中考热点题型之阿氏圆
圆中的最值模型之阿氏圆模型(解析版)-初中数学

圆中的最值模型之阿氏圆模型最值问题在中考数学中常常作为压轴题出现,其中“阿氏圆”(又称“阿波罗尼斯圆”)是一个重要的考点。
这类题目主要考察学生的转化与化归等数学思想,并且在各类考试中通常都被视为高档题。
为了帮助学生更好地理解和掌握这一知识点,本专题将对最值模型中的阿氏圆问题进行系统的梳理,并提供对应的试题分析,以便学生能够熟练掌握并灵活应用。
目录例题讲模型 1模型1.阿氏圆模型 1习题练模型 12例题讲模型模型1.阿氏圆模型动点到两定点距离之比为定值(即:平面上两点A、B,动点P满足P A/PB=k(k为常数,且k≠1)),那么动点的轨迹就是圆,因这个结论最早由古希腊数学家阿波罗尼斯发现的,故称这个圆称为阿波罗尼斯圆,简称为阿氏圆。
如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB(即OPOB=k),连接P A、PB,则当“P A+k·PB”的值最小时,P点的位置如何确定?最小值是多少呢?如图2,在线段OB上截取OC使OC=k·r(即OCOP=k),∵OPOB=k,∴OPOB=OCOP,∵∠POC=∠BOP,∴△POC∽△BOP,∴PCPB=k,即k·PB=PC。
故本题求“P A+k·PB”的最小值可以转化为“P A+PC”的最小值。
其中与A与C为定点,P为动点,故当A、P、C三点共线时,“P A+PC”值最小,如图3所示。
阿氏圆求最值的本质就是通过构造母子相似,化去比例系数,转化为两定一动将军饮马型求最值,难点在于如何构造母子相似。
阿氏圆最值问题常见考法:点在圆外:向内取点(系数小于1);点在圆内:向外取点(系数大于1);一内一外:提系数;隐圆型阿氏圆等。
注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·P A+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.1.(2024·浙江·校考一模)如图,AB为⊙O的直径,AB=2,点C与点D在AB的同侧,且AD⊥AB,BC⊥AB,AD=1,BC=3,点P是⊙O上的一动点,则22PD+PC的最小值为.【答案】34 2【分析】连接OD,先利用勾股定理求得OD=2,∠AOD=45°,在OD上截取OI=22,过I作IH⊥AB于H,IG⊥BC于G,求得BG=IH=12,IG=BH=32,CG=52,进而求得CI=342,证明△POI∽△DOP求得PI=22PD,利用两点之间线段最短得到22PD+PC=PI+PC≥IC,当C、P、I共线时取等号,即可求解.【详解】解:连接OD,∵AB为⊙O的直径,AB=2,∴OA=OB=1,∵在Rt△AOD中,OA=AD=1,∴OD=AD2+OA2=2,∠AOD=45°,在OD上截取OI=22,过I作IH⊥AB于H,IG⊥BC于G,连接IP、IC,∴四边形IHBG是矩形,IH=OH=22OI=12,∴BG=IH=12,IG=BH=OH+OB=32,∴CG=BC-BG=3-12=52,在Rt△CIG中,CI=IG2+CG2=32 2+52 2=342,∵OI OP =OPOD=22,∠POD是公共角,∴△POI∽△DOP,∴PIPD=OPOD=22,则PI=22PD,∴22PD+PC=PI+PC≥IC,当C、P、I共线时取等号,故22PD+PC的最小值为CI=342,故答案为:342.2.(2024·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD-12PC的最大值为.【答案】5【详解】分析:由PD-12PC=PD-PG≤DG,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=5.详解:在BC上取一点G,使得BG=1,如图,∵PBBG=21=2,BCPB=42=2,∴PBBG=BCPB,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴PGPC =BGPB=12,∴PG=12PC,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=42+32=5.故答案为5点睛:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中3.(2023·北京·九年级专题练习)如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2P A +PB的最小值为.【答案】25【分析】2P A+PB=2P A+22PB,利用相似三角形构造22PB即可解答.【详解】解:设⊙O 半径为r ,OP =r =12BC =2,OB =2r =22,取OB 的中点I ,连接PI ,∴OI =IB =2,∵OP OI =22=2,OB OP =222=2,∴OP OI =OB OP ,∠O 是公共角,∴△BOP ∽△POI ,∴PI PB =OI OP=22,∴PI =22PB ,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2P A +PB =2P A +22PB ,∴2P A +PB 的最小值是2AI =2×10=25.故答案是25.【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.4.(2023·江苏泰州·模拟预测)如图,⊙O 与y 轴、x 轴的正半轴分别相交于点M 、点N ,⊙O 半径为6,点A (0,3),点B (5,0),点C (0,12),将线段OC 绕点O 顺时针旋转α(0°≤α≤90°),得线段OC ',OC '与弧MN 交于点P ,连P A ,PB .则2P A +PB 的最小值为.【答案】13【分析】连接PC ,易证△OP A ∼△OCP ,相似比为12,即可得到2P A =PC ,可知当C 、P 、B 三点在同一条直线上的时候,2P A +PB 取得最小值,利用勾股定理即可求解.【详解】解:连接PC ,∵OA =3,OP =6,OC =12,在△OP A和△OCP中,∠POA=∠COP OAOP=OPOC=12,∴△OP A∼△OCP,相似比为12,故2P A=PC,∴当C、P、B三点在同一条直线上的时候,2P A+PB取得最小值,在Rt△OCB中,2P A+PB=CB=OC2+OB2=122+52=13.故2P A+PB的最小值为13.【点睛】本题考查相似三角形中与圆结合中的动点问题,难度一般,正确作出辅助线,利用相似性,是顺利解题的关键.5.(2024·山东·模拟预测)如图,在ΔABC中,∠ABC=90°,AB=2BC=6,BD=1,P在以B为圆心3为半径的圆上,则AP+6PD的最小值为.【解答】解:在AB上取点E,使BE=32,∵AB=2BC=6,∴BPAB=BEBP=12,∵∠PBE=∠ABP,∴ΔPBE∽ΔABP,∴PEP A =BPAB=12,∴PE=12P A,在BD延长线上取BF=9,∵BD=1,则BFPB=BPBD=3,又∵∠PBD=∠FBP,∴ΔPBD∽ΔFBP,∴PFPD=PBBD=3,∴PF=3PD,∴P A +6PD =212P A +3PD=2(PE +PF ),∴当P 为EF 和圆的交点时PE +PF 最小,即P A +6PD 最小,且值为2EF ,∵EF =BE 2+BF 2=32 2+92=3372,∴P A +6PD 的最小值为2EF =337,故答案为:337.6.(2023·陕西咸阳·三模)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是OD 、OC 上的两个动点,且EF =4,P 是EF 的中点,连接OP 、PC 、PD ,若AC =12,BD =16,则PC +14PD 的最小值为.【答案】1452/12145【分析】在OD 上取一点G ,使得OG =12,连接PG 、CG .根据菱形的性质可知OC =6,OD =8,则OG OP =OP OD =14,结合∠GOP =∠POD ,可得△POG ∽△DOP ,利用相似三角形的性质证得PG =14PD ,根据PC +PG ≥CG 可知CG 的长即为PC +14PD 的最小值,利用勾股定理求出CG 便可解决问题.【详解】解:如图,在OD 上取一点G ,使得OG =12,连接PG 、CG .∵四边形ABCD 为菱形,AC =12,BD =16,∴OC =12AC =6,OD =12BD =8,AC ⊥BD ,∵EF =4,P 是EF 的中点,∴OP =12EF =2,∴OG OP =122=14,OP OD =28=14,又∵∠GOP =∠POD ,∴△POG ∽△DOP ,∴GP PD =14,即GP =14PD ,∵PC +PG ≥CG ,∴当点G 、P 、C 在同一直线上时,PC +14PD 取得最小值,此时PC +14PD =PC +PG =CG =OC 2+OG 2=1452,故答案为:1452.【点睛】本题主要考查了菱形的性质,相似三角形的判定和性质,解题的关键是掌握“胡不归”问题模型,正确画出辅助线,构造相似三角形,根据相似三角形的性质和勾股定理求解.7.(2024·广东·九年级阶段练习)如图,在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(5,3),点P是第一象限内一动点,且∠APB=135°,则4PD+2PC的最小值为.【答案】20【分析】取一点T(1,0),连接OP,PT,TD,首先利用四点共圆证明OP=2,再利用相似三角形的性质证明PT=12PC,推出4PD+2PC=4PD+12PC=4(PD+PT),根据PD+PT≥DT,过点D作DE⊥OC交OC于点E,即可求出DT的最小值,即可得.【详解】解:如图所示,取一点T(1,0),连接OP,PT,TD,∵A(2,0),B(0,2),C(4,0),∴OA=OB=2,OC=4,以O为圆心,OA为半径作⊙O,在优弧AB上取一点Q,连接QB,QA,∵∠Q=12∠AOB=45°,∠APB=135°,∴∠Q+∠APB=45°+135°=180°,∴A,P,B,Q四点共圆,∴OP=OA=2,∵OP=2,OT=1,OC=4,∴OP2=OC∙OT,∴OPOC =OT OP,∵∠POT=∠POC,∴△POT∽△COP,∴PTPC =OPOC=12,∴PT=12PC,∴4PD+2PC=4PD+12PC=4(PD+PT),过点D作DE⊥OC交OC于点E,∵D的坐标为(5,3),∴点E的坐标为(5,0),TE=4,∴DT=32+42=5∵PD+PT≥DT,∴4PD+2PC≥20,∴4PD+2PC的最小值是20,故答案为:20.【点睛】本题考查了四点共圆,相似三角形,勾股定理,三角形三边关系,解题的关键是掌握这些知识点.8.(2024·湖北·九年级专题练习)(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+12PC的最小值,2PD+4PC的最小值,PD-12PC的最大值.(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,求PD+23PC的最小值,PD-23PC的最大值,PC+23PD的最小值.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD+1 2PC的最小值和PD-12PC的最大值.PC+36PD的最小值【答案】见详解【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出PGPC=BGPB=12,推出PG=12PC,推出PD+12PC=DP+PG,由DP+PG≥DG,当D、G、P共线时,PD+12PC的值最小,最小值为DG=42+32=5.由PD-12PC=PD-PG≤DG,当点P在DG的延长线上时,PD-12PC的值最大(如图2中),最大值为DG=5;可以把2PD+4PC转化为424PD+PC,这样只需求出2PD+4PC的最小值,问题即可解决。
(完整版)中考热点题型之阿氏圆

阿氏圆整理例题讲解:例1、如图1,抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .(1)求a 的值和直线AB 的函数表达式;(2)设△PMN 的周长为C 1,△AEN 的周长为C 2,若12C C =65,求m 的値;(3)如图2,在(2)的条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A +23E ′B 的最小值.解:(1)把点A (4,0)代入y =ax 2+(a +3)x +3,得 16a +4(a +3)+3=0.解得a =-34.∴抛物线的函数表达式为:y =-34x 2+94x +3. 把x =0代入上式,得y =3. ∴点B 的坐标为(0,3).由A (4,0),B (0,3)可得直线AB 的函数表达式为:y =-34x +3. (2)根据题意,得OE =m ,AE =4-m ,AB =5,点P 的坐标可表示为(m ,-34m 2+94m +3). ∴PE =-34m 2+94m +3……………………………………………………① ∵△AEN ∽△AOB ,∴AN AB =NE BO =AE 4.∴AN 5=NE 3=4-m4. ∴AN =54(4-m ), NE =34(4-m ).第28题图1∵△PMN ∽△AEN ,且12C C =65, ∴PN AN =65.∴PN =65AN =65×54(4-m )=32(4-m ).∴PE =NE +PN =34(4-m )+32(4-m )=94(4-m )………………………...② 由①、②,得-34m 2+94m +3=94(4-m ).解得m 1=2,m 2=4(不合题意,舍去). ∴m 的値为2.(3)在(2)的条件下,m 的値为2,点E (2,0),OE =2.∴OE ′=OE =2. 如图,取点F (0,43),连接FE ′、AF .则OF =43,AF =42+(43)2=4310.∵OF OE ′=432=23,OE ′OB =23,且∠FOE ′=∠E ′OB ,∴△FOE ′∽△E ′OB .∴FE ′E ′B =23.∴FE ′=23E ′B . ∴E ′A +23E ′B =E ′A +FE ′≥AF =4310. ∴E ′A +23E ′B 的最小值为4310.巩固练习:1、如图,在Rt △ABC 中,∠ACB ﹦90°,CB ﹦4,CA ﹦6,圆C 半径为2,P 为圆上一动点,连接AP ,BP ,12AP BP 最小值为( )A 37B 、6C 、17D 、4第28题答案图xyF B AOEE'CBAP2、如图,在△ABC 中,∠B ﹦90°,AB ﹦CB ﹦2,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则22PA PC +的最小值是 . CBAP3、如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则32PB PD +的最小值为 .CDAPE B4、在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA ﹦135°,则2PD ﹢PC 的最小值是 .5、(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值. y x(2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求23PD PC +的最小值和23PD PC -的最大值. (3)如图3,已知菱形ABCD 的边长为4,∠B ﹦90°,圆B 的半径为,2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值. DACDA CDABBBP PPC图1 图2 图3套路总结阿氏圆基本解法:构造相似阿氏圆一般解题步骤:PC kPD +第一步:连接动点至圆心O (将系数不为1的线段的两个端点分别与圆心相连接),则连接OP 、OD ; 第二步:计算出所连接的这两条线段OP 、OD 长度;第三步:计算这两条线段长度的比OPm OD =; 第四步:在OD 上取点M ,使得OMm OP=;第五步:连接CM ,与圆O 交点即为点P .1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,AP+BP的最小值为()2.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.。
中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。
这个定理叫阿波罗尼斯定理。
【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。
②两点之间线段最短。
③连接直线外一点和直线上各点的所有线段中,垂线段最短。
【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。
②问题:P在何处时,PA+k·PB的值最小。
③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。
所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。
总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。
【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。
(2)求13AP BP+的最小值为。
【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。
练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。
2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)

时2PB+PC最小,最小值为2BD,延长CD交AB于H,则
CH⊥AB,
O D P
B
A
H
易求得DH= ,BH=3,∴BD= ,
C
O
P
∴2PB+PC的最小值为3 .
B
C
针对训练
变式一 系数需要转化(提系数)
知识点三
1.在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的
P(x,y),PA=kPB,即:(x+m)2+y2 =k (x-m)2+y2
∴(x+m)2+y2=k2(x-m)2+k2y2
∴(k2-1)(x2+y2)-(2m+2k2m)x+(k2-1)m2=0
2m
2m+2k
∴x2+y2- k2-1 x+m2=0
知识点二
新知探究
解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.除
则 PD+4PC的最小值为_____.
D
A
P
B
C
典例精讲
变式三 求差最大的问题
知识点五
求带系数的两条线段差最大的问题,转化方法和前面所讲完全一样,只是
最后求最值时有所不同,前面求和最小都是运用两点之间线段最短的原理,
求差最大,我们需要运用“三角形两边只差小于第三边”这一原理来解决.
