大学物理下册第十三章
大学物理第13章_真空中的静电场(场强)

dl
则
q dq dl 2R
1 dq 0 dE r 2 40 r
O
x
dE
dE
dE x x
由对称性有
R
E dE x dE cosi 1 q cos l dl i 2 40 2R r
r
P
cos x r r x R
实验规律 场的 性质 场与物质的相 互作用
静电场:相对于观察者静
止的电荷所产生的电场
§1-1电荷.库仑定律
一.两种电荷 1.自然界只存在两种 电荷,同种电荷相排 斥,异种电荷相吸引
2.美国物理学家富兰克林首先称其为正 电荷和负电荷
3.带电的物体叫带电体 4.质子和电子是自然界存在的最小正、负电 荷,其数值相等,常用+e和-e表示
1986年 e 的推荐值为
e 1.60217733 10
C(库仑)为电量的单位
19
C
二.电荷量子化 1.实验表明:任何带电体或其它微观粒 子所带的电量都是 e 的整数倍
----物体所带电荷量量值不连续
2.电荷量子化:电荷量不连续的性质
三.电荷守恒定律 常见的两种起电方式: 摩擦起电 摩擦起电的本质:电子从一个 物体转移到另一个物体
定义:电场强度
F E q0
单位:牛顿/库仑(N/C)或伏特/米(V/m) 三.场强叠加原理 设空间有点电荷q1、q2 、q3 … qn
P点处的试探电荷 q0 所受电场力为
n F F1 F2 Fn Fi
i 1
F F1 F2 Fn P点的场强为 E q0 q0 q0 q0
大学物理第13章习题解答

引言概述:大学物理第13章是力学的一个重要章节,主要介绍了质点系和刚体的运动学和动力学问题。
习题作为巩固章节知识和培养解决问题能力的重要手段,对于学生的学习具有重要的意义。
本文将对大学物理第13章的习题进行解答,以帮助读者更好地理解和掌握力学的相关知识。
正文内容:1.质点系的运动学问题1.1相对位矢和质心位矢的关系1.2质心速度的计算方法1.3质心加速度的计算方法1.4相对位矢和质心位矢之间的关系1.5相对位矢和质心位矢的运动规律2.质点系的动力学问题2.1质点间相互作用力的计算方法2.2质点系受到的合外力和合内力的关系2.3质点系统的动量守恒定律2.4质点系的动量定理2.5质点系的冲量和动量变化的关系3.刚体的运动学问题3.1刚体的转动轴和转动角速度的关系3.2刚体的几何中心和质心的关系3.3刚体的角速度和线速度的关系3.4刚体的力矩和角加速度的关系3.5刚体的运动规律和动能的计算方法4.刚体的动力学问题4.1刚体的力矩和合外力的关系4.2刚体的力矩定理和动力学定理的关系4.3刚体的动量矩定理4.4刚体的角动量守恒定律4.5刚体的角动量定理和动能定理的关系5.刚体的平衡问题5.1刚体的平衡条件5.2刚体的平衡方程的推导和应用5.3刚体的平衡条件和力矩定理的关系5.4刚体的平衡问题和静力学问题的区别和联系5.5刚体的平衡问题和静态平衡问题的应用总结:大学物理第13章习题解答了质点系和刚体的运动学和动力学问题,并深入探讨了质点系和刚体的平衡问题。
通过解答这些习题,我们可以更好地理解和掌握力学的相关知识,提高解决问题的能力和方法。
同时,我们也应该注重理论与实际结合,将所学的知识应用到实际问题中,不断提高自己的应用能力和创新能力。
希望读者通过本文的阐述,能够对大学物理第13章有更深入的理解,并能够在学习和解题中取得更好的成绩。
大学物理第13章学习题答案

习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带.∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(s i n =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a s i n nk λ,而空气中为λϕk a =s i n ,∴ϕϕ'=s i n s i n n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(s i n +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕs i n a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =s i n 知,衍射角ϕ变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =s i n ;斜入射时,λθϕk a '=-)s i n (s i n ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽? 答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(s i n ),2,1,0(s i n )( k k a k k b a λϕλϕ可知,当k ab a k '+=时明纹缺级.(1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级; (3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞.13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为)12(sin +=k a ϕ 2λ 当6000=λoA 时,2=kx λλ=时,3=k 重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2xλ得 4286600075=⨯=x λoA13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆半角宽度为naλθ1sin-=(1)空气中,1=n ,所以3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m33101100.51010.0105000sin ----⨯=⨯⨯=θ rad(2)浸入水中,33.1=n ,所以有33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m331011076.3101.033.1105000sin----⨯≈⨯⨯⨯=θ rad13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-fx故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm当 3=k ,得60003=λoA4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=oA由λϕk b a =+sin )(知,最多见到的条纹级数max k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m(1)由光栅衍射明纹公式λϕk b a =+s i n )(,因1=k ,又fx ==ϕϕt a n s i n所以有λ=+fx b a 1)(即 62101100.51060105000---⨯⨯⨯⨯=+=ba f x λ2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0s i n )(=+ϕb a ,所以0s i n =≈ϕϕ斜入射时,0)s i n )(s i n (=±+θϕb a ,即0s i n s i n =±θϕ因︒=30θ,∴21t a n s i n ±==≈fx ϕϕ故22103010602121--⨯=⨯⨯==f x m 30= cm这就是中央明条纹的位移值.13-16 波长6000=λoA 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数. 解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a 101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m (2)因第四级缺级,故此须同时满足λϕk b a =+sin )( λϕk a '=sin解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )(λϕsin )(b a k +=当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹? 解:(1)中央明纹宽度为02.010501048002270⨯⨯⨯⨯==-f al λmm 4.2=cm(2)由缺级条件λϕk a '=sin λϕk b a =+sin )(知k k ab a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度47105.302.010500022.122.1--⨯=⨯⨯==Dλθ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式Dλθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA2=k 时,91.1245sin 75.22=⨯⨯=︒λoA3=k 时,30.1389.3==λoA4=k 时, 97.0489.3==λoA故只有30.13=λoA 和97.04=λoA 的X 射线能产生强反射.。
大学物理(下册):第13章 波动光学(1)

d
O
S2 D
5. 空间相干性 光源总是有一定的线度的,当光源线度不大时:
X
S1
S’
b
d
S
S2
O
I
D
从S和S’发出的光产生的干涉条纹叠加后, 仍能分辩清楚明暗条纹。
当光源线度b较大时: X
S’ S1
b
d
S
S2
O
I
D
从S和S’发出的光产生的干涉条纹叠加后,干涉 条纹对比度降低,明暗条纹变得模糊。
当光源线度b增大到某一限度时: X
For showing that it is possible with rapid laser technique to see
how atoms in a molecule move during a chemical reaction.
The Academy's citation:
For his studies of the transition
Sam
Cat
Mag{F [Sam]} Phase{F [Cat]}
Mag{F [Cat]} Phase{F {Sam]}
位相变化
位相差
光程
光程差
通过不同介质的同频率光波,它们的 位相变化均可用真空中的几何路程表示。
光程: L = ( ni di )
S1
d
S2 b
r1
r2
D d
P
x
0
零级 明纹
传于世。
奠基人之一
1807年出版的《自然哲学讲义》中描述了现在众所周知的双
缝干涉的基本实验。但是,他的理论却没有立即得到重视,被说
成是“没有任何价值”的、“荒唐”和“不合逻辑”的。这个自
大学物理热学第十三章 热力学基础 PPT

Mayer公式
•摩尔热容比
CP,m i 2
CV ,m i
泊松比
CV ,m
i 2
R
Cp,m
CV ,m
R
i
2 2
R
单原子分子理想气体 i 3 1.67
双原子分子理想气体 i 5 1.40
多原子分子理想气体 i 6 1.33
pV m RT RT
M
Q CV ,m (T2 T1)
•过程曲线: p b T2
0
a T1 V
吸收得热量全部用来内能增加;或向外界放热以内能减小为代 价;系统对外不作功。
3、理想气体定体摩尔热容 CV ,m
•定义:1mol、等体过程升高1度所需得热量
•等体过程吸热 QV CV ,m (T2 T1)
•等体过程内能得增量
E
QV
i 2
R
T2
T1 CV ,m T2
13-1 准静态过程 功 热量
一、准静态过程
可用P-V 图上得一条有
方向得曲线表示。
二、功
准静态过程系统对外界做功:
元功: dW Fdl pSdl pdV
dl
