE=•3cm ,则△ABC 的面积是________cm 2.18.甲、乙两人环绕长为 400 m 的环形跑道散步一如果两人从同一点背道而行,那么经过2N M Q P E D CB A min 相遇;如果两人从同一点同向而行,那么经过 20 min 相遇,已知甲的速度比乙快,则甲、乙两人散步速度分别为 m/min , m/min.19.如图,直线AB 、CD 、EF 交于点O ,且∠EOD=90°,若∠COA=28°,则∠AOF 、∠BOC 和∠EOA 的度数分别是 、 、 .三、解答题 20..将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.21.如图,花丛中有一路灯灯杆 AB ,在灯光下,小明在D 点处的影长 DE= 3m ,沿 BD 方向行走到达G 点,DG= 5m ,这时小明的影长GH= 5m .如果小明的身高为 1.7m ,求路灯灯杆AB 的高度(精确到0.1 m).22.在△ABC 中,AD 是高,矩形PQMN 的顶点P 、N 分别在AB 、AC 上,QM 在边BC 上.若BC=8cm ,AD=6cm ,且PN=2PQ ,求矩形PQMN 的周长.23.在△ABC中,P是BC上一动点,过点P作PE∥AC交AB于点E,过点P作PF∥AB交AC于点F,当点P运动到什么位置时,四边形AEPF是菱形?24.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.25.一池塘内有水2000 m3,现用抽水机抽水,每小时可抽水200 m3.(1)求池塘中余水量y(m3)与抽水时间x(h)之间的函数解析式;(2)求自变量x的取值范围;(3)画出它的图象.26.如图①,在6×6的方格纸中,给出如下三种变换:P变换,Q变换,R变换.将图形F沿直线x向右平移l格得图形F1,称为作1次P变换;将图形F沿直线y翻折得图形F2,称为作1次Q变换;将图形F绕坐标原点顺时针旋转90°得图形F3,称为作1次R变换.规定:PQ 变换表示先作1次Q变换,再作1次P变换;n R变换表示作n次R变换.解答下列问题:(1)作R4变换相当于至少作次Q变换;(2)请在图②中画出图形F作R2007变换后得到的图形F4;(3)PQ变换与QP变换是否是相同的变换?请在图③中画出PQ变换后得到的图形F5,在图④中画出QP变换后得到的图形F6.27.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.28.设计一张记录全班同学身高、体重的统计表格,并向班级里的每位同学收集数据,填入此表.29. 举一个实际应用题,要求用含 1 个字母的二次多项式表示结果.30.若 a-1 的相反数是 2,b 的绝对值是 3,求a-b 的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.B4.C5.B6.D7.C8.B9.C10.C11.BD13.C二、填空题14.(52), 15.7.5 cm16.不唯一.如241(21)(21)a a a -=+- 17.618.110,9019.62°,l52°,l80°三、解答题20.解:(1)P (抽到奇数)=34. (2)树状图:开始1 12 31 2 3 1 2 3 1 1 3 1 1 2所以组成的两位数是13的概率为21126P ==. 21. 设 AB=x, BD=y ,△ABE 中,∵CD ∥AB ,∴△ECD ∽△EAB ,∴1.733x y =+ △ABH 中,∵FG ∥AB ,∴△HGF ∽△HBA ,∴1.7510x y=+,解得 x=5.95 即路灯杆 AB 的高度约为 6.0 m .14.4 cm..23.P运动到∠A的平分线与BC的交点24.假命题,如图所示,AB⊥BD于B,CD⊥BD于D,AB=CD,但AC不平行BD25.(1)y=2000-200x;(2)0≤x≤10;(3)图略26.(1)2 (2)略(3)略27.略28.略29.若一个长方形的面积比边长为x 的正方形的面积大 3,求这个长方形的面积. (23x ) 30.-4或2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年江苏省宿迁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)的倒数是(1.).AC..﹣D2B.2考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解:的倒数是﹣2,解答:故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.32)?宿迁)计算(﹣a)的结果是(20153.(3分)(6565aD.CB.a .﹣a.﹣Aa考点:幂的乘方与积的乘方.根据幂的乘方计算即可.分析:623,解:(﹣a)=a解答:D故选点评:此题考查幂的乘方问题,关键是根据法则进行计算.)是(2与∠1所截,∠c被直线b,a宿迁)如图所示,直线?2015(分)3(.4.A.同位角B.内错角C.同旁内角D.邻补角考点:同位角、内错角、同旁内角.分析:根据三线八角的概念,以及同位角的定义作答即可.解答:解:如图所示,∠1和∠2两个角都在两被截直线直线b和a同侧,并且在第三条直线c (截线)的同旁,故∠1和∠2是直线b、a被c所截而成的同位角.故选A.点评:本题考查了同位角、内错角、同旁内角的定义.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角.5.(3分)(2015?宿迁)函数y=,自变量x的取值范围是()A.x>2 B.x<2 C.x≥2 D.x≤2考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0,解得x≥2.故选:C.点评:本题考查函数自变量的取值范围,解决本题的关键是二次根式的被开方数是非负数.6.(3分)(2015?宿迁)已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B. 4 C. 5 D.6考点:多边形内角与外角.分析:设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.解答:解:设多边形的边数为n,根据题意列方程得,(n﹣2)?180°=360°,n﹣2=2,n=4.故选B.