【例6】(1)如图1,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上
【引例】如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,⊙C半径为2,P为圆上
专题11最值模型之阿氏圆(原卷版)

B专题11 最值模型之阿氏圆“PA+k ·PB ”型的最值问题是近几年中考考查的热点更是难点。
1.当k 值为1时,即可转化为“PA+PB ”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理;2.当k 取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P 所在图像的不同来分类,一般分为2类研究。
即点P 在直线上运动和点P 在圆上运动。
点P 在圆周上运动的类型称之为“阿氏圆”问题。
模型建立: PA+k ∙PB 的最小值。
阿氏圆钥匙: 构造母子三角形相似 阿氏圆口诀:两定一动阿氏圆,母子相似很简单。
第一步:确动点的运动轨迹(圆), 以点0为圆心、r 为半径画圆; (若圆已经画出则可省略这一步) 第二步:连接动点至圆心0(将系数不为1的线段的固定端点 与圆心相连接),即连接OP ,OB 。
第三步:计算这两条线段长度的比k;第五步:在0B 上取点C,使得OC= k∙OP ; OCOP =OPOB =k, ∠O= ∠O , 可得△ POC ∽ △ BOP 可得: OCOP =PCPB =k, PC=k ∙PB第六步:则PA+k ∙PB ≥PA+PC ≥AC,即当A ,P ,C 三点共线时可得最小值。
[提升:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k 提到 括号外边,将其中一条线段的系数化成1k ,再构造△相似进行计算.]Rt △ABC 中,AB =AC =4,点E ,F 分别是AB ,AC 的中点,点P 是扇形AEF的EF ̂上任意一点,连接BP ,CP,则12BP +CP 的最小值是 √17 .思路引领:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .证明△PAT ∽△BAP ,推出PTPB =APAB =12,推出PT =12PB ,推出12PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题. 答案详解:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .∵PA =2.AT =1,AB =4,∴PA 2=AT •AB , ∴PA AT=AB PA,∵∠PAT =∠PAB , ∴△PAT ∽△BAP , ∴PTPB =APAB =12, ∴PT =12PB , ∴12PB +CP =CP +PT ,∵PC +PT ≥TC ,在Rt △ACT 中,∵∠CAT =90°,AT =1,AC =4, ∴CT =√AT 2+AC 2=√17, ∴12PB +PC ≥√17,∴12PB +PC 的最小值为√17. 故答案为√17.一.选择题(共1小题)1.如图,在△ABC 中,∠A =90°,AB =AC =4,点E 、F 分别是边AB 、AC 的中点,点P 是以A 为圆心、以AE 为半径的圆弧上的动点,则12PB +PC 的最小值等于( )实战训练A.4B.3√2C.√17D.√15二.填空题(共7小题)2.如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13P A+PB的最小值为√.3.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+14PB的最小值为.4.如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为√10.5.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为√≤√.6.如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD−12PC的最大值为√.7.如图,在△ABC中,BC=6,∠BAC=60°,则2AB+AC的最大值为√.8.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则√2P A+PB的最小值为√.三.解答题(共8小题)9.如图,在6×6的正方形网格中,A、B、C、D均为小正方形的顶点,请仅用无刻度的直尺作图,保留作图痕迹.(1)在图1中作出AC边上的点E,使得AE=3CE;(2)在图2中作出BC边上的点F(不与点B重合),使得BD=DF;(3)在图3中作出AB边上的点G,使得tan∠ACG=12.10.已知,AB是⊙O的直径,AB=4√2,AC=BC.(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q的运动时间t的最小值.11.阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+23BD的最小值.12.如图1,⊙O的半径为r(r>0),若点P'在射线OP上,满足OP'⋅OP=r2,则称点P'是点P关于⊙O的“反演点”.(1)若点A关于⊙O的“反演点”是本身,那么点A与⊙O的位置关系为.A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外(2)如图1,若⊙O的半径为4,点P'是点P关于⊙O的“反演点”,且PP'=6,过点P的直线与⊙O相切于点Q,求PQ长.(3)如图2,若⊙O的半径为4,点Q在⊙O上,点A在⊙O内,且OA=2,点Q'、A'分别是点Q、A关于⊙O的“反演点”,过点A'作A'B⊥A'O且A'B=A'O,连接BQ',Q'A',求BQ′+12Q′A′的最小值.13.【根底巩固】(1)如图,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在菱形ABCD中,E,F分别为BC,DC上的点,且∠EAF=12∠BAD,射线AE交DC的延长线于点M,射线AF交BC的延长线于点N.若AF=4,CF=2,AM=10.求:①CM的长;②FN的长.【拓展进步】(3)如图3,在菱形ABCD中,AB=6,∠B=60°,以点B为圆心作半径为3的圆,其中点P是圆上的动点,请直接写出PD+12PC的最小值.14.如图,在平面直角坐标系中,抛物线y =14x 2−32x ﹣4与x 轴交于A 、B 两点,与y 轴交于点C . (1)求点A 、B 、C 的坐标;(2)如图1,连接BC ,点D 是抛物线上一点,若∠DCB =∠ABC ,求点D 的坐标;(3)如图2,若点P 在以点O 为圆心,OA 长为半径作的圆上,连接BP 、CP ,请你直接写出12CP +BP的最小值.15.如图,抛物线y =﹣x 2+bx +c 与直线AB 交于A (﹣4,﹣4),B (0,4)两点,直线AC :y =−12x ﹣6交y 轴于点C .点E 是直线AB 上的动点,过点E 作EF ⊥x 轴交AC 于点F ,交抛物线于点G . (1)求抛物线y =﹣x 2+bx +c 的表达式;(2)连接GB ,EO ,当四边形GEOB 是平行四边形时,求点G 的坐标;(3)①在y 轴上存在一点H ,连接EH ,HF ,当点E 运动到什么位置时,以A ,E ,F ,H 为顶点的四边形是矩形?求出此时点E ,H 的坐标;②在①的前提下,以点E 为圆心,EH 长为半径作圆,点M 为⊙E 上一动点,求12AM +CM 它的最小值.16.问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连接AP 、BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有CD CP=CP CB=12,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴PD BP=12,∴PD =12BP ,∴AP +12BP =AP +PD . 请你完成余下的思考,并直接写出答案:AP +12BP 的最小值为 √ .(2)自主探索:在“问题提出”的条件不变的情况下,13AP +BP 的最小值为 √37 .(3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是CD ̂上一点,求2P A +PB 的最小值.。
