过渡金属氧化物对阻燃剂聚磷酸铵热分解的影响机制

合集下载

聚磷酸铵阻燃剂的合成及阻燃机理

聚磷酸铵阻燃剂的合成及阻燃机理

聚磷酸铵阻燃剂的合成及阻燃机理2004年第二期阻燃材料与技术5聚磷酸铵阻燃剂的合成及阻燃机理张泽江梅秀娟(公安部四川消防科学研究所,四川都江堰611830)摘要:本文叙述了聚磷酸铵阻燃剂的合成方法及阻燃机理;并提出了一些改性处理办法.关键词:聚磷酸铵,阻燃剂,合成,阻燃机理1聚磷酸铵的分子结构聚磷酸铵(简称APP)是一种很重要的无卤阻燃剂,它是近二十年来迅速发展起来的,至今它已广泛应用于阻燃毛毯,阻燃地毯,阻燃门窗,阻燃塑料,阻燃橡胶,阻燃纸张,阻燃木材,阻燃涂料,阻燃封堵材料等中.它的分子结构为:0ooIII一0一P一0~P一0一P一0一I}ION}k0N}k0N通式为:H(一】+2(NH4)P03n+l上式中,m/n=0.7一1.1.m≤n+2;n≥10.当20≥rl≥10时,为短链APP;当n≥201t~,为长链APP.APP有五种不同的晶形.2合成方法及反应机理2.1磷酸与尿素缩合法目前,国内普遍采用该种方法合成APP.其反应式:H~~O4+(NH2)2C0~APP反应机理为:H0__P--OH+H与【HO---1=)P--OH+H~--C--NH:01-+[HEN--C--NH:]+HO一.三;IHOHOHP+[H3N—f'~01一+H0一f一0H一[0f—OHO—r~uONmH.一}一.r+.=c一.一}一.H一H.一.一}~.H上述反应重复进行即可得APP.有的在反应中可)/IIXNH以提高反应物产率,也有的加入少量APP引发剂.2.2磷酸二氢铵与尿素缩合法反应式:NH4H2PO4+(NH2)2Co_+APP反应机理:NH40--P--OH+H2N--C--NH2=【H(卜一P-0]一+【H:N--C--NH:]' OHbNP--NH,]*+HO阜.H—ro:f—+On0一P—ON也6NHH.一}一O]-+[O=C--O--}一.N一H一}一.一}一.NH上述反应重复进行即可得APP.有的在反应中可加入P205以提高反应物产率. 2.3正磷酸铵与氨气高温中和一缩合法6阻燃材料与技术2004年第二期反应式:(Nrk),04+NH厂,API反应机理:zN一乒.N与H.一.一.N上述反应重复进行即可得APP.2.4P2o广NH厂H2(]I高温气相反应法反应式:P2OC-N.H3+H20--~App反应机理:NH3+H一0一H一NH4OHro—f)H4oHHo~f)一.一f)一oH0OONH4ON上述反应重复进行即可得APP.2.5正磷酸与氨气(氨水)高温中和法反应式:H,P0.+NH3+H20-+APP反应机理:;PH0~P~0H+NH3+H一0一H^H,O.p-01t l{0H()H重复上述2.2的反应,即可得APP.有的加入一定量尿素增加反应产率;也有的直接用聚磷酸与氨气反应,2.6磷酸铵与尿素缩合法反应式:(NIL)4+(NH2)C0一APP反应机理:}(卜一r—ON|I.+ttzN--C--N!;N}∞一—Oj'+INI{广c一I{J+NHj OⅫ{|ONIL[HcN--P--NH~+NILO--P--ON1L]一+—重复上述反应即可得APP.2.7三氯氧磷与氨气(氨水)取代缩合反应法反应式:NH40H+NH3+POLCbAPP反应机理:cl一}一cl+NHN一0NH4ClONH4重复上述2-3的反应,即可得APP.2.8三聚氰胺酸盐热解缩合法反应机理:m..H州r^,N\堋一…{)一一ONtLli.~3一+.:c一.一}一.N+一H.一.一.H重复上述反应即可得APP.2.9焦磷酸铵与五氧化二磷缩合法反应机理:APP聚合度越高,其分子链越长,分子量就越大,水溶性也越少.日本,美国一些公司已开发出水不溶性APP.如HoechstCelanese 公司开发的一种APP化合物(聚合度达2000),改善了APP的热稳定性,降低了溶解度且具有特别高的白度指数.制备高聚合度APP的办法很多,但总的说来,反应条件控制P●0EPOP●0O0.一0kHhOcL.一Oop..一一H^2004年第二期阻燃材料与技术7对产品质量是很重要的.生产工艺设备落后的条件下生产,一般得到的APP聚合度只能达到几十,最多几百.以下提出了一些改性处理APP的办法,以使APP能有效发挥其阻燃作用.3阻燃改性APP3.1微胶囊化通过APP微胶囊化,可减少APP的水解,潮解性能.可用来处理APP的成膜材料有密胺——甲醛树脂,聚氨酯树脂,环氧树脂等.针对不同使用场合,需选用不同包覆材料使之微胶囊化.微胶囊化的APP在25℃和60℃时水中的溶解度分别为0.2%和0.8%;而未微胶囊化的APP在25℃和60℃时的溶解度则为8.2%和62%.用微胶囊化的18份APP阻燃聚丙烯,其极限氧指数可达30.4.而且针对不同的体系需采用不同的微胶囊包覆材料.微胶囊包覆材料对不同的应用体系又不尽相同,加在一些应用场合(如涂料中)包覆的有机材料往往容易溶解而失去微胶囊化的性能. 3.2表面活性剂改性处理提高APP阻燃整体效应的另一途径就是用偶联剂,如用含碳化合物进行表面处理,使其成为具有流散性的细粉,增强与塑料的相容性和加工流动性,并提高其阻燃性.也可对APP表面采用阴离子表面活性剂进行改性, 如用含12—32个碳原子的脂肪酸及其双价金属盐,三价金属盐或其混合物改性处理APP,可使APP的渗水性减少.还可用含4—50个碳原子的烯烃,苯乙烯(至少含一个具有l—l2个碳原子的烷基团)或其混合物等对APP进行表面改性,可增强其加工性能,耐渗水性能.也可用季铵盐阳离子表面活性剂对APP进行表面改性处理.但APP表面改性处理,需针对不同使用场合采用适宜改性剂表面处理.当应用于涂料,阻燃液,阻燃树脂等场合时,往往不能采用表面改性处理后的APP.3.3改性APP在一定温度下用一定量三聚氰胺与APP作用,可得到一种起始失重温度达250~C以上且有较强抗吸湿性的反应混合物.这种混合物水解性低,在高温下可形成交联结构或发生加成反应而得到热稳定性好,具水解稳定性的产物,可提高APP在材料中的添加性能.3.4APP超细化APP在阻燃处理塑料之前,一般需经过碾磨处理至足够细度再添加.超细化APP添加到阻燃制品中,可充分发挥阻燃效应,同时较少影响材料物理性能.可在不影响材料物理性能前提下增加阻燃剂添加量.4APP阻燃反应机理4.1催化碳化APP在高温下发生分解反应,生成的磷酸是较强的脱水剂,可促使有机物的脱水炭化(如促使季戊四醇发生分子内脱水生成醚键,反应生成的磷酸酯和醚结构进一步加热, 降解,交联生成不饱和的富炭结构),加速成碳反应的进行.有效隔绝温度,火焰的进一步传播.4.2热分解APP在高温下首先分解生成磷酸,在300~C时开始脱水生成有坚固硬壳的固相层聚磷酸或聚偏磷酸;同时放出氨气,水蒸汽等不燃性气体稀释空气,阻止燃烧.H七OH+H20T十P.一.一P_}HOH+H20fHHH..H.一一0P0HHH,H8阻燃材料与技术2004年第二期4.3自由基阻燃反应在高温下,可发生如下自由基终止反应:H3P04_'HPO2+PO?+50H?PO?+H?—}HPO?HPO?+H?—}H2+PO?PO?+OH?_+?HPO?+0?上述反应捕获了0?自由基,终止燃烧.4.4P—N协同阻燃APP在膨胀阻燃体系中,作为酸源和发泡剂使用.在受热时,APP分解成磷酸,偏磷酸.生成的酸同含碳多元酸反应直至碳化;含氮组分促使上述反应的发生,并产生大量高温气体,气体挥发促使碳层形成多微孔的结构.参考文献1印其山,杨汉定,黄碧萍等.化学世界,1985(3):85-862米仁禧,阻燃材料与技术,1992(4):53张文昭,陈晓之.塑料加工,1994,(1):174ParkerJohnA,FeldmanRubin,. pat.47687651,,,,l,l,,,,,,,,,,,,,,,l,,,,,,,l,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(上接第4页)参考文献1欧育湘.阻燃剂——制造,性能及应用.北京:兵器工业出版社,19972Saytex8010FlameRetardant,2001AlbemarleCorpom- tion3SaadatHussin,BatonRouge,La.Processfordeeabro- modiphenylalkanepredominantproduct[:5302768.1994-4—124GeorgeH.Ransford,PhillipR.DeVrou.Processfora deeabromodiphenylethanepredominantproducthavingen. haneedwhiteness【:5324874,1994-6—285HymanStollar,KhaimKhariton.Processfortheprepara. tionofdeeabromodiphenyletherwithimprovedthermalstability【:4871882,1989—8-36王文广.塑料配方设计.北京:化学工业出版社,1998 synthesisofanewflameretardantdecabromodiphenylethane SunLinggangZhouZhengmaoLiXiangLuJinglin (NationalLaboratoryofDameRetardantMaterials.BeijingInstituteotTechnology,Beijing 100081)Abstracrt:Amethodofsynthesisforwhitedecabromodiphenylethanecompoundwas diSCussedbyusingofdiphenylethaneandbromine.eoptimumreactiveconditionswere given.UnderthepresenceofacatalystH一1.theoptimizedconditionsmolarrationof diphenylethanetobromine1:25,catalystH一1todiphenylethane1:20,diphenylethanefeedingtemperature10~Candreactiontithe8.0h,yieldofdecabromodjphenylethanewasupto97.1 %.TheconstructionalldpropertyofproductwasmeasuredbyIR,elementanalysisandTGA.The mechanicalandretardantpropertiesofflameretardamABSWasalsostudied. Keyword:flameretardant;decal】rom0【Iiphtlnylethane;diphenylethane。