系统体积由V1变 为V2,系统对外 界作总功为:
V2
W= pdV
V1
p F S pe
光滑
注意:
V2
W= pdV
V1
1、V ,W>0 ;V ,W<0或外界对系统作功 ,V不变时W=0
V2 PdV
V1
i CV ,m 2 R
CP,m
CV ,m
CP,m CV ,m R
等容 等压
WV 0
QV CV ,m (T2 T1) E
QP Cp,m (T2 T1) CV ,m (T2 T1) P(V2 V1) WP P(V2 V1) R(T2 T1)
大学物理13章-2

n1
d
n1
=
k
(k 1,2, ) 明纹
(2k 1)
(k 0,1,2, ) 暗纹
2
n
薄膜厚度相同的地方光程差相同,从而对应同一级
干涉条纹,故将此类干涉称为等厚干涉。
(演示 V 3.0 劈尖干涉装置和图样)
上页 下页 返回 结束
6
大学
物理学 ➢劈尖干涉条纹的分布特点
第13章 波动光学
2nd
2D
km 141.1
考虑 d = 0 处出现 k = 0 暗条纹,所以共有142条暗纹。
上页 下页 返回 结束
15
大学 物理学
另解:
第13章 波动光学
相邻条纹间距
b
2n
2
L
2D
L =12cm 的长度内呈现的
暗条纹数
L b
2D
141.1
n1
tan
D L
n
n1
n1
d
L
考虑棱边处出现 0 级暗条纹,所以共有142条暗纹。
(2) 检验光学元件 表面的平整度
d
工件表面是上凸的
l N
2
上页 下页 返回 结束
10
大学 物理学
平晶 工件
第13章 波动光学
上页 下页 返回 结束
11
大学
物理学 例13-7 课本P.136 例13-5
第13章 波动光学
利用劈尖干涉可以测量微小角度。折射率n=1.4的 劈尖在单色光垂直照射下,测得两相邻明纹之间的距离
增反膜
利用薄膜上、下表面反射光的光程差满足干涉相长 ,使反射光因干涉而加强,这种膜叫增反膜。
上页 下页 返回 结束
大学物理第十三章复习笔记波动光学基础
2024/1/25
28
关键知识点总结回顾
01
光的干涉
02
光的衍射
干涉是波动性质的一种表现,当两束 或多束相干光波在空间某一点叠加时 ,其振幅相加而产生的光强分布现象 。如双缝干涉、薄膜干涉等。
光在传播过程中遇到障碍物或小孔时 ,偏离直线传播的现象。如单缝衍射 、圆孔衍射等。衍射现象表明光具有 波动性。
2024/1/25
21
偏振光在显示技术中应用
液晶显示
液晶显示技术利用液晶分子的双折射性质,通过控制液晶分子的排列方式来改变光的偏振态,从而实现图像的显 示。液晶显示具有功耗低、体积小、重量轻等优点,被广泛应用于电视、计算机显示器等领域。
OLED显示
OLED(有机发光二极管)显示技术利用有机材料的电致发光性质,通过控制电流来改变像素的发光状态。OLED 显示具有自发光的特性,不需要背光源,因此具有更高的对比度和更广的视角。同时,OLED显示还可以实现柔 性显示和透明显示等特殊效果。
17
04
偏振光性质与应用
2024/1/25
18
马吕斯定律和布儒斯特角
2024/1/25
马吕斯定律
描述线偏振光通过偏振片后光强的变 化规律,即$I = I_0 cos^2 theta$, 其中$I_0$为入射光强,$theta$为偏 振片透振方向与入射光振动方向的夹 角。
布儒斯特角
当自然光以布儒斯特角入射到两种介 质的分界面时,反射光为完全偏振光 ,且振动方向与入射面垂直。布儒斯 特角的大小与两种介质的折射率有关 。
30
相关领域前沿动态介绍
光学微操控技术
利用光的力学效应,实现对微观粒子的精确 操控,为生物医学、微纳制造等领域提供了 新的研究工具。
大学物理 第十三章 静电场中的导体与电介质
E E0 E
E
E0
电介质极化特点:内部场强一般不为零。
25
– – – – – – – – –
– – – – – – – –
– – – – – – – –
– – – – – – – –
3*.描述极化强弱的物理量--极化强度 (Polarization vector)
7
2.3 孤立带电导体表面电荷分布 一般情况较复杂;孤立的带电导体,电荷分布的实验 定性:
在表面凸出的尖锐部分(曲率是正值且较大)电荷面密度较大, 在比较平坦部分(曲率较小)电荷面密度较小, 在表面凹进部分带电面密度最小。
孤立带电 导体球
尖端放电
C
8
金属尖端的强电场的应用一例
场离子显微镜(FIM) 原理: 样品制成针尖形状, 针尖与荧光膜之间加高压, 样品附近极强的电场使吸附在表面的 原子电离,氦离子沿电力线运动, 撞击荧光膜引起发光, 从而获得样品表面的图象。
12
R Q q l
例:无限大的带电平面的场中平行放置一无限大金属平 板求:金属板两面电荷面密度。
解:设金属板面电荷密度为1和2 如图可视为三个无限大的带电平面 由对称性和电量守恒 1 2 导体体内任一点P 场强为零 1 2 0 2 0 2 0 2 0
讨论:静电场对导体和电介质的作用以及后者对前者的影响
论述的根据是静电场的基本规律和导体与电介质的电结构 特征。 qi 基本性质方程: E d S E dl 0 0 L S 导体 存在大量的可自由移动的电荷(conductor); 绝缘体 理论上认为一个自由移动的电荷也没有 也称 电介质(dielectric); 半导体 介于上述两者之间(semiconductor)。
大学物理下第十三章光干涉3
玻璃圆锥
7
4
7 4
平玻璃
2e λ / 2 ( 2k 1) 2
2e k ( k 0,1,2, )
km
2e
3.5
请画出下列装置的干涉条纹(暗纹),已知光垂直入射。
平玻璃
玻璃圆锥
7
4
空气 柱面平凹玻璃
7 4
平玻璃
测定微小长度 干涉膨胀仪
l
l0
d d 3.5
2
检验光学元件表面的平整度
n2 A
e
n1
C
当e一定时,越靠近中心, i 越小,
也下降 , cos上升,k越大。环纹的
级次越高(中央级数高)
对明纹公式求导
2n2e cos
2
k
2n2e( sin ) k
角宽度
()k1
2n2e sin
()k1
12
1)说明等倾条纹靠近边缘越密 。 n1