(完整版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m(≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP+BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP+BP =AP+PD .请你完成余下的思考,并直接写出答案:AP+BP 的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP 的最小值为.(3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A+PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cosC,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC?BCsinC=2msinC=2m,由余弦定理可得cosC=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点 D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】210例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=PA,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE?BC=4,∴PB2=BE?BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE?BD=×4=4,∴BP2=BE?BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD?CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD?CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2PA+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2PA+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD?sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′?OB=×3=4,∴OE′2=OM′?OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。
2023年中考数学几何模型之动点最值之阿氏圆模型(讲+练)(解析版)
专题15动点最值之阿氏圆模型背景故事:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.模型建立:当点P 在一个以O 为圆心,r 为半径的圆上运动时,如图所示:易证:△BOP ∽△POA,,∴对于圆上任意一点P 都有.对于任意一个圆,任意一个k 的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A 、B点,则需【技巧总结】计算PA k PB 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB 的值最小,解决步骤具体如下:①如图,将系数不为1的线段两端点与圆心相连即OP ,OB ②计算出这两条线段的长度比OPk OB③在OB 上取一点C ,使得OC k OP ,即构造△POM ∽△BOP ,则PCk PB,PC k PB ④则=PA k PB PA PC AC ,当A 、P 、C 三点共线时可得最小值例1.如图,在Rt △ABC 中,∠ACB =90°,CB =7,AC =9,以C 为圆心、3为半径作⊙C ,P 为⊙C 上一动点,连接AP 、BP ,则13AP +BP 的最小值为()A .7B .C .4D .【答案】B【详解】如图,在CA 上截取CM ,使得CM =1,连接PM ,PC ,BM .∵PC =3,CM =1,CA =9,∴PC 2=CM •CA ,∴PC CMCA CP,∵∠PCM =∠ACP ,∴△PCM ∽△ACP ,∴13PM PC PA AC ,∴PM 13 PA ,∴13AP +BP =PM +PB ,∵PM +PB ≥BM ,在Rt △BCM 中,∵∠BCM =90°,CM =1,BC =7,∴BM ,∴13AP +BP ∴13AP +BP 的最小值为.故选:B .例2.在ABC 中,AB =9,BC =8,∠ABC =60°,⊙A 的半径为6,P 是A 上一动点,连接PB ,PC ,则32PC PB 的最小值_____________73PB PC 的最小值_______【答案】21【详解】①连接AP ,在AB 上取点Q ,使AQ =4,连接CQ ,∵⊙A 的半径为6,即AP =6,∴23AB AP ,又6923AP AB ,且PAQ BAP ,∴APQ ABP ∽,∴23PQ AP P AB B ,∴23PQ BP ,∴ 232333PC PB PC BP PC PQ,当P C Q 、、三点共线时,PC PQ 的值最小,最小值为CQ 的长,过C 作CI ⊥AB 于I ,∴90CIB CIQ ,在Rt △CIB 中,∵60CBI ,BC =8,sin CI CBI BC,∴CI∴4BI ,9441QI AB AQ BI ,在Rt △CIQ 中,7CQ ,∴32PC PB 的最小值为 321PC PQ ;故答案为:21;②连接AP ,由①得:在Rt △CIA 中,AC在AC 上取点G ,使AG ,连接PG ,BG ,∴73673AG AP ,∵67373AP AC ,∴P P AC A AG A ,且GAP PAC ,∴AGP APC ∽,∴73GP AG A P P C,∴73GP PC,∴73PB PB GP ,当G P B 、、三点共线时,PB GP 的值最小,最小值为BG 的长,过G 作GH ⊥AB 于H ,∴90GHA GHB ,在Rt △CIA 中,sin C CI AI ACRt △GAH 中,sin GH GAH AG∴GH ,∴18073AH,180********BH AB AH ,在Rt △GHB中,73BG ,∴73PB PC的最小值为73.故答案为:73.例题3.如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【解析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152.【变式训练1】如图,已知菱形ABCD 的边长为4,60B ,B 的半径为2,P 为B 上一动点,则12PD PC 的最小值_______.PC PD 的最小值_______3【详解】①如图,在BC 上取一点G ,使得BG =1,连接PB 、PG 、GD ,作DF ⊥BC 交BC 延长线于F .∵221PB BG ,422BC PB ,∴PB BC BG PB ,∵PBG PBC ,∴PBG CBP ,∴12PG BG PC PB ,∴12PG PC ,∴12PD PC DP PG,∵DP PG DG ,∴当D 、P 、G 共线时,PD +12PC 的值最小,最小值为DG ,在Rt △CDF 中,∠DCF =60°,CD =4,∴DF =CD •sin CF =2,在Rt △GDF 中,DG ;②如图,连接BD ,在BD 上取一点M ,使得BM 连接PB 、PM 、MC ,过M 作MN ⊥BC 于N .∵四边形ABCD 是菱形,且60ABC ,∴AC ⊥BD ,∠AOB =90 ,∠ABO =∠CBO =12∠ABC =30 ,∴AO =12AB =2,BO ∴BD =2BO =∴326BM PB ,6PB BD,∴BM PB PB BD ∠MBP =∠PBD ,∴△MBP ~△PBD ,∴PM PB PD BD∴PM ,∴PC PC PM MC ,∴当M 、P 、C 共线时,PC 的值最小,最小值为CM ,在Rt △BMN 中,∠CBO =30 ,BM ∴MN =12BM BN 12 ,∴CN =4-1722,∴MC,∴PC 的最小值为1113.【变式训练2】如图,正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上一动点,则的最小值为,的最大值为.【答案】最小值为5,最大值为5【解析】在BC 上取一点G ,使得BG =1,连接PG 、DG ,如图所示:∵∠PBG=∠PBC,∴△PBG∽△CBP,,∴,在△PDG中,DP+PG≥DG,∴当D、G、P共线时,;当点P在DG的延长线时,DG,最大值为5.【变式训练3】如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则的最小值是.【答案】5【解析】取点K(1,0),连接OP、PK、BK,如图所示:∵OP =2,OA =4,OK =1,∵∠POK =∠AOP ,∴△POK ∽△AOP ,在△PBK 中,,的最小值为BK 的长,∵B (4,4),K (1,0),,∴的最小值为5.【变式训练4】如图,菱形ABCD 的边长为2,锐角大小为60 ,A 与BC 相切于点E ,在A上任取一点P ,则2PB PD的最小值为___________.【答案】2.【详解】解:在AD 上截取AH =1.5,连接PH 、AE ,过点B 作BF ⊥DA 延长线,垂足为F ,∵AB =2,∠ABC =60°,∴BE =AF =1,AE =BF ,∴3AP AD AH AP,∵∠PAD =∠PAH ,∴△ADP ∽△APH ,∴3DP AD PH AP,∴PH ,当B 、P 、H 共线时,PB 的最小,最小值为BH 长,BH课后训练1.如图,矩形ABCD 中,4,2AB AD ,以B 为圆心,以BC 为半径画圆交边AB 于点E ,点P 是弧CE 上的一个动点,连结,PD PA ,则12AP DP 的最小值为()A BC D 【答案】C【详解】解:如图,连接BP ,取BE 的中点G ,连接PG ,∵2AD BC BP ,4AB ,∴2142BP BA ,∵G 是BE 的中点,∴12BG BP ,∴BP BGBA BP,∵PBG ABP ,∴BPG BAP ,∴12PG BP AP BA ,∴12PG AP ,则12AP DP PG DP ,当P 、D 、G 三点共线时,取最小值,即DG 长,DG C .2.如图,在平面直角坐标系中,A (2,0)、B (0,2)、C (4,0)、D (3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA =135º,则2PD +PC 的最小值是.【解析】依题意可得OA=OB=2,∠BPA=135º,∴点P的轨迹是以原点为圆心,OA长为半径的圆O上的劣弧AB,构造圆O,连接OP,在OC上截取OE=1,连接PE、ED,过点D作DF⊥OC于点F,如图所示:∠POC=∠EOP,∴△POC∽△EOP,,,,当E、P、D三点共线时,PD+PE的值最小,最小值为DE的值,∵DF⊥OC于点F,则DF=2,EF=2,的最小值为2DE.3.