阻燃ABS的热稳定性研究

阻燃ABS的热稳定性研究
20℃/min,氮气。 2 热稳定性评价方法的建立 2.1 不同温度注塑色板比较色差
阻 燃 ABS 材 料 在 成 型 时 由 于 温 度 波 动 导 致 材 料 中 某 些 成 分 分 解,容 易 产 生 异 色 纹,因 此, 以 200℃注塑色板的颜色作为底色,在 220℃注塑 色板计算其与 200℃的色差 (ΔE),Lab 为颜色的 显示方 式,由测 色仪测 试 所得,L 表 示 明 度,a 表 示 红 绿,b 表 示 黄 蓝,Lab 值 由 测 色 仪 测 试 所得, 其 中, DE = DL2 + Da2 + Db2 ,ΔL=L220 ℃ –L200 ℃, Δa=a220 ℃ –a200 ℃,Δb=b220 ℃ –b200 ℃。 比 较 ΔE 以 及 Δb 的大小进行评价。
ABS :0215A,吉林石油化工有限公司; ABS :HR181,韩国锦湖石油化学株式会社; 四溴双酚 A :FR–1524,以色列死海溴公司; 三氧化二锑:S–05N,上海迈瑞尔化学公司; 氯化聚乙烯 (PE–C) :湖北复平化工有限公司; 抗滴落剂:TF–1645,上海向岚化工公司; 抗氧剂:168 和 1010,瑞士汽巴公司; 硬脂酸钙 (Cast) :BS 3818,广州天金化工有限 公司; 硬脂酸镁 (Mgst): 发基化学品 ( 张家港 ) 有限
阻燃 ABS 材料的热稳定性与其热降解导致质 量损失的速率存在一定关系,因此,通过在 220℃停 留 100 min 比较失重 1%,4% 所需时间的长短以及 残重的大小比较材料的热稳定性。 2.4 酸性气体定性比较分析
阻燃 ABS 中的阻燃剂及添加剂受热分解易产 生酸性气体,通过分析材料受热后产生气体的快慢 及多少可进行科学评价。 3 结果与讨论 3.1 四溴双酚 A 的热稳定性改善

膨胀阻燃体系概述

膨胀阻燃体系概述

膨胀阻燃体系概述陈晓平;张胜;杨伟强;崔正;陈小随【摘要】综述了膨胀型阻燃剂的研究状况及其组成和阻燃机理;指出了在膨胀阻燃聚烯烃中出现的问题,提出了一些改进的方法;同时详细介绍了膨胀型阻燃剂用协效剂;对物理膨胀型阻燃剂的特点进行了综述,并与化学膨胀型阻燃剂进行了比较;最后展望了膨胀型阻燃剂的发展趋势,多功能、环保和三位一体的膨胀型阻燃剂是未来的发展方向.【期刊名称】《中国塑料》【年(卷),期】2010(024)010【总页数】8页(P1-8)【关键词】膨胀型阻燃剂;聚烯烃;阻燃机理;协同作用;协效剂【作者】陈晓平;张胜;杨伟强;崔正;陈小随【作者单位】北京化工大学碳纤维及功能高分子教育部重点实验室,北京,100029;北京化工大学北京市新型高分子材料制备与加工重点实验室,北京,100029;北京化工大学碳纤维及功能高分子教育部重点实验室,北京,100029;北京化工大学北京市新型高分子材料制备与加工重点实验室,北京,100029;北京化工大学化工资源有效利用国家重点实验室,北京,100029;北京化工大学碳纤维及功能高分子教育部重点实验室,北京,100029;北京化工大学北京市新型高分子材料制备与加工重点实验室,北京,100029;北京化工大学碳纤维及功能高分子教育部重点实验室,北京,100029;北京化工大学北京市新型高分子材料制备与加工重点实验室,北京,100029;北京化工大学碳纤维及功能高分子教育部重点实验室,北京,100029;北京化工大学北京市新型高分子材料制备与加工重点实验室,北京,100029【正文语种】中文【中图分类】TQ325.1聚烯烃是一种质轻、无毒、具有较好的力学性能、优良的电绝缘性和耐化学腐蚀性能的热塑性塑料。