iD B
2)薄膜厚度增加时,条纹也越密 。
2
* 衍射的分类
菲涅尔衍射
S
缝P
夫琅禾费 衍射 缝
光源、屏与缝相距有限远
在夫
实琅
验禾 中费
S
L1
R
实衍
现射
光源、屏与缝相距无限远
L2
P
二、 单缝的夫琅和费衍射
R
L
衍射角
a
fP
Q
o
1、单缝的夫琅禾费衍射:
max a sin
暗纹中心
a sin 2k k 2
明纹中心
a sin (2k 1) 2A
e
e b' b 2
e b' b2
b
大学物理13章答案
第13章 静电场中的导体和电介质13.1一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04c q U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl . 设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦSdD d 012d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离图13.3球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q q U r a b πεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q =3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为σ1S 和q 2 = σ2S ,q 1 = 在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2),所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C).B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C). (2)两板电势差为ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0, 所以 ε0 = 10-9/36π,因此 ΔU = 144π = 452.4(V). 由于B 板和C 板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B 有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得 0. ①q 1 + q 2 = 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为σ1 = q 1/S 、σ2 = q 2/S 、σ = q/S ,图13.42 图13.5它们产生的场强大小分别为E 1 = σ1/ε0、E 2 = σ2/ε0、E = σ/ε0.在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得E 1 - E 2 – E = 0,即 σ1 - σ2 – σ = 0,或者说 q 1 - q 2 + q = 0. ② 解得电量分别为q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为 1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0. 由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0. 由于两板带等量异号的电荷,所以 σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d , 所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),σ2 = -σ3 = -8.84×10-7(C·m -2).13.7一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示. (提示:可看作两个球电容器的并联,且地球半径R >>R 2)[一:并联电容法.在外球外面再接一个半径为R 3壳,外壳也接地.内球壳和外球壳之间是容为 104C πε=壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-图13.6202214R R R πε=-.方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-.根据高斯定理可得两球壳之间的场强为122002`44R q q E r R r πεπε==-,负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r=⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-=球面间的电容为202214R q C U R R πε==-.13.8球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为 ε1S/d 1和C 2 = ε2S/d 2. C 1 = 总电容的倒数为122112*********d d d d C C C S S S εεεεεε+=+=+=,总电容为122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍? [解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦS d S D d12d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l21ln 2R R λπε=.电容为212ln(/)q l C U R R πε==.