如图,在Rt ABC中,∠C=90°,CA=3,CB=4.C 的半径为2,点P是C 上一动点,则12AP BP的最小值______________23PB PA的最小值_______【详解】①在BC 上取点D ,使CD =14BC =1,连接AD ,PD ,PC ,由题意知:PC =2,∵12DC PC PC BC ,∠PCD =∠BCP ,∴PDC BPC ∽,∴12PD PB ,且12PA PB PA PD AD,∴AD∴2PA PB ;②在AC 上取点E ,使CE =43,连接PE ,BE ,PC ,∵42323CE PC ,23PC AC ,∴23CE PC PC AC ,且∠PCE =∠ACP ,∴PEC APC ∽,∴23PE PC PA AC ,∴23PE PA ,∴23PB PA PB PE BE ,∴BE ∴23 PB PA 的最小值为3,故答案为:3.4.如图,半圆的半径为1,AB 为直径,AC 、BD 为切线,AC =1,BD =2,点P 为弧AB上一动点,求的最小值.【答案】【解析】当A、P、D三点共线时,的值最小.连接PB、CO,AD与CO相交于点M,如图所示:∵AB=BD=2,BD是⊙O的切线,∴∠ABD=90º,∠BAD=∠D=45º,∵AB是⊙O直径,∴∠APB=90º,∴∠PAB=∠PBA=45º,∴PA=PB,PO⊥AB,∵AC是⊙O的切线,∴AC⊥AB,∴AC∥PO,∠CAO=90º∵AC=PO=1,∴四边形AOPC是平行四边形,而OA=OP,∠CAO=90º,∴四边形AOPC是正方形,PC+PD=PM+PD=DM,∵DM⊥OC,∴由"垂线段最短"可知此时+PD的值最小,最小值为.5.(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵PA2=9,AE•AD=×6=9,∴PA2=AE•AD,∴=,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.6.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E’A+E’B的最小值.【解答】(1);(2)m=2;(3)【解析】(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴=4,∴a.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵NE∥OB,∴AN(4﹣m),∵抛物线解析式为,∴PN=﹣()=,,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB×3=4,∴OE′2=OM′•OB,,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,,∴M′E′=BE′,∴AE BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′=.。
2025中考数学二次函数压轴题专题练习21 阿氏圆模型(学生版+解析版)
专题21阿氏圆模型一、知识导航所谓“阿氏圆",是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不力l)的点的栠合叫做圆.如下图,已知A、B两点,点P满足PA:PB=k (k* I),则满足条件的所有的点P构成的图形为圆.pA下给出证明法一:首先了解两个定理(I)角平分线定理:如图,在6-ABC中,AD是乙BAC的角平分线则AB DBAC DCAB DcS BD S ABxDE AB AB DB 证明:一竺丛=---坐上==--,即一一=--s AC/) CD S ACD ACxDF AC. AC DC(2)外角平分线定理;如图,在6.ABC中,外角CAE的角平分线AD交BC的延长线于点D,则AB DB AC DC ^EA,,``B C\\\\IID证明:在B A 延长线上取点E 使得AE=AC ,连接BO,则6.ACD 兰6.AED (SAS), CD=ED 且AD DB ABAB DB 平分乙BDE ,则一一=一一,即一一=一一.DE AE AC DC接下来开始证明步骤:仁',,夕夕2A、、、、、、、、、、、、、MB'N如图,PA:PB=k,作LAPB 的角平分线交AB 于M 点,根据角平分线定理,MA PA —=—=k '故M 点为定MB PB点,即乙APB 的角平分线交AB 于定点;作乙APB 外角平分线交直线AB于N 点,根据外角平分线定理,NA PA—=—=k,故N 点为定点,即乙APB NB PB外角十分线交直线AB 于定点;又乙MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆AN法二:达系不妨将点A 、B 两点置于x轴上且关于原点对称,设A (-m, 0),则B (m, 0),设P (x, y), PA=kPB, 即:J (x+m)2+y 2 =k J(x -m)2+ y 2 (x+m)2+y 2 =k 2(x -m )2+k 2y 2 (炉-1)(x2+ y 2)-(2m +2k 2m)x+(k 2-1)矿=02 2m +2k'n /, X-+y-k 2-lx+ni 2 =0解析式满足圆的一般方程,故P点所构成的图形是固,且圆心与AB 共线.除了证明之外,我们还需了解“阿氏圆”的一些性质:(1)PA MA NA —=—=—=k.PB MB NB应用:祁据点A 、B的位置及k的值可确定M 、N及圆心0.OB OP(2) 6.0BPV>/:::,.QPA,即一一=一一,变形为OP 2=OA-OB.OP OA 应用:粮据圆心及半径和A 、B其中一点,可求A 、B另外一点位置.(3)OP OB PA —=—=—=k .OA OP PB应用:已知半径及A 、B中的其中一点,即可知道PA:PB的值.pAN匡I1如图,在L.ABC中,AB=4,AC=2,点D为AB边上一点,当AD=时,L.ACDv>L.ABCC8二二AAC AD觯:若6.ACDV)6.A B C 则有—-=——即AC 2=AB·ADAB AC·: A B =4,AC =2AC2:. AD =—= 1AD故答案为I.2如图,点P 是半径为2的O O 上一动,点,点A 、B为o o 外的定点,连接PA 、P B,点B 与固心0的I距离为4要使PA+�PB 的值最小,如何确定点P,并说明理由.2ABI 思路分析)构造相似三角形,将所求两条线段的和转化为一条线段,此线段与圆的交点即为所求A(详解J连接OB,OP ,在OB 上截取o c 亏1,连接AC 交('0于点P',连接PC.OP OC l ·—=—=-,乙POC =乙BOPOB OP 2 :.�POC BOPPC ll :.—= -,即-PB =PC PB 2· 21:. PA+.:..PB= PA+PC�AC2当点A 、P 、C三点共线时,PA+PC的值最小,最小值为AC的长,即当点P与P'重合时,PA+�PB的2 根据阿氏圆可得OP 2=0B -OC即O P 2 22OC =—=—=1OB 4值最小.23如图,平面直角坐标系中,A(4,0),B(0,3),点E在以原点0为圆心,2力半径的圆上运动,求AE+�BE3 的最小值.y j.... _3一3-,(思路分析)在坐标轴上找一点,构造相似三角形,利用对应边成比例将两条线段的和转化为求一条线段的长,即为最小值.(详解】如图,在y轴上取一点M(O,-:-)4 3 . OE OM 2 4,连接OE,EM, AM,则OE =2,0B =3, OM=-:-3==-OB OE 3又?乙EOM=乙BOE :. EOM =、BOE EM OM 2 2 :.—=—=-,即EM =::::_BEBE OE3. 3 2:. AE+::::_B E=AE+EM切AM3当A 、E 、M三点共线时,AE+BM的值最小,最小值为AM的长在Rt ,.AOM 中,A M =拓夼言夼=幸2:.当E 为线段A.11与o o 的交点时,AE +78E 有最小值为一—-.4而3 3y ·--3-3-'3 2.9 4.如图,已知抛物线y =--x +-x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,44点E的坐标为(2,0),将线段OE绕点0逆时针旋转得到OE',旋转角力a(0°<a<90°),连接BE'、2CE',求BE'+�CE'的敢小值.3(思路分析】由旋转可知E'点的运动轨迹为以原点0为圆心,2为半径的圆在笫一象限内的一段固弧,在y轴上找一点,构造相似三角形,再结合各点坐标求解即可3 9(详解】解.?抛物线的解析式为y=--x 2+-x+34 4 :. B (4,0),C(0,3) ·..点E的坐标为(2,0):.,占、E'的运动轨迹为以原点0为圆心,2为半径的圆在第一象限内的一段圆弧4 如图在y轴上取一点M (O,-::),连接OE',E'M,B M,则OE'=2, OC = 3, OM =-:: 43......3 . E'M OM 2..-=-=-OCOE' 3 又?L.E'OM=乙COE':. E'OM(/) COE'. EM 2 2:.-—=-即E 'M=::..CE 'C E '33 2:. BE'+::..CE'=BE'+E'M�BM当B 、E',M三点共线时,BE'+E'M的值最小,最小值为BM的长·:BM=豆二尸三3)32 4而:.当E'为BM与圆弧的交点时,BE'+7CE'有最小值为3 3I三、中考真题演练I.