但聚烯烃的氧指数仅为17%左右,属易燃材料,高温受热时降解成低相对分子质量物质,极易传播火焰,引发火灾。

我国仅由于电线电缆引起的火灾损失,每年达50多亿元人民币,这就使聚烯烃在许多领域的应用受到限制[1]。

三聚氰胺聚磷酸盐(MPP)对高温硫化硅橡胶的阻燃和陶瓷化性能的影响

三聚氰胺聚磷酸盐(MPP)对高温硫化硅橡胶的阻燃和陶瓷化性能的影响

收稿日期:2023-03-23;修改日期:2023-04-16基金项目:国家重点研发计划项目(2022Y F C 3080600);中国科学技术大学重要方向培育基金(W K 2320000059)作者简介:骆晓宇,中国科学技术大学硕士研究生,研究方向为阻燃硅橡胶复合材料㊂通讯作者:胡伟兆,副研究员,E -m a i l :h w z 1988@u s t c .e d u .c n第32卷第3期2023年9月火 灾 科 学F I R ES A F E T YS C I E N C EV o l .32,N o .3S e p.2023文章编号:1004-5309(2023)-0177-10D O I :10.3969/j.i s s n .1004-5309.2023.03.06三聚氰胺聚磷酸盐(M P P )对高温硫化硅橡胶的阻燃和陶瓷化性能的影响骆晓宇,徐周美,宋 磊,胡 源,胡伟兆*(中国科学技术大学火灾科学国家重点实验室,合肥,230026)摘要:为协同提升高温硫化硅橡胶的阻燃与陶瓷化性能,以高温硫化硅橡胶为基体,结合煅烧高岭土㊁磷酸盐玻璃粉和三聚氰胺聚磷酸盐(M P P )制备了阻燃可陶瓷化硅橡胶复合材料㊂采用垂直燃烧仪㊁锥形量热仪(C O N E )㊁热重分析仪(T G A )㊁傅里叶红外光谱仪(F T I R )㊁扫描电子显微镜(S E M ),研究了M P P 的组分占比以及硅氧烷粉体改性对硅橡胶复合材料燃烧性能和陶瓷化性能的影响㊂结果表明:M P P 的添加能够有效降低复合材料的热危害,同时提高复合材料煅烧后得到的类陶瓷体的强度;当M P P 在15w t %的组分占比下,1000ħ煅烧后样品的弯曲强度超过15M P a ,通过粉体改性可以使M P P 恶化的力学强度得到恢复㊂关键词:高温硫化硅橡胶;阻燃;陶瓷化;三聚氰胺聚磷酸盐中图分类号:X 915.5 文献标识码:A0 引言硅橡胶(S R )因其柔软性㊁易加工性和耐高低温性等特性,被广泛应用于密封件㊁电线电缆等领域[1-3]㊂作为硅橡胶的主要成分,聚硅氧烷独特的结构赋予其高柔韧性㊁耐高低温㊁不易燃烧的特性[4-6],同时热解时生成的大量二氧化硅(S i O 2)微粒有利于陶瓷化过程,是一种常用的可陶瓷化高分子材料基体㊂通过向硅橡胶加入成瓷填料和助瓷剂可以制备出常态柔软而升温过程中形成陶瓷结构并具有自支撑性能的可瓷化硅橡胶材料,更适合在如高速轨道交通㊁核电站等特殊领域的消防安全应用[7]㊂为了制备具有可陶瓷性能的硅橡胶,云母[8]㊁高岭土[9]以及蒙脱土[10]等矿物填料通常是必不可少的,在升温陶瓷化过程中,这些填料充当骨架,再在助瓷剂的作用下协同形成类陶瓷结构㊂而在陶瓷化助剂中低熔点玻璃粉具有优异的助瓷效果,在400ħ以上发生软化熔融,并将云母㊁硅灰石等成瓷填料和二氧化硅粘结在一起,形成连续的陶瓷结构[11]㊂然而,通常低熔点玻璃粉中含有的氧化钠和氧化锂等金属氧化物会恶化硅橡胶复合材料的热稳定性,对降低复合材料的热和烟气危害没有帮助㊂为了提升基体的阻燃效果还需要进一步添加阻燃剂㊂以聚磷酸铵(A P P)为代表的磷氮类阻燃剂作为一类环保高效的阻燃剂,受到广泛的关注和研究[12]㊂在硅橡胶阻燃陶瓷化研究中,A P P 展现了同时作为阻燃剂和助瓷剂的效果[13-15],然而A P P 较高的酸度和较低的热分解温度限制了相关硅橡胶复合材料在有特殊高温要求领域的应用[16]㊂相比之下,三聚氰胺聚磷酸盐(M P P )具有更高的热稳定性[17],同时有研究表明M P P具有一定的抗老化作用[18]㊂然而,目前研究M P P对于硅橡胶阻燃和陶瓷化性能的影响报道较少㊂本文以煅烧高岭土为成瓷填料,磷酸盐低熔点玻璃粉为助瓷剂,并使用M P P替代相应组分的煅烧高岭土,来制备阻燃和陶瓷化硅橡胶㊂同时,额外制备了使用三甲氧基乙烯基硅氧烷混合干法改性的粉体的对应样品,通过锥形量热仪㊁万能试验机等设备来研究M P P含量以及粉体干法改性前后对于硅橡胶复合材料阻燃㊁陶瓷化和力学性能的影响;使用X射线衍射光谱(X R D)㊁傅里叶红外光谱(F T I R)㊁X射线光电子能谱(X P S)和扫描电镜(S E M)对陶瓷化过程进行分析,探究M P P对高温硫化硅橡胶的阻燃㊁陶瓷化性能以及力学性能的影响规律㊂1实验内容1.1实验原料高温硫化甲基乙烯基硅橡胶混炼胶㊁2,5-二甲基-2,5-双(叔丁基过氧基)己烷(双二五硫化剂)购买于广东银禧科技股份有限公司,磷酸盐玻璃粉F R0135购买于安米微纳新材料有限公司,三聚氰胺聚磷酸盐(M P P)㊁煅烧高岭土和乙烯基三甲氧基硅氧烷购买于上海阿拉丁生化科技股份有限公司㊂1.2样品制备按照表1中所示配方,依次将硅橡胶和粉体填料在室温下加入密炼机腔室,混合20m i n后得到未硫化样品,将样品置于铁质模具在175ħ下预硫化10m i n,最后将样品在200ħ烘箱中后硫化2h,得到样品S R/G3㊁S R/M P P-1S㊁S R/M P P-2S㊁S R/ M P P-3S㊂表1填料按顺序添加密炼的样品配方T a b l e1S a m p l e r e c i p e f o r a d d i n g f i l l e r s i n t o t h ec o m p a c t o r i n s e q u e n c e样品硅橡胶/g玻璃粉/g高岭土/gM P P/g双二五硫化剂/gS R/G327924-0.324 S R/M P P-1S2792130.324 S R/M P P-2S2791860.324 S R/M P P-3S2791590.324将9g玻璃粉㊁24g煅烧高岭土和M P P混合物添加到打粉机容室中,准确称量0.99g三甲氧基乙烯基硅氧烷与等质量乙醇混合,在粉体搅拌间隙分批加入混合溶液,经过数次机械混合后,将粉体倒出置于80ħ烘箱过夜,将添加量为3g㊁6g和9g M P P的粉体记为M P P-1M㊁M P P-2M和M P P-3M,以M P P-1M㊁M P P-2M和M P P-3M添加量65w t%制备的硅橡胶复合材料记为S R/M P P-1M㊁S R/M P P-2M和S R/M P P-3M㊂将样品裁剪为80m mˑ3m mˑ10m m的形状放入马弗炉中,以10ħ/m i n升温速率由室温分别升温至600ħ㊁800ħ㊁1000ħ,并保持30m i n,随后自然降温,得到各硅橡胶复合材料的类陶瓷残余物㊂1.3仪器与表征傅里叶变换红外(F T I R)光谱是使用K B r压片,使用红外光谱仪T h e r m oF i s h e rN i c o l e t6700 (美国)在400c m-1~4000c m-1范围内测试得到㊂利用热重分析仪(T G A,Q5000)分析了硅橡胶和复合材料在氮气氛围下的热稳定性,温度从环境温度升高到800ħ,线性加热速率为20ħ/m i n㊂X射线衍射是通过日本理学R i g a k uD M a x-R a型转靶X-射线衍射仪(C uKα射线λ=0.1542n m)进行测定,扫描速度4ʎ/m i n㊂结合T G A分析仪和F T I R 分光光度计(T G A-F T I R)推测硅橡胶复合材料的热解产物㊂三点弯强度是通过万能试验机(M S TS y s-t e mC o.,L t d.,中国)对硅橡胶复合材料煅烧后残余物以1m m/m i n的测试速度得到的㊂断裂强度和断裂伸长率是通过万能试验机(M S T S y s t e m C o.,L t d.,中国)对硅橡胶复合材料以200m m/m i n的测试速度得到的㊂根据I S O5660标准,使用锥形量热仪(T E S T e c h,中国)在35k W㊃m-2的热通量下,用100m mˑ100m mˑ3m m的试样进行燃烧试验㊂根据A S T M D3801-1996的要求,用于垂直燃烧(U L-94)试验(C F Z-2,江宁分析仪器,中国)的所有样品的尺寸为100m mˑ10 m mˑ3m m㊂扫描电子显微镜(S E M)图片是采用S U8220冷场发射扫描电子显微镜对样品表面形貌进行拍摄的,测试电压为3k V㊂2结果与讨论2.1硅橡胶复合材料的热稳定性图1和表2分别为硅橡胶复合材料在氮气氛围下的T G A㊁D T G曲线和详细数据㊂硅橡胶纯样和使用M P P替代高岭土的样品表现出两步失重过871火灾科学F I R ES A F E T YS C I E N C E第32卷第3期程,而只添加玻璃粉的样品表现出一步失重过程㊂S R /G 3最大降解速率温度的提前可能是因为煅烧高岭土和玻璃粉中金属离子加速了复合材料的热降解㊂同时由于M P P 自身较低的热解温度和热解下的质量损失,M P P 占比组分含量的提高导致了相应硅橡胶复合材料T 5%分解温度的提前和残余物占比的下降,而对比相同M P P 含量的样品,粉体提前经过混合改性可以提高样品T 5%分解温度,同时残余物占比接近㊂图1 各样品氮气氛围下的(a )T G 曲线和(b )D T G 曲线F i g .1 T Gc u r v e (a )a n dD T Gc u r v e (b )o f s a m p l e u n d e r n i t r o g e n a t m o s ph e r e 表2 氮气氛围下硅橡胶复合材料的热重数据T a b l e 2 T h e r m o g r a v i m e t r i c d a t a o f s i l i