在真空时的电容为00212ln(/)l q C U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为 Dr S D SSd 24d d π==⋅=Φ⎰⎰S D高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P ,所以 P = D - ε0E =031(1)4rQ r επ-r .在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为`101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2.13.13一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U .当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ; 介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ①由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ②解联立方程得01112211/C U C Q Q C C C C ==++,真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S d εσε===++.同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S d εεσε==++.13.15平行板电容器极板面积为200cm 2,板间距离为 1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=-20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2V V W w V E Vε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰. 当R = b 时,能量为210ln4l b W a λπε=;当R =22200ln48l l b W a λλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l , 根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln44bV aQ Q bW W r lr l a πεπε===⎰⎰. (3)由公式W = Q 2/2C 得电容为222ln(/)Q l C W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=,得1212120PFC C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为U 2 = Q/C 2 = CU/C 2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 μ I 3μ I
第十三章 稳恒磁场 13—1 求各图中点 P 处磁感应强度的大小和方向。 [解] (a) P 点在水平导线的延长线上,水平导线在 P 点不产生磁场。P 点到竖直导线两端的连 线与电流方向的夹角分别为 θ = 0 , θ = π 。因此,P 点的磁感应强度的大小为
B = μ 0 I ⎛
0
π ⎞
⎜ cos 0 − cos ⎜ =
2 2
μ 0 I
4πa ⎝ 2 ⎠ 4πa 方向垂直纸面向外。 (b) 两条半无限长直导线在 P 点产生的磁场方向相同,都是垂直于纸面向内,它们在 P 点产 生的磁场的磁感应强度之和为
B = 2 μ 0 I =
μ 0 I
1 4πr 2πr
半圆形导线在 P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形 导线在圆心处产生的磁感应强度的一半,即
B2
=
1 μ 0
I
=
μ 0 I
2 2r 4r 方向垂直纸面向内。
(c) P 点到三角形每条边的距离都是
d = 3 a 6
每条边上的电流在 P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是
B = 0 (cos 30 0 − cos150 0 )= 0 0 4πd 2πa
故 P 点总的磁感应强度大小为
B = 3B = 9μ 0 I 0 2πa
方向垂直纸面向内。
13—2 有一螺线管长 L=20cm,半径 r=2.0cm,导线中通有强度为 I=5.0A 的电流,若在螺 线管轴线中点处产生的磁感应强度 B= 6.16 ×10 −3 T 的磁场,问该螺线管每单位长度应多少
匝?
[解] 已知载流螺线管轴线上场强公式为 μ0 B = nI (cos β1 − cos β 2 ) = μ0 nI cos β 2 2 13-3 −3
−7 2
n = B μ0 I cos
β 2
= B L 2 μ
0 I
2
= 6.16 ×10 4π ×10 −7 × 5.0 ×
20 2
2
= 200匝
L + r 2 4 20 + 2 2
4
13—3 若输电线在地面上空 25m 处,通以电流1.8 ×103 A。求这电流在正下方地面处产生 的磁感应强度。
[解] 已知直线电流的磁场公式 μ0 I
B = 4πa
(cosθ1 − cosθ 2 )
= 4π ×10 ×1.8 ×103 (cos 0 − cos π ) = 3.6 ×10 −6 T
4π × 25
13—4 在汽船上,指南针装在距载流导线 0.80m 处,该导线中电流为 20A。(1)将此导线作 无限长直导线处理,它在指南针所在处产生的磁感应强度是多大?(2)地磁场的水平分量(向北) 为 0.18 ×10 −4
T。由于电流磁场的影响,指南针的 N 极指向要偏离正北方向。如果电流的磁
场是水平的,而且与地磁场垂直,指南针的指向将偏离多大?求在最坏情况下,上述汽船中
的指南针的 N 极将偏离北方多少度?