(2022广东惠州一模)如图1,抛物线y=,矿+bx~4与X轴交于A、B两点,与Y轴交千点C,其中点A的坐标为(-1,0),抛物线的对称轴是迎线x=-.3 2yy图1图2(1)求抛物线的解析式:(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B 作BF 上BC 交抛物线的对称轴千点F,以点C 为圆心,2为半径作(,C'点Q 为C上的五一个动点,求--B Q+FQ的最小值.42如图),抛物线)1=成+(a+3)..I,+3(a'1'0)与x轴交于点A(4,0),与y轴交于点B,;{:丘轴上有一动点E(m,O )(0<m<4),过点E作x轴的垂线交直线AB千点N,交抛物线于点P,过点P作PM上AB千点M.y yxX图l(I)求a的值和且线AB的函数表达式:图2C. 6(2)设t:.PMN的周长为C,,t:.A EN的周长为C“若-=-求m的值C 5(3)如图2,在(2)的条件下,将线段OE绕点0逆时针旋转得到OE',旋转角为a (0°<a<90勺,连按E'A 、EB,求E'A+二E'B的最小值.33.(20l9山东中考真题)如图I,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B图1图2(l)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC 面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的0B上一动点,连接PC、PA,当点P运动到某一位置时,PC+�PA的2值最小,请求出这个最小值,并说明理由.4.(2018广西柳州中考真题)如图,抛物线y= a.x2 +bx+c圭卢轴交千A(.J3,0), 8两点(点8在点A的左侧),与Y轴交于点C,且08=30A=./3oc'LO A C的平分线AD交Y轴于点D,过点A且垂直于AD的均线[交Y轴于点E,点P是X轴下方抛物线上的一个动点,过点P作PF..l.x轴,垂足为F,交直线AD千点H.(l)求抛物线的解析式:(2)设点P的横坐标为111,当FH=HP时,求1/1.的值:I(3)当归线P F为抛物线的对称轴时,以点H为圆心,-H C为半径作1)H,点Q为o H上的一个动点,求2l�AQ+EQ的最小值4x专题21阿氏圆模型一、知识导航所谓“阿氏圆",是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不力l)的点的栠合叫做圆.如下图,已知A、B两点,点P满足PA:PB=k (k* I),则满足条件的所有的点P构成的图形为圆.pA下给出证明法一:首先了解两个定理(I)角平分线定理:如图,在6-ABC中,AD是乙BAC的角平分线则AB DBAC DCAB DcS BD S ABxDE AB AB DB 证明:一竺丛=---坐上==--,即一一=--s AC/) CD S ACD ACxDF AC. AC DC(2)外角平分线定理;如图,在6.ABC中,外角CAE的角平分线AD交BC的延长线于点D,则AB DB AC DC ^EA,,``B C\\\\IID证明:在B A 延长线上取点E 使得AE=AC ,连接BO,则6.ACD 兰6.AED (SAS), CD=ED 且AD DB ABAB DB 平分乙BDE ,则一一=一一,即一一=一一.DE AE AC DC接下来开始证明步骤:仁',,夕夕2A、、、、、、、、、、、、、MB'N如图,PA:PB=k,作LAPB 的角平分线交AB 于M 点,根据角平分线定理,MA PA —=—=k '故M 点为定MB PB点,即乙APB 的角平分线交AB 于定点;作乙APB 外角平分线交直线AB于N 点,根据外角平分线定理,NA PA—=—=k,故N 点为定点,即乙APB NB PB外角十分线交直线AB 于定点;又乙MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆AN法二:达系不妨将点A 、B 两点置于x轴上且关于原点对称,设A (-m, 0),则B (m, 0),设P (x, y), PA=kPB, 即:J (x+m)2+y 2 =k J(x -m)2+ y 2 (x+m)2+y 2 =k 2(x -m )2+k 2y 2 (炉-1)(x2+ y 2)-(2m +2k 2m)x+(k 2-1)矿=02 2m +2k'n /, X-+y-k 2-lx+ni 2 =0解析式满足圆的一般方程,故P点所构成的图形是固,且圆心与AB 共线.除了证明之外,我们还需了解“阿氏圆”的一些性质:(1) PA MA NA —=—=—=k .PB MB NB应用:祁据点A 、B的位置及k的值可确定M 、N及圆心0.OB OP(2) 6.0BPV>/:::,.QPA,即一一=一一,变形为OP 2=OA-OB.OP OA 应用:粮据圆心及半径和A 、B其中一点,可求A 、B另外一点位置.(3)OP OB PA —=—=—=k .OA OP PB应用:已知半径及A 、B中的其中一点,即可知道PA:PB的值.pAN匡I1如图,在L.ABC中,AB=4,AC=2,点D为AB边上一点,当AD=时,L.ACDv>L.ABCC8二二AAC AD觯:若6.ACDV)6.A B C 则有—-=——即AC 2=AB·ADAB AC·: AB =4,AC =2AC2:. AD =—= 1AD故答案为I.2如图,点P 是半径为2的O O 上一动点,点A 、B为o o 外的定点,连接PA 、P B,点B 与固心0的I距离为4要使PA+�PB的值最小,如何确定点P,并说明理由.2ABI 思路分析)构造相似三角形,将所求两条线段的和转化为一条线段,此线段与圆的交点即为所求.A(详解J连接OB,OP ,在OB 上截取o c 亏1,连接AC 交('0于点P',连接PC.OP OC l ·—=—=-,乙POC =乙BOPOB OP 2 :.�POC BOPPC ll :.—= -,即-PB =PC PB 2· 21:. PA+.:..PB= PA+PC�AC2当点A 、P 、C三点共线时,PA+PC的值最小,最小值为AC的长,即当点P与P'重合时,PA+�PB的2 根据阿氏圆可得O P 2=0B -O C 即O P 2 22OC =—=—=1OB 4值最小.23如图,平面直角坐标系中,A(4,0),B(0,3),点E在以原点0为圆心,2力半径的圆上运动,求AE+�BE3 的最小值.y j一3-,(思路分析)在坐标轴上找一点,构造相似三角形,利用对应边成比例将两条线段的和转化为求一条线段的长,即为最小值.(详解】如图,在y轴上取一点M(O,-:-)4 3 . OE OM 2 4,连接OE,EM, AM,则OE =2,0B=3, O M=-:-3==-OB OE 3又?乙EOM=乙BOE :. EOM =、BOE EM OM 2 2 :.—=—=-,即EM =::::_BEBE OE3. 3 2:. AE+::::_B E=AE+EM切AM3当A 、E 、M三点共线时,AE+BM的值最小,最小值为AM的长在Rt ,.AOM 中,AM =拓千言夼=孛2:.当E 为线段A.11与o o 的交点时,AE +78E 有最小值为一—-.4而3 3y ·--3-3-'3 2. 94.如图,已知抛物线y =--x +-x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,4 4点E的坐标为(2,0),将线段OE绕点0逆时针旋转得到OE',旋转角力a(0°<a<90°),连接BE'、2CE',求BE'+�CE'的敢小值.3(思路分析】由旋转可知E'点的运动轨迹为以原点0为圆心,2为半径的圆在笫一象限内的一段圆弧,在y轴上找一点,构造相似三角形,再结合各点坐标求解即可3 9(详解】解.?抛物线的解析式为y=--x 2+-x+34 4 :. B (4,0),C(0,3) ·.点E的坐标为(2,0):.,占、E'的运动轨迹为以原点0为圆心,2为半径的圆在第一象限内的一段圆弧4 如图在y轴上取一点M (O,-::),连接OE',E'M,BM,则OE'=2,OC=3, OM=-::43......3 . E'M OM 2..-=-=-OCOE' 3 又?L.E'OM =乙COE':. E'OM(/) COE'. EM 2 2:.-—=-即E 'M=::..CE 'C E '33 2:. B E'+::..CE'=BE'+E'M�BM当B 、E',M三点共线时,BE'+E'M的值最小,最小值为BM的长·:BM =芦言尸=玉3 J3 2 4而:当E'为BM与圆弧的交点时,BE'+7CE'有最小值为3 3I三、中考真题演练I.(2022广东惠州一模)如图1,抛物线y=,矿+bx~4与X轴交于A、B两点,与Y轴交千点C,其中点A的坐标为(-1,0),抛物线的对称轴是迎线x=-.3 2yy图1图2(1)求抛物线的解析式:(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF上BC交抛物线的对称轴千点F,以点C为圆心,2为半径作(,C'点Q为C上的五一个动点,求--B Q+F Q的最小值.4【答案】(I)y=入.2-3x-4(2)P{l,6)或(3,4)(3)扫3【分析】(I)根据点A的坐标为(-1,0),抛物线的对称轴是直线x=-.待定系数法求二次函数解析式即可,2(2)先求得直线BC解析式,设P(m,m2-3m-4),则Q(m m-4),过点P作PQ轴交直线BC千点Q,根据S四边彤A BPC= s AOC +S如,等干16建立方程,解一元二次方程即可求得Ill的值,然后求得P的坐标,五(3)在CB上取CE=--,过点E作EG J_OC,构造CQE V>.C BQ,则当F,Q E三点共线时,取得最小值,最小值为FE,勾股定理解直角三形即可.【详解】(I)解:?抛物线y=矿+bx-4与X轴交于A、B两点,与Y轴交于点C,点A的坐标为-l,O),抛物线的对称轴是宜线x=-,3:. C(O,--4),, 4 , 。
九年级数学中考复习:线段最值问题——“阿氏圆”课件
问题转化为PM + PB ≥ 最小值,故当B、P、M三点共线时取得最小
值,直接连接BM即可得 13.