c o n e r u b b e r c o m p o s i t e s u n d e r n i t r o g e n a t m o s ph e r e 样品T 5%/ħT m a x 1/ħR m a x 1/m a s s %ħ-1T m a x 2/ħR m a x 2/m a s s %ħ-1R e s i d u e a t800ħ/%S R502.2580.60.406649.20.49829.25S R /G 3458.3490.70.476--66.38S R /M P P -1S 447.4420.60.113539.40.50365.04S R /M P P -2S414.7418.00.205547.50.41261.12S R /M P P -3S394.8418.80.308548.00.29157.05S R /M P P -1M 450.7419.30.109540.60.52064.59S R /M P P -2M 414.3417.90.194548.50.40361.56S R /M P P -3M409.1419.70.303552.30.32457.74T m a x 最大质量损失率下的温度;R m a x 最大质量损失率值㊂2.2 硅橡胶复合材料的阻燃性能研究表3列出了各样品的垂直燃烧测试结果,纯样和S R /G 3无等级,而M P P 低添加量下同样无等级,当M P P 添加量大于10w t %,样品才可以达到V -0等级㊂M P P 作为阻燃剂,在基体受热时会提前分解产生大量不燃气体,降低挥发性可燃气及氧气浓度;另一方面M P P 在高温下能够分解形成多种交联的缩聚物,有助于促进致密炭层的形成,进而保护高分子基体内部遭受热辐射的进一步侵蚀㊂图2是锥形量热测试得到各样品的热释放速率曲线图㊁总热释放曲线图㊁C O 产生速率曲线图和C O 2产生表3 各样品U L -94等级T a b l e 3 U L -94g r a d e f o r s a m p l e s 3m m 厚度样品U L -94等级S R N R S R /G 3N R S R /M P P -1SN RS R /M P P -2S V -0S R /M P P -3S V -0S R /M P P -1M N R S R /M P P -2M V -0S R /M P P -3MV -0971V o l .32N o .3骆晓宇等:三聚氰胺聚磷酸盐(M P P)对高温硫化硅橡胶的阻燃和陶瓷化性能的影响速率曲线图㊂表4为各样品热释放速率峰值(pH R R )㊁总热释放(T H R )㊁C O 产生速率峰值(P C O P R )和C O 2产生速率峰值(P C O 2P R )的具体参数㊂由结果可知,尽管添加煅烧高岭土和玻璃粉能够降低复合材料的总热释放,其热释放峰值却几乎不变;而M P P 的添加可以明显降低热释放峰值,并且提高M P P 添加量会提高总热释放,这一变化可能是因为M P P 在热解过程中产生的气相产物冲破表面二氧化硅层,导致下层基体继续燃烧造成的㊂在C O 释放上,M P P 的添加能够一定程度上延缓煅烧高岭土和玻璃粉导致的C O 提前释放和产生速率,同时提高M P P 含量有利于抑制C O 的释放㊂在C O 2释放上,M P P 的添加同样有利于降低C O 2的释放速率,同时发现乙烯基硅氧烷的混合改性能够进一步降低C O 2的释放速率㊂图2 各样品的锥形量热仪测试结果F i g .2 C o n e c a l o r i m e t r i c t e s t r e s u l t s f o r e a c h s a m pl e 表4 各样品锥形量热测试结果T a b l e 4 C o n i c a l c a l o r i m e t r i c t e s t r e s u l t s f o r e a c h s a m pl e 样品pH R R /k W ㊃m -2T H R /M J㊃m -2P C O P R /10-3㊃g ㊃s-1P C O 2P R /g ㊃s -1S R246.743.422.330.100S R /G 3246.926.972.300.096S R /M P P -1S 162.128.592.000.071S R /M P P -2S164.431.251.780.075S R /M P P -3S 196.234.801.620.086S R /M P P -1M 176.928.581.680.054S R /M P P -2M 174.032.761.720.055S R /M P P -3M162.633.151.620.056081火灾科学 F I R ES A F E T YS C I E N C E 第32卷第3期图3(a1-a4)S R㊁S R/G3㊁S R/M P P-3S和S R/M P P-3M的热解气体产物三维T G-I R谱图,(b)红外吸收强度随温度变化的总热解产物曲线,(c)热解气体最大吸光度时的红外光谱以及(d)红外吸收强度随温度变化的环状硅氧烷曲线F i g.3T h r e e-d i m e n s i o n a l T G-I R s p e c t r a o f p y r o l y s i s g a s p r o d u c t s o f S R,S R/G3,S R/M P P-3S a n d S R/M P P-3M(a1-a4),t o t a l p y r o l y s i s p r o d u c t c u r v e s o f I Ra b s o r p t i o n i n t e n s i t y w i t h t e m p e r a t u r e(b),I R s p e c t r a o f p y r o l y s i s g a sa tm a x i m u mab s o r b a nc e(c)a nd c y c l i c s i l o x a ne c u r v e s of I Ra b s o r p t i o n i n t e n s i t y w i t h t e m p e r a t u r e(d)图3为S R㊁S R/G3㊁S R/M P P-3S和S R/M P P-3M在氮气氛围升温下热解产生的气相红外图谱㊂从热解气体产物三维T G-I R谱图和G r a m-S c h m i d t 图可以发现,高岭土和玻璃粉的添加降低了吸收峰出现的温度,并略微提高了吸光强度,M P P的添加进一步降低了吸收峰出现的温度,不同的是降低了吸光强度,各样品的吸光度变化与热重曲线相一致㊂图3 (c)是热解气体最大吸光度时的红外光谱,各样品在2970c m-1㊁1265c m-1㊁1079c m-1㊁1026c m-1和818c m-1处出现相同的特征吸收峰,对应于环状低聚物的C-C㊁S i-O-S i和C-S i键吸收峰[19]㊂环状低聚物是由硅橡胶主链的随机断裂生成的,红外图谱中无明显C H4,说明自由基反应降解机制作用微弱[20]㊂添加有M P P的S R/M P P-3S和S R/M P P-3M在2356c m-1㊁2284c m-1和2248c m-1处出现微弱的新的吸收峰,对应C O2㊁-N=C=O和-C N的吸收峰[21]㊂图3(d)是对应环状低聚物最强的吸收峰随温度变化的曲线,M P P的添加显著减少了氮气氛围热解过程中环状硅氧烷低聚物的产生,同时乙烯基硅氧烷的混合改性略微延迟了环状低聚物的产生㊂2.3硅橡胶复合材料的陶瓷化性能图4为不同样品在空气中以不同温度煅烧后的质量残余率㊁体积变化率㊁弯曲强度和表观形貌图片㊂相同配方制备的样品在不同温度煅烧下质量残余率变化不显著,随着M P P替代高岭土量的提高,样品的质量残余率减小,乙烯基硅氧烷的混合改性对于质量残余率没有明显影响㊂在煅烧前后的体积变化上,同一配方样品随煅烧温度提高,体积发生明显收缩,600ħ处理的样品均发生一定的体积膨胀, 1000ħ处理的样品随着M P P替代高岭土量的提高,样品煅烧后的体积逐步缩小㊂在煅烧后样品的弯曲强度上,随着煅烧温度的提高样品的弯曲强度发生显著的提高,添加有M P P的样品在相同煅烧温度下效果基本好于未添加样品,同时M P P替代量的提高有利于煅烧后类陶瓷体弯曲强度的提高㊂如图4(d)所示,从上至下依次为1000ħ㊁800ħ和600ħ处理后的样品,从左到右依次为煅烧前样品和S R/M P P-1S㊁S R/M P P-2S㊁S R/M P P-3S㊁S R/ M P P-1M㊁S R/M P P-2M和S R/M P P-3M煅烧后的样品外观,煅烧后样品均保持完整形状㊂图4(e)为三点弯测试过程图片㊂图5是S R/G3㊁S R/M P P-3S和S R/M P P-3M 在三个不同温度下煅烧后样品的微观形貌图片,可以看出600ħ煅烧后的三种样品均结构疏松多孔,而800ħ煅烧后样品的结构变得致密,同时可看到明显的玻璃粉粘结区域,区域分界明显,相比之下, 1000ħ煅烧的样品形貌更加致密,区域分界变得模糊,对比M P P添加前后的样品,含有M P P的样品更加致密㊂181V o l.32N o.3骆晓宇等:三聚氰胺聚磷酸盐(M P P)对高温硫化硅橡胶的阻燃和陶瓷化性能的影响图4 各样品在空气中不同温度煅烧后的(a )质量残余率,(b )体积变化率,(c )弯曲强度,(d )表观形貌,(e)弯曲强度测量图片F i g .4 M a s s r e s i d u a l r a t e (a ),V o l u m e c h a n g e r a t e (b ),B e n d i n g s t r e n g t h (c ),A p p a r e