[解] (1) 电流在指南针所在处的磁感应强度的大小为 B = μ 0 I 2 × 10 −7 × 20 = T = 5.0 ×10 −6 T 1 2πr 0.80
(2) 如果电流的磁场是水平的而且与地磁场的水平分量 B2
垂直(如图 a),指南针偏离正北方
向的角度为 ϕ ,则
tan ϕ = B1 = 5.0 × 10 −6 = 0.28 ϕ = 150 31′ B 0.18 ×10 −4
设指南针由于电流磁场偏离正北方向的角度为 ϕ1 ,由图(b)可知 B2 sin ϕ1 = B1 sin ϕ 2
两边微分后可得
dϕ1 dϕ 2 = B1 cos ϕ 2
B2 cos ϕ1
为求 ϕ1 的最大值 ϕ m ,令 dϕ1
dϕ 2
= 0 ,则有 m cos ϕ 2
= 0
π
ϕ 2 =
2
因此 sin ϕ m =
B
1
B2
= 0.28 ϕ = 16
0 8
′
13—5 在半径为 R 和 r 的两圆周之间,有一总匝数为 N 的均匀密绕平面线圈,通有电流 I, 方向如图所示。求中心 O 处的磁感应强度。
[解] 取一半径为 x 厚度为 dx 的圆环,其等效电流为: dI = jdx = NI dx
R − r
dB0
μ dI
= 0
2 x = μ0 NIdx 2 x(R − r )
∴ B0 = R ∫ dB0 = ∫ μ0 NIdx = μ0 NI ln
R
NI r 2 x(R − r ) 2(R − r ) r 方向垂直纸面向外.
13—6 电流均匀地流过一无限长薄壁半圆筒,设电流 I=5.0A,圆筒半径 R=1.0 ×10 2 m 如图 所示。求轴线上一点的磁感应强度。
[解] 在金属片上对称地取两个宽为 ds = ds1 = ds2
的窄条。
条上电流为 dI = ds I πR
每个窄条是一条无限长载流直导线,在中心轴线上 P 点产生的 dB 为
dB = dB = μ 0 dI
1 2 2πR
dB1 和 dB2
的方向已表示于图中,两者 x 分量相抵消,y 分量相加,总场只有 y 分量。由这
两条导线上电流共同贡献的磁感应强度是 13-5
dB = 2 ⋅
μ 0 dI cosθ = μ 0
I cosθds
2πR ∵ ds = Rdθ π 2 R 2 μ I
∴ dB = 0 cosθd
θ
π 2 R
μ I
dB = 0 cosθdθ π 2 R
13—7 如图所示,长直导线通有电流 I,求通过与长直导线共面的矩形面积 CDEF 的磁通 量。
μ I
[解] 长直导线形成的磁感应强度为: B = 0 ,取如图所示的微元,设顺时针方向为正,则 2πx
r r μ I
dΦ = B ⋅ dS = 0 ldx 2πx
b μ Il μ Il b
Φ = ∫ dΦ = ∫ 0 dx = 0 ln
S a 2πx 2π a
13—8 长直导线 aa ′ 与半径为 R 的均匀导体圆环相切于点 a,另一直导线 bb′ 沿半径方向与
圆环接于点 b,如图所示。现有稳恒电流 I 从端 a 流入而从端 b 流出。 (1)求圆环中心点 O 的 B。 (2)B 沿闭合路径 L 的环流 ∫ B ⋅ dl 等于什么? L
r r r r r [解] (1) B0 = B1 + B2 + B3 + B4 其中: B4 = 0 B1 =
μ
0 I
4πR 13-7 B = 2 μ0 I 2 , B = 1 μ0 I 3 , I
2 = l
3 2 3 2R 3 3 2R I 3 l
2
r r 故 B2 与 B3 大小相等,方向相反,所以 B
2 + B3 = 0
因而 Bo = B1 =
μ
0 I
4πR
,方向垂直纸面向外.
(2)由安培环路定理,有: r r 2 I ∫
B ⋅
dl L
= μ0 ∑ I i = μ0 (I − 3 I ) = μ0 3
13—9 矩形截面的螺绕环,尺寸如图所示,均匀密绕共 N 匝,通以电流 I,试证明通过螺 绕环截面的磁通量为 Φ =
μ
0 NIh ln D1 2π D2
[证明] 以与螺绕环同心的圆周为环路,其半径为 r, D2 < r < D1 ,
2 2
∫ B ⋅ dl = 2πrB = μ 0 NI
B = μ 0 NI
2πr
∴Φ =
∫ dΦ = ∫
BdS
= ∫
D1 2 μ 0
NI hdr = μ 0 hNI ln
D
1
D2 2 2πr 2π D2
13—10 试证明在没有电流的空间区域内,如果磁感应线是一些同方向的平行线,则磁场一 定均匀。
[证明] 在 B 线同方向平行的磁场中,作如图的矩形回路 abcda,其 ab 边与 B 线平行。由于 回路中无电流,所以安培环路定理给出 ∫ B ⋅ dL = 0
L b c d a