不积洼步 无以至千里。
变式1:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,圆C
的半径为2,点P为圆上一动点,连接AP,BP,求
• ① +
1
,②
2
2 + ③
2
∴PM= 2 ,∴
2
2
2
+ = + = ,
∵DM⊥CO,∴此时 2 + 最小,且AD-AM=2 2 −
2
2
=
3 3
2
不积洼步 无以至千里。
例3.如图,已知正方形ABCD的边长为6,圆B的半径为3,点
15.
1
P是圆B上的一个动点,则 − 的最大值为_____.2
中考复习专题题
普集街乡初级中学
不积洼步 无以至千里。
学习目标
1、掌握阿氏圆模型特点和有关解题思路,应用"阿氏圆"
的性质解答带系数的两条线段和的最小值(重点)(形
如求PA+k•PB 的最值问题)
2、体会数学思想——转化思想. (难点)
不积洼步 无以至千里。
定理探究
“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点A、B,
则所有满足PA=k·PB(k≠1)的点的轨迹是一个圆,这个轨
迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
人物介绍
阿波罗尼斯(Apollonius约公元前262-190年),古希腊数
学家,与欧几里得,阿基米德齐名.
中考数学专题复习39几何最值之阿氏圆问题(解析版)
问题分析:“阿氏圆”又称为“阿波罗尼斯圆”.如下图.已知A 、B 两点.点P 满足PA:PB=k (k ≠1).则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现.故称“阿氏圆”。
模型展示:如下图.已知A 、B 两点.点P 满足PA :PB=k (k≠1).则满足条件的所有的点P 构成的图形为圆.(1)角平分线定理:如图.在△ABC 中.AD 是△BAC 的角平分线.则AB DBAC DC=.证明:ABD ACDS BD SCD =.ABD ACDSAB DE AB SAC DF AC ⨯==⨯.即AB DBAC DC=(2)外角平分线定理:如图.在△ABC 中.外角CAE 的角平分线AD 交BC 的延长线于点D.则AB DBAC DC=.证明:在BA 延长线上取点E 使得AE=AC.连接BD.则△ACD△△AEDA B POA B POFEDCBAABCDE几何最值之阿氏圆问题方法技巧(SAS ).CD=ED 且AD 平分△BDE.则DB AB DE AE =.即AB DBAC DC=. 接下来开始证明步骤:如图.PA :PB=k .作△APB 的角平分线交AB 于M 点.根据角平分线定理.MA PAk MB PB==.故M 点为定点.即△APB 的角平分线交AB 于定点;作△APB 外角平分线交直线AB 于N 点.根据外角平分线定理.NA PAk NB PB==.故N 点为定点.即△APB 外角平分线交直线AB 于定点;又△MPN=90°.定边对定角.故P 点轨迹是以MN 为直径的圆.模型最值技巧:计算PA k PB +的最小值时.利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小.解决步骤具体如下: △ 如图.将系数不为1的线段两端点与圆心相连即OP.OB △ 计算出这两条线段的长度比OPk OB= △ 在OB 上取一点C.使得OC k OP =.即构造△POM△△BOP.则PCk PB=.PC k PB = NM APOPB M△ 则=PA k PB PA PC AC ++≥.当A 、P 、C 三点共线时可得最小值【例1】如图.已知正方ABCD 的边长为4.圆B 的半径为2.点P 是圆B 上的一个动点.则12PD PC -的最大值为_______.【分析】当P 点运动到BC 边上时.此时PC=2.根据题意要求构造12PC .在BC 上取M 使得此时PM=1.则在点P 运动的任意时刻.均有PM=12PC .从而将问题转化为求PD -PM 的最大值.连接PD.对于△PDM.PD -PM <DM.故当D 、M 、P 共线时.PD -PM=DM 为最大值.【详解】解:(1)如图1中.在BC 上取一点G.使得BG=1.AB CDPABCDP MMPDCBAABCDPMMPDC BA题型精讲△212,212====PB BC BG PB △21==PB BC BG PB △△PBG=△PBC. △△PBG△△CBP.△PC PG 21= △PG DP PC DP +=+21△DP+PG≥DG.△当D 、G 、P 共线时.PC DP 21+的值最小.最小值为DG=2234+=5. △PC PD 21-=PD -PG≤DG. 当点P 在DG 的延长线上时.PC PD 21-的值最大(如图2中).最大值为DG=5.【例2】如图.菱形ABCD 的边长为2.锐角大小为60︒.A 与BC 相切于点E .在A 上任取一点P .则3PB 的最小值为___________.37【详解】解:在AD 上截取AH =1.5.连接PH 、AE .过点B 作BF △DA 延长线.垂足为F . △AB =2.△ABC =60°.△BE =AF =1.AE =BF 323AP AD AH AP ==△△P AD =△P AH .△△ADP △△APH .△23DP AD PH AP ==PH 3. 当B 、P 、H 共线时.3PB 的最小.最小值为BH 长. BH 222237(3) 2.5BF FH ++=37【例3】如图.在Rt ABC 中.△C =90°.CA =3.CB =4.C 的半径为2.点P 是C 上一动点.则12AP BP +的最小值______________23+PB PA 的最小值_______10410【详解】△在BC 上取点D .使CD =14BC =1.连接AD .PD .PC .由题意知:PC=2.△12DC PC PC BC ==.△PCD =△BCP .△PDC BPC ∆∆∽.△12PD PB =. 且12PA PB PA PD AD +=+≥.△229110AD AC CD =+=+=.△2PA PB 1+的最小值为10.故答案为:10;△在AC 上取点E .使CE =43.连接PE .BE .PC .△42323CE PC ==.23PC AC =.△23CE PC PC AC ==.且△PCE =△ACP . △PEC APC ∆∆∽.△23PE PC PA AC ==.△23PE PA =.△23PB PA PB PE BE +=+≥. △222244104()33BE BC CE =+=+=.△23+PB PA 的最小值为4103.故答案为:4103.1.如图.矩形ABCD 中.4,2AB AD ==.以B 为圆心.以BC 为半径画圆交边AB 于点E.点P 是弧CE 上的一个动点.连结,PD PA .则12AP DP +的最小值为( )提分作业A 10B 11C 13D 14【答案】C【详解】解:如图.连接BP.取BE 的中点G.连接PG. △2AD BC BP ===.4AB =.△2142BP BA ==.△G 是BE 的中点.△12BG BP =.△BP BGBA BP=. △PBG ABP ∠=∠.△BPGBAP .△12PG BP AP BA ==.△12PG AP =. 则12AP DP PG DP +=+.当P 、D 、G 三点共线时.取最小值.即DG 长. 224913DG AD AG ++C .2.如图.已知菱形ABCD 的边长为4.60B ∠=︒.B 的半径为2.P 为B 上一动点.则12PD PC +的最小值_______.3PC 的最小值_______37111【详解】△如图.