n tm o r p h o l o g y (d ),a n dBe n d i n g s t r e n g t hm e a s u r e m e n t p i c t u r e s (e )of s a m p l e s c a l c i n e d i n a i r a t d i f f e r e n t t e m pe r a t u r es 图5 S R /G 3㊁S R /M P P -3S 和S R /M P P -3M 在不同温度下煅烧后的陶瓷化残余物的扫描电镜图F i g .5 S E Mi m a g e s o f c e r a m i c r e s i d u e a f t e r c a l c i n a t i o n a t d i f f e r e n t t e m pe r a t u r e sf o r S R /G 3,S R /M P P -3S a n d S R /M P P -3M 图6为S R /G 3㊁S R /M P P -3S 和S R /M P P -3M在不同温度下煅烧后的陶瓷化残余物的X 射线光电子能谱,可以看出陶瓷化残余物中均含有N a ㊁K ㊁O ㊁S i ㊁A l ㊁P 等元素㊂图7(a )是S R /G 3㊁S R /M P P -3S 和S R /M P P -3M 不同温度煅烧得到的类陶瓷体的红外光谱和X 射线衍射光谱图㊂3441c m -1和1636c m -1处的吸收峰分别为吸附水的O -H 伸缩振动吸收峰和弯曲振动吸收峰[22]㊂1108c m -1和467c m -1处的吸收峰分别为S i -O -S i 的伸缩振动和变形振动吸收峰㊂810c m -1和565c m -1处为281火灾科学 F I R ES A F E T YS C I E N C E 第32卷第3期图6 S R /G 3㊁S R /M P P -3S 和S R /M P P -3M 在不同温度下煅烧后的陶瓷化残余物的X 射线光电子能谱F i g .6 X -r a y p h o t o e l e c t r o n s p e c t r o s c o p y of c e r a m i c r e s i d u e a f t e r c a l c i n a t i o n a t d i f f e r e n t t e m pe r a t u r e sf o r S R /G 3,S R /M P P -3S a n d S R /M P P -3M 图7 S R /G 3㊁S R /M P P -3S 和S R /M P P -3M 在不同温度下煅烧后的陶瓷化残余物的(a )傅里叶红外光谱和(b )X 射线衍射光谱F i g .7 F T I R s p e c t r o s c o p y (a )a n dX -r a y d i f f r a c t i o n s p e c t r o s c o p y (b )o f t h ec e r a m i c r e s id ue s of S R /G 3,S R /M P P -3S a n d S R /M P P -3Mc a l c i n e d a t d i f f e r e n t t e m pe r a t u r e s [A l O 6]的特征吸收峰[23],1402c m -1和725c m -1处的吸收峰分别为P =O ㊁P -O 的伸缩振动吸收峰,1000c m -1处的宽峰为[P O 4]的弯曲振动吸收峰,随煅烧温度升高[A l O 6]特征吸收峰减弱,[P O 4]特381V o l .32N o .3骆晓宇等:三聚氰胺聚磷酸盐(M P P)对高温硫化硅橡胶的阻燃和陶瓷化性能的影响征吸收峰增强㊂图7(b)是S R/G3㊁S R/M P P-3S和S R/M P P-3M不同温度煅烧得到的类陶瓷体的X 射线衍射光谱,所有样品在20ʎ~30ʎ左右出现二氧化硅和玻璃粉的非晶衍射峰,只添加煅烧高岭土和玻璃粉的S R/G3样品在三个温度下均只有煅烧高岭土本身的莫来石衍射峰㊂对于额外加有M P P的S R/M P P-3S和S R/M P P-3M样品,在600ħ煅烧下产生新的A l P O4衍射峰,随着煅烧温度的提高莫来石衍射峰强度降低,而A l P O4衍射峰得到增强,同时产生S i O2的衍射峰㊂结合陶瓷化残余物的扫描电镜图㊁红外光谱和X R D结果,可以推测在玻璃粉熔融粘结作用下,M P P在升温过程中与煅烧高岭土反应转化为A l P O4晶体和S i O2晶体,增强陶瓷化残余物的力学性能㊂2.4硅橡胶复合材料的力学性能研究图8是所制备的硅橡胶复合材料的力学测试结果㊂由图8可以看出,粉体未经处理的样品中, M P P所占组分的提高导致拉伸强度急剧下降,相比之下断裂伸长率降幅更小;相同M P P含量下,粉体经过干法改性后,复合材料的拉伸强度能够得到有效提升,而断裂伸长率有所下降㊂3结论本文以高温硫化硅橡胶为基体,结合煅烧高岭土㊁磷酸盐玻璃粉和三聚氰胺聚磷酸盐制备了具有高阻燃性和明显陶瓷化特性的硅橡胶复合材料,具体结论如下:(1)填料的添加能够有效地提高硅橡胶的质量残余率,M P P含量的提高会在一定程度上降低质量残图8硅橡胶复合材料的拉伸强度和断裂伸长率F i g.8T e n s i l e s t r e n g t h a n d e l o n g a t i o n a tb r e a k o f s i l ic o n e r u b b e r c o m p o s i t e s余率,但远高于纯样的29%,粉体改性前后变化较小㊂(2)当M P P在硅橡胶复合材料中达到10w t%时可以使样品通过U L-94V-0等级,通过添加M P P 峰值热释放最高可以降低34%,总热释放降低24%,C O释放峰值降低30%,同时,可以有效抑制环状低聚硅氧烷的产生㊂(3)M P P的添加能够有效提高复合材料煅烧后得到的类陶瓷体强度,在煅烧过程中能够将煅烧高岭土分解转化为磷酸铝晶相和二氧化硅晶相,其中M P P在15w t%的组分占比下,1000ħ煅烧后样品的弯曲强度超过15M P a㊂(4)M P P的添加会进一步恶化复合材料的力学强度,通过粉体干法改性可以使力学强度得到有效的保持㊂参考文献[1]N a z i rM T,K h a l i dA,W a n g C,B a e n a JC,K a b i r I,A k r a mS,P a r a m a n eA,H a q I U,P h u n g BT,Y e o hG H.S y n e r g i s t i c e f f e c t o f a d d i t i v e s o n e l e c t r i c a l r e s i s t i v i-t y,f i r ea n ds m o k es u p p r e s s i o no f s i l i c o n er u b b e r f o r h i g h v o l t a g ei n s u l a t i o n[J].C o m p o s i t e s C o m m u n i c a-t i o n s,2022,29:101045.[2]W a n g YL,Q i a n F,L a i X J,L i HQ,Z e n g XR,L i u Z Y,G a o J F.I m p r o v e m e n t o f t r a c k i n g r e s i s t a n c e o f s i l i-c o n e r u b b e rv i as y n e r g i s t i c a l l yp r o m o t i n g c e r a m i z a t i o n w i t h f l u o r o p h l o g o p i t e a n d p l a t i n u m-n i t r o g e n s y s t e m[J].C o m p o s i t e s P a r tB:E n g i n e e r i n g,2022,245: 110200.[3]W uT,Q i u JD,X uW H,D uY,Z h o uW L,X i eH, Q u J P.E f f i c i e n t f a b r i c a t i o n o f f l a m e-r e t a r d i n g s i l i c o n e r u b b e r/h y d r o x y l a t e d b o r o n n i t r i d e n a n o c o m p o s i t e s b a s e d o n v o l u m e t r i c e x t e n s i o n a l r h e o l o g y[J].C h e m i c a lE n g i n e e r i n g J o u r n a l,2022,435(P a r t3):135154.[4]G e n o v e s eA,S h a n k sR A.F i r e p e r f o r m a n c eo f p o l y(d i m e t h y l s i l o x a n e)c o m p o s i t e s e v a l u a t e db y c o n e c a l o-r i m e t r y[J].C o m p o s i t e sP a r ta:A p p l i e dS c i e n c ea n d M a n u f a c t u r i n g,2008,39(2):398-405.