点评:本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.7.(3分)(2015?宿迁)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.解答:解:由一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴直线y=bx+k经过第一、二、四象限,∴直线y=bx+k不经过第三象限,故选C.点评:本题考查一次函数图象与系数的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b >0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)(2015?宿迁)在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),y=的图象上,若△PAB为直角三角形,则满足条件的点P点P在反比例函数的个数为()A.2个B.4个C.5个D.6个考点:反比例函数图象上点的坐标特征;圆周角定理.分析:分类讨论:①当∠PAB=90°时,则P点的横坐标为﹣3,根据反比例函数图象上点,),根据两点间的距离公式和勾P(x1个;②当∠APB=90°,设点有的坐标特征易得P2222°PBA=90P点有4个,③当∠()+(x﹣3)+=36()x+3股定理可得()+,此时个.点的横坐标为3,此时P点有1时,P,所以﹣y=得x=°时,P点的横坐标为﹣3,把﹣3代入y=当∠解答:解:①PAB=90 此时P点有1个;2222222=,ABx+3()+=(),PB(x﹣3)+()x°②当∠APB=90,设P(,,)PA=2 =36(3+3),222因为PA=AB,+PB2222 =36,)(所以(x+3)+()+x﹣3+)(2422,=+4=0﹣整理得x9x,所以x=x,或P个,点有4所以此时个;1点有,所以此时y=y=代入,把3点的横坐标为时,°PBA=90③当∠Px=3得P 个.点有P综上所述,满足条件的6 .D故选.y=(k为常数,本题考查了反比例函数图象上点的坐标特征:反比例函数k≠0)点评:的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)(2015?宿迁)某市今年参加中考的学生大约为45000人,将数45000用科学记数4.10法可以表示为 4.5×—表示较大的数.考点:科学记数法n的值时,n,n为整数.确定10的形式,其中1≤|a|<10分析:科学记数法的表示形式为a×的绝对值与小数点移动的位数相同.当原数n要看把原数变成a时,小数点移动了多少位,是负数.是正数;当原数的绝对值<1时,n绝对值>1时,n4 10.用科学记数法表示为4.5×解答:解:将450004 10.故答案为:4.5×n|a|≤的形式,10其中1点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×的值.a的值以及n<10,n为整数,表示时关键要正确确定.4,则a的值为宿迁)关于x<的不等式组的解集为1x<3?10.(3分)(2015考点:解一元一次不等式组.分析:求出不等式组的解集,根据已知得出a﹣1=3,从而求出a的值.解:解答:∵解不等式①得:x>1,解不等式②得:x<a﹣1,∵不等式组的解集为1<x<3,∴a﹣1=3,∴a=4故答案为:4.点评:本题考查了一元一次不等式组,解一元一次方程的应用,关键是能求出a﹣1=3.3.x﹣2)4x=x﹣x(x+2)(?311.(分)(2015宿迁)因式分解:提公因式法与公式法的综合运用.考点:,进而利用平方差公式分解因式得出即可.首先提取公因式x分析:34x﹣解:x解答:2 4)=x(x﹣).2)=x(x+2(x﹣.)2﹣x()x+2(x故答案为:点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.﹣=0的解是x=62015?宿迁)方程.(12.3分)(考点:解分式方程.专题:计算题.分析:先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根.解答:解:去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.点评:此题考查了解分式方程的知识,注意分式方程要化为整式方程求解,求得结果后一定要检验.13.(3分)(2015?宿迁)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD= 100°.考点:圆周角定理;圆内接四边形的性质.专题:计算题.分析:先根据圆内接四边形的性质得到∠A=180°﹣∠C=50°,然后根据圆周角定理求∠BOD.解答:解:∵∠A+∠C=180°,∴∠A=180°﹣130°=50°,∴∠BOD=2∠A=100°.故答案为100.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.14.(3分)(2015?宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为5 .考点:三角形中位线定理;直角三角形斜边上的中线.分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF 应等于AB的一半.解答:解:∵△ABC是直角三角形,CD是斜边的中线,CD=AB,∴又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,EF=×10=5cm∴.故答案为:5.点评:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.y=x),直线P的坐标为(0,4(15.(3分)2015?宿迁)如图,在平面直角坐标系中,点﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.考点:一次函数图象上点的坐标特征;垂线段最短.分析:认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.,°PMB=90,则:∠AB⊥PM作P解:如图,过点解答:当PM⊥AB时,PM最短,y=x﹣3与x轴、y轴分别交于点A,B,因为直线可得点A的坐标为(4,0),点B的坐标为(0,﹣3),AB==5,,,Rt△AOB中,AO=4BO=3在∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,=,∴,即:PM=所以可得:.