在BC 上取一点G .使得BG =1.连接PB 、PG 、GD .作DF △BC 交BC 延长线于F .△221PB BG ==.422BC PB ==.△PB BCBG PB=.△PBG PBC ∠=∠.△PBG CBP ∆∆.△12PG BG PC PB ==.△12PG PC =.△12PD PC DP PG +=+.△DP PG DG +≥.△当D 、P 、G 共线时.PD +12PC 的值最小.最小值为DG . 在Rt △CDF 中.△DCF =60°.CD =4.△DF =CD •sin 3CF =2. 在Rt △GDF 中.DG 22(23)(5)37+=37 △如图.连接BD .在BD 上取一点M .使得BM 3连接PB 、PM 、MC .过M 作MN △BC 于N .△四边形ABCD 是菱形.且60ABC ∠=︒. △AC △BD .△AOB =90︒.△ABO =△CBO =12△ABC =30︒.△AO =12AB =2.BO 22224223AB AO -=-BD =2 BO =433332BM PB ==343PB BD = △3BM PB PB BD ==且△MBP =△PBD .△△MBP ~△PBD .△3PM PB PD BD ==3PM =.△3PC PC PM MC =+≥.△当M 、P 、C 共线时.3PC 的值最小.最小值为CM .在Rt △BMN 中.△CBO =30︒.BM 3MN =12BM 3BN 2212BM MN -=.△CN =4-1722=. △MC 2222111CN MN CN MN ++.△3PC 111. 3.如图.在中.△ACB=90°.BC=12.AC=9.以点C 为圆心.6为半径的圆上有一个动点D .连接AD 、BD 、CD.则2AD+3BD 的最小值是 .ABC ∆【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭.故求23AD BD +最小值即可.考虑到D 点轨迹是圆.A 是定点.且要求构造23AD .条件已经足够明显.当D 点运动到AC 边时.DA=3.此时在线段CD 上取点M 使得DM=2.则在点D 运动过程中.始终存在23DM DA =.问题转化为DM+DB 的最小值.直接连接BM.BM 长度的3倍即为本题答案.【详解】如图.在AC 上取一点M.使CM=4 ∵CDAC CM CD= ABCDMACDD CBAM DCBAM∴∠MCD=∠ACD ∴△DCM ∽△ACD ∴96==AC DC AD MD ∴AD MD 32=在△MDE 中.MD+DB ≥MD ∴MD+DB 最小值为MB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿氏圆整理
例题讲解:
例1、如图1,抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .
(1)求a 的值和直线AB 的函数表达式;
(2)设△PMN 的周长为C 1,△AEN 的周长为C 2,若12C C =6
5,求m 的値;
(3)如图2,在(2)的条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接
E ′A 、E ′B ,求E ′A +2
3E ′B 的最小值.
解:(1)把点A (4,0)代入y =ax 2+(a +3)x +3,得 16a +4(a +3)+3=0.
解得a =-3
4.
∴抛物线的函数表达式为:y =-34x 2+9
4x +3. 把x =0代入上式,得y =3. ∴点B 的坐标为(0,3).
由A (4,0),B (0,3)可得直线AB 的函数表达式为:y =-34x +3. (2)根据题意,得
OE =m ,AE =4-m ,AB =5,点P 的坐标可表示为(m ,-34m 2+9
4m +3). ∴PE =-34m 2+9
4m +3……………………………………………………① ∵△AEN ∽△AOB ,∴AN AB =NE BO =AE 4.∴AN 5=NE 3=4-m
4. ∴AN =54(4-m ), NE =3
4(4-m ). ∵△PMN ∽△AEN ,且
12C C =65
,
∴PN AN =65.∴PN =65AN =65
×5
4(4-m )=32(4-m ).
∴PE =NE +PN =34(4-m )+32(4-m )=9
4(4-m )………………………...② 由①、②,得
-34m 2+94m +3=9
4(4-m ).
解得m 1=2,m 2=4(不合题意,舍去). ∴m 的値为2.
(3)在(2)的条件下,m 的値为2,点E (2,0),OE =2.∴OE ′=OE =2. 如图,取点F (0,43),连接FE ′、AF .则OF =4
3,AF =
42+(43)2=4
310.
∵OF OE ′=4
32=23,OE ′OB =23,且∠FOE ′=∠E ′OB ,∴△FOE ′∽△E ′OB .∴FE ′E ′B =23.∴FE ′=2
3E ′B . ∴E ′A +23E ′B =E ′A +FE ′≥AF =4
310. ∴E ′A +23E ′B 的最小值为4
310. 巩固练习:
1、如图,在Rt △ABC 中,∠ACB ﹦90°,CB ﹦4,CA ﹦6,圆C 半径为2,P 为圆上一动点,连接AP ,BP ,1
2
AP BP + 最小值为( )
A 37
B 、6
C 、217
D 、4
2、如图,在△ABC 中,∠B ﹦90°,AB ﹦CB ﹦2,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则2
PA +
的最小值是 . 3、如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则32
PB PD +的最小值为 .
第28题答案图
x
y
F B A
O
E
E'
4、在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA ﹦135°,则2PD ﹢PC 的最小值是 .
5、(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求1
2
PD PC +的最小值和1
2
PD PC -
的最大值. (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求2
3
PD PC +的最小值和2
3
PD PC -
的最大值. (3)如图3,已知菱形ABCD 的边长为4,∠B ﹦90°,圆B 的半径为,2,点P 是圆B 上的一个动点,求1
2
PD PC +的最小值和1
2
PD PC -
的最大值. 图1 图2 图3
套路总结
阿氏圆基本解法:构造相似
阿氏圆一般解题步骤:PC kPD +
第一步:连接动点至圆心O (将系数不为1的线段的两个端点分别与圆心相连接),则连接OP 、OD ; 第二步:计算出所连接的这两条线段OP 、OD 长度;
第三步:计算这两条线段长度的比OP
m OD =; 第四步:在OD 上取点M ,使得OM
m OP
=;
第五步:连接CM ,与圆O 交点即为点P .
1.
如图,在Rt △ABC 中,∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点,连结AP ,BP ,AP +BP 的最小值为( )
2.如图,半圆的半径为1,AB 为直径,AC 、BD 为切线,AC=1,BD=2,P 为上一动点,求
PC +PD
的最小值.
y
x。