[5]S h e n g M M,Y u J C,G o n g HY,Z h a n g Y J,W a n g Y.E n h a n c i n g t h e t h e r m a l s t a b i l i t y a n dm e c h a n i c a l p r o p e r-t i e s o f p h e n y l s i l i c o n e r u b b e r sb y c o n t r o l l i n g B Na d d i-481火灾科学F I R ES A F E T YS C I E N C E第32卷第3期t i o n a n d p h e n y l c o n t e n t[J].C o m p o s i t e sC o m m u n i c a-t i o n s,2022,35:101340.[6]H a l i mZAA,A h m a dN,Y a j i dM A M,H a m d a nH. T h e r m a l i n s u l a t i o n p e r f o r m a n c e o f s i l i c o n e r u b b e r/s i l i c a a e r o g e l c o m p o s i t e[J].M a t e r i a l sC h e m i s t r y a n dP h y s-i c s,2022,276:125359.[7]L i Y M,H u SL,W a n g DY.P o l y m e r-b a s e d c e r a m i f i-a b l e c o m p o s i t e s f o r f l a m e r e t a r d a n t a p p l i c a t i o n s:Ar e-v i e w[J].C o m p o s i t e s C o m m u n i c a t i o n s,2020,21: 100405.[8]W a n g YL,L a i X J,L i HQ,L i uT,Z e n g XR.S i g n i f-i c a n t l y i m p r o v ef i r es a f e t y o fs i l i c o n er u b b e rb y e f f i-c i e n t l y c a t a l y z i n g c e r a m i z a t i o no n f l u o r o p h l o g o p i t e[J].C o m p o s i t e s C o m m u n i c a t i o n s,2021,25:100683.[9]S o n g JQ,H u a n g ZX,Q i nY,L iX Y.T h e r m a l d e-c o m p o s i t i o n a nd ce r a m if y i ng p r o c e s s o f c e r a m i f i a b l e s i l-i c o n e r u b b e r c o m p o s i t ew i t hh y d r a t e dzi n cb o r a t e[J].M a t e r i a l s,2019,12(10):1591.[10]A n y s z k aR,B i e l i n s k i DM,P e d z i c h Z,S z u m e r aM.I n-f l u e n c e o f s u r f a c e-m o d i f i e dm o n t m o r i l l o n i t e s o n p r o p e r-t i e so fs i l i c o n er u b b e r-b a s e d c e r a m i z a b l ec o m p o s i t e s [J].J o u r n a lo fT h e r m a lA n a l y s i sa n d C a l o r i m e t r y, 2015,119(1):111-121.[11]G u o JH,G a oW,W a n g Y,L i a n g D,L iHJ,Z h a n g X.E f f e c t o f g l a s s f r i tw i t h l o ws o f t e n i n g t e m p e r a t u r e o n t h e p r o p e r t i e s,m i c r o s t r u c t u r e a n d f o r m a t i o nm e c h a-n i s mo f p o l y s i l o x a n e e l a s t o m e r-b a s e d c e r a m i z a b l e c o m-p o s i t e s[J].P o l y m e rD e g r a d a t i o na n dS t a b i l i t y,2017, 136:71-79.[12]H u o SQ,S o n g P A,Y uB,R a nSY,C h e v a l iVS, L i uL,F a n g Z P,W a n g H.P h o s p h o r u s-c o n t a i n i n g f l a m e r e t a r d a n t e p o x y t h e r m o s e t s:R e c e n t a d v a n c e s a n d f u t u r e p e r s p e c t i v e s[J].P r o g r e s s i nP o l y m e rS c i e n c e, 2021,114:101366.[13]L o uFP,Y a nW,G u oW H,W e i T,L i QY.P r e p a r a-t i o n a n d p r o p e r t i e so f c e r a m i f i a b l e f l a m e-r e t a r d e ds i l i-c o n e r u b b e r c o m p o s i t e s[J].J o u r n a l o f T h e r m a l A n a l y-s i s a n dC a l o r i m e t r y,2017,130(2):813-821. [14]H u S,C h e nF,L i JG,S h e nQ,H u a n g ZX,Z h a n g LM.T h e c e r a m i f y i n gp r o c e s s a n dm e c h a n i c a l p r o p e r t i e s o fs i l i c o n er u b b e r/a m m o n i u m p o l y p h o s p h a t e/a l u m i n-i u mh y d r o x i d e/m i c a c o m p o s i t e s[J].P o l y m e rD e g r a d a-t i o n a n d S t a b i l i t y,2016,126:196-203. [15]G o n g XH,W uTY,M a J,Z h a oD,S h e nYC,W a n g T W.I m p r o v e d s e l f-s u p p o r t i n g p r o p e r t y o f c e r a m i f y i n g s i l i c o n e r u b b e r c o m p o s i t e s b y f o r m i n g c r y s t a l l i n e p h a s e a t h i g h t e m p e r a t u r e s[J].J o u r n a l o fA l l o y s a n dC o m-p o u n d s,2017,706:322-329.[16]丁勇,罗远芳,薛锋,贾志欣,贾德民.磷腈类衍生物改性磷酸锆的合成及其复配聚磷酸铵对硅橡胶阻燃性能和力学性能的影响[J].高分子学报,2017(11): 1796-1805.[17]C h a iW H,S uXY,X i aYR,L i a o CC,G a oM H,L i Y G,Z h e n g Z H.F a b r i c a t i o no fN i-d o p e ds y n e r g i s t i c i n t u m e s c e n t f l a m e-r e t a r d i n g s i l i c o n e r u b b e r s y s t e m w i t h s u p e r i o r f l a m e r e t a r d a n c y a n dw a t e r r e s i s t a n c e[J]. J o u r n a l o fT h e r m a lA n a l y s i sa n dC a l o r i m e t r y,2022, 148(5):1827-1839.