点评:本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.2x=m+n2x+3的值相等,则n)时,代数式x﹣m2015?宿迁)当x=m或x=n(≠(16.(3分)2.2x+3的值为3时,代数式x﹣二次函数图象上点的坐标特征.考点:22的值相等,得到抛物x﹣2x+3x=n(m≠n)时,代数式2x+3分析:设y=x﹣由当x=m或,求得m+n=2,再把﹣m+n=2代入即可求得结果.=线的对称轴等于2解答:解:设y=x﹣2x+3,2∵当x=m或x=n(m≠n)时,代数式x﹣2x+3的值相等,﹣,∴=∴m+n=2,∴当x=m+n时,22即x=2时,x﹣2x+3=(2)﹣2×(2)+3=3,故答案为:3.点评:本题考查了二次函数图象上点的坐标特征,熟记抛物线的对称轴公式是解题的关键.三、解答题(本大题共10小题,共72分,解答时应写出必要的文字说明、证明过程或演算步骤)10﹣.+﹣3)﹣(π217.(6分)(2015?宿迁)计算:cos60°﹣考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.﹣+2﹣1解答:解:原式==1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2;x+2x=3宿迁)(1)解方程:18.(6分)(2015?)解方程组:(2.考点:解一元二次方程-因式分解法;解二元一次方程组.分析:(1)先移项,然后利用“十字相乘法”对等式的左边进行因式分解,然后解方程;(2)利用“加减消元法”进行解答.解答:解:(1)由原方程,得2x+2x﹣3=0,整理,得(x+3)(x﹣1)=0,则x+3=0或x﹣1=0,解得x=﹣3,x=1;21),(2由①×2+②,得5x=5,解得x=1,将其代入①,解得y=﹣1.故原方程组的解集是:.点评:本题考查了解一元二次方程﹣﹣因式分解法、解一元二次方程.因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.19.(6分)(2015?宿迁)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50,并补全频数分布直方图;(2)C组学生的频率为0.32,在扇形统计图中D组的圆心角是72度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?考点:频数(率)分布直方图;用样本估计总体;扇形统计图.分析:(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.解答:解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:=;0.32;D组的圆心角(2)C组学生的频率是10+8=1860kg的学生是人,(3)样本中体重超过=人,该校初三年级体重超过60kg的学生故答案为:(1)50;(2)0.32;72.点评:此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.20.(6分)(2015?宿迁)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.个球,摸出红球的概率为;(1)从袋中随机摸出1(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.考点:列表法与树状图法.分析:(1)直接利用概率公式求出摸出红球的概率;(2)利用树状图得出所有符合题意的情况,进而理概率公式求出即可.=;个球,摸出红球的概率为:解:(1)从袋中随机摸出1解答:故答案为:;(2)如图所示:,=.种,故两次摸到的球颜色不相同的概率为:所有的可能有12种,符合题意的有10点评:此题主要考查了树状图法求概率,根据题意利用树状图得出所有情况是解题关键.21.(6分)(2015?宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.考点:等腰三角形的性质;平行线的性质.专题:证明题.分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.解答:证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,.D∠C=2∴∠.点评:(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.22.(6分)(2015?宿迁)如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:由ED与BC都和AC垂直,得到ED与BC平行,得到三角形AED与三角形ABC相似,由相似得比例,在直角三角形AED中,利用锐角三角函数定义求出AD的长,在直角三角形BDC 中,利用锐角三角函数定义求出BC的长即可.解答:解:∵ED⊥AC,BC⊥AC,∴ED∥BC,∴△AED∽△ABC,=,∴在Rt△AED中,DE=12米,∠A=22°,AD==30,即米,∴tan22°=BDC=∠中,tan 在Rt△tan38.5,即°BDC==0.8①,==0.4②=,∵tan22°联立①②得:BC=24米.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.23.(8分)(2015?宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.是平行四边形;BDFC)求证:四边形1(.(2)若△BCD是等腰三角形,求四边形BDFC的面积.考点:平行四边形的判定与性质;等腰三角形的性质.分析:(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.