[18]L i YC,X u e BQ,W a n g SH,S u n J,L iHF,G uXY,W a n g H Q,Z h a n g S.P h o t o a g i n g a n d f i r e p e r f o r m a n c e o f p o l y p r o p y l e n e c o n t a i n i n g m e l a m i n e p h o s p h a t e[J].A c sA p p l i e dP o l y m e rM a t e r i a l s,2020,2(11):4455-4463.[19]L i uXX,M a L,S h e n g Y J,L i u SM,W e i GM,W a n g X.S y n e r g i s t i c f l a m e-r e t a r d a n t e f f e c t o f m o d i f i e d h y d r o-t a l c i t e a n d e x p a n d a b l e g r a p h i t e f o r s i l i c o n e r u b b e r f o a m[J].J o u r n a l o fA p p l i e dP o l y m e rS c i e n c e,2022,140(7):e53471.[20]L i YP,Z e n g XR,L a i X J,L i HQ,F a n g WZ.E f f e c t o f t h e p l a t i n u mc a t a l y s t c o n t e n t o n t h e t r a c k i n g a n d e-r o s i o n r e s i s t a n c e o f a d d i t i o n-c u r e l i q u i ds i l i c o n e r u b b e r [J].P o l y m e rT e s t i n g,2017,63:92-100. [21]T a oW,H uX,S u n JH,Q i a nL J,L i J.E f f e c t s o f P-Nf l a m e r e t a r d a n t s b a s e d o n c y t o s i n e o n f l a m e r e t a r d a n-c y a n dm e c h a n i c a l p r o p e r t i e s o f p o l y a m i d e6[J].P o l y-m e r D e g r a d a t i o n a n d S t a b i l i t y,2020,174:109092.[22]H y a t tMJ,B a n s a l NP.P h a s e t r a n s f o r m a t i o n s i n x e r o-g e l so f m u l l i t ec o m p o s i t i o n[J].J o u r n a lo f M a t e r i a l s S c i e n c e,1990,25(6):2815-2821.[23]P a n n e e r s e l v a m M,R a oKJ.N o v e lm i c r o w a v em e t h o df o r t h e s y n t h e s i s a n d s i n t e r i ng o fm u l l i t e f r o mk a o l i n i t e[J].C h e m i s t r y o f M a t e r i a l s,2003,15(11):2247-2252.581V o l.32N o.3骆晓宇等:三聚氰胺聚磷酸盐(M P P)对高温硫化硅橡胶的阻燃和陶瓷化性能的影响681火灾科学F I R ES A F E T YS C I E N C E第32卷第3期E f f e c t o fm e l a m i n e p o l y p h o s p h a t e(M P P)o n f l a m e r e t a r d a n t a n d c e r a m i f i a b l ep r o p e r t i e s o f h i g h-t e m p e r a t u r e v u l c a n i z e d s i l i c o n e r u b b e rL U OX i a o y u,X UZ o u m e i,S O N GL e i,H U Y u a n,H U W e i z h a o(S t a t eK e y L a b o r a t o r y o f F i r e S c i e n c e,U n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y o f C h i n a,H e f e i230026,C h i n a)A b s t r a c t:I no r d e r t o s y n e r g i s t i c a l l y e n h a n c e t h e f l a m e r e t a r d a n t a n d c e r a m i c i z a t i o n p r o p e r t i e s o f h i g h-t e m p e r a t u r e v u l c a n i z e d s i l i c o n e r u b b e r,f l a m e r e t a r d a n t c e r a m i c i z a b l e s i l i c o n e r u b b e r c o m p o s i t e sw e r e p r e p a r e db y u s i n g h i g h-t e m p e r a t u r e v u l c a n i z e d s i l i c o n e r u b b e ra s m a t r i x,c o m b i n e d w i t hc a l c i n e dk a o l i n,p h o s p h a t e g l a s s p o w d e ra n d m e l a m i n e p o l y p h o s p h a t e(M P P). V e r t i c a l c o m b u s t i o n m e t e r,c o n ec a l o r i m e t e r(C O N E),t h e r m o g r a v i m e t r i ca n a l y z e r(T G A),F o u r i e r i n f r a r e ds p e c t r o m e t e r (F T I R),a n d s c a n n i n g e l e c t r o n m i c r o s c o p e(S E M)w e r eu s e d t os t u d y t h e e f f e c t so f t h e c o m p o n e n t s h a r eo fM P Pa n d t h e m o d i f i c a t i o n o f s i l i c o n e p o w d e r o n t h e c o m b u s t i o n a n d c e r a m i z a t i o n p r o p e r t i e s o f t h e s i l i c o n e r u b b e r c o m p o s i t e s.T h e r e s u l t s s h o wt h a t t h e a d d i t i o n o fM P P c a n e f f e c t i v e l y r e d u c e t h e t h e r m a l h a z a r d o f t h e c o m p o s i t e s,a n d a t t h e s a m e t i m e i m p r o v e t h e s t r e n g t h o f t h e c e r a m i c-l i k e b o d y o b t a i n e d a f t e r t h e c a l c i n a t i o n o f t h e c o m p o s i t e s;w h e nM P P i s a t t h e c o m p o n e n t r a t i o o f15 w t%,t h eb e n d i n g s t r e n g t ho f t h es a m p l ea f t e rc a l c i n a t i o na t1000ħe x c e e d s15M P a,a n dt h ed e t e r i o r a t e d m e c h a n i c a l s t r e n g t h o fM P P c a n b e r e s t o r e d b y p o w d e rm o d i f i c a t i o n.K e y w o r d s:H i g h-t e m p e r a t u r e v u l c a n i z e d s i l i c o n e r u b b e r;F l a m e r e t a r d a n t;C e r a m i f i a b l e;M e l a m i n e p o l y p h o s p h a t e(M P P)。