解答:(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;=2,=)①BC=BD=3时,由勾股定理得,AB=(2=6;2BDFC的面积=3×所以,四边形②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,=,由勾股定理得,=CG==3;的面积=3 ×所以,四边形BDFC③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成了;.3或6的面积是BDFC综上所述,四边形.点评:本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.24.(8分)(2015?宿迁)如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反y=(x>0)的图象经过点A,动直线x=t(比例函数0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.考点:反比例函数综合题.y=(x>0))把点1A坐标代入,即可求出k的值;分析:(﹣t+3MN=﹣t3),则的解析式,设M(t),,N(t,由三角,)先求出直线(2AB形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.y=(x>0,1)代入反比例函数)得:81解答:解:()把点A(y=,k=1×8=8,∴k=8;(2)设直线AB的解析式为:y=kx+b,根据题意得:,,3﹣b=,k=解得:y=x﹣的解析式为:3;∴直线AB,t﹣3),,),N(t设M(t﹣t+3,MN= 则22,(t﹣3()﹣t+3)t=+﹣t+t+4=的面积∴△BMN﹣S= t的二次函数,的面积S是∴△BMN,∵﹣<0 有最大值,∴S BMN;的面积的最大值为当t=3时,△,(3)∵MA⊥AB ,∴设直线MA的解析式为:y=﹣2x+c 把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=﹣2x+17,(舍去),得:或解方程组的坐标为(,16),∴M t=.∴点评:本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组才能得出结果.25.(10分)(2015?宿迁)已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于.E 点;EC=EB?ED1(1)如图,求证:EA?;AC=2BD??BC2)如图O,若=,AD是⊙的直径,求证:AD2((3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.考点:圆的综合题.分析:(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.解答:(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA?EC=EB?ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF?AD=BD?BC.∴AC?AD=2BD?CD;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,.BC=DF=4∴.点评:本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.26.(10分)(2015?宿迁)如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的2边长分别为2a,2b,点A,D,G在y轴上,坐标原点O为AD的中点,抛物线y=mx过C,F两点,连接FD并延长交抛物线于点M.(1)若a=1,求m和b的值;)求的值;(2(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由.考点:二次函数综合题.2,y=mxC点坐标代入,1).将21分析:()由a=1,根据正方形的性质及已知条件得出C(22,即可求出b的值;F(2b,2b+1)代入y=x求出m=,则抛物线解析式为xy=,再将点.将,a)C2aAD2a2()由正方形ABCD的边长为,坐标原点O为的中点,得出C(222,xy=代入)2b+a,2b(F再将,xy=则抛物线解析式为,m=求出,y=mx坐标代入.22)a(1(负值舍去)±,﹣a=0,把a看作常数,利用求根公式得出b=﹣整理得出方程b2ab;那么=1+2a﹣,.再求出M点坐标为(2a(3)先利用待定系数法求出直线FD的解析式为y=x+a3a+2a),,利用中点坐标公式得到以FM.又2a)F(为直径的圆的圆心2a+23a﹣aO′的坐标为(2a,3a),再求出O′到直线AB(y=﹣a)的距离d的值,以FM 为直径的圆的半径r的值,由d=r,根据直线与圆的位置关系可得以FM为直径的圆与AB所在直线相切.解答:解:(1)∵a=1,∴正方形ABCD的边长为2,∵坐标原点O为AD的中点,∴C(2,1).2点,y=mx过C∵抛物线,解得,m=∴1=4m2 y=x∴抛物线解析式为,2 2b+1)代入,y=x将F(2b,2(负值舍去)±.得(2b+1=×2b),b=1m=,;故b=1+(2)∵正方形ABCD的边长为2a,坐标原点O为AD的中点,∴C(2a,a).2 C点,∵抛物线y=mx过2,m= ∴a=m?4a,解得2 y=∴抛物线解析式为,x2y=)代入,2b+a将F(x,2b2),2b+a=×(得2b22整理得b﹣2ab﹣a=0,±)a(负值舍去)(解得b=1,=1+;∴(3)以FM为直径的圆与AB所在直线相切.理由如下:∵D(0,a),∴可设直线FD的解析式为y=kx+a,∵F(2b,2b+a),∴2b+a=k?2b+a,解得k=1,∴直线FD的解析式为y=x+a.2,y=将y=x+a代入x22x=2a x+a=±x,解得a(正值舍去),得23a﹣2aM∴a).点坐标为(2a﹣,1+)a,,2b+a),b=(2b∵F(3a+2a),2a+2a,(∴F∴以FM为直径的圆的圆心O′的坐标为(2a,3a),∴O′到直线AB(y=﹣a)的距离d=3a﹣(﹣a)=4a,F==4a,∵以FM为直径的圆的半径r=O′∴d=r,∴以FM为直径的圆与AB所在直线相切.点评:本题是二次函数的综合题型,其中涉及到正方形的性质,待定系数法求二次函数、一次函数的解析式,一元二次方程的求根公式,直线与抛物线交点坐标的求法,直线与圆的位置关系.综合性较强,难度适中.正确求出抛物线的解析式是解题的关键.。