聚磷酸铵的性质及合成研究进展

聚磷酸铵的性质及合成研究进展

聚磷酸铵的性质及合成研究进展张亨【摘要】介绍了无机阻燃剂聚磷酸铵的性质、生产过程、产品标准和阻燃应用.综述了聚磷酸铵十年来的合成研究进展.【期刊名称】《杭州化工》【年(卷),期】2012(042)001【总页数】6页(P22-27)【关键词】无机阻燃剂;聚磷酸铵;性质;合成;应用【作者】张亨【作者单位】锦西化工研究院,辽宁葫芦岛125000【正文语种】中文聚磷酸铵是一种含磷、氮的无机聚合物,作为膨胀型阻燃剂[1-7]的基础材料,具有含磷量高、含氮量大、热稳定性好、水溶性低、阻燃效能持久等优点。

其应用比较广泛,可用于阻燃软聚氯乙烯、乙烯-醋酸乙烯酯-氯乙烯共聚物、丙烯酸类乳液、聚氨酯、酚醛树脂、纤维材料、橡胶、纸张、木材等,还可用于森林、煤田和大面积灭火。

聚磷酸铵的另一个重要用途是作为酸源,与炭源及气源并用,组成膨胀型阻燃剂或用于膨胀型防火涂料。

聚磷酸铵于1857年首次由五氧化二磷和氨反应生成,1965年美国孟山都公司最早工业化开发成功,起初主要用作肥料(具有缓释和螯合作用)和森林灭火剂,随后前西德、前苏联和日本等国家开始大量生产投入应用。

目前聚磷酸铵主要用于防火涂料和合成材料阻燃剂。

现在已有高聚合度聚磷酸铵投入市场,德国Hoechst公司生产的Exolit APP422产品的聚合度超过700,且具有较高的白度指数。

我国于20世纪80年代开始聚磷酸铵的合成和应用研究,发展迅速,但企业分散,单套装置规模小,目前总产能15 kt/a左右,生产厂家约100家。

年产量达1000 t的企业有5家左右,大部分企业年产量在300 t左右。

主要生产单位有四川什邝市长丰化工有限公司、浙江省海宁市丰士阻燃化工厂、浙江化工研究院、天津合成材料工业研究所等。

国内生产设备不具备集加热、搅拌、捏合为一体的要求,产品聚合度一般只有40左右,大于100的极少。

产品的应用范围窄,主要用于防火涂料,在聚烯烃等材料的阻燃中应用还不多,与国外先进水平相比,我国聚磷酸铵产品质量和数量尚存在较大差距。

聚磷酸铵热解过程-概述说明以及解释

聚磷酸铵热解过程-概述说明以及解释

聚磷酸铵热解过程-概述说明以及解释1.引言1.1 概述聚磷酸铵是一种常见的无机高分子材料,由磷酸铵分子通过化学键连接而成。

它具有不易燃烧、耐高温、耐腐蚀等特点,被广泛应用于火灾防护、涂料、橡胶、塑料等领域。

聚磷酸铵的热解过程是指在高温条件下,聚磷酸铵分子发生分解反应,产生氨气、磷酸和无机磷化合物等物质。

这个过程是一个复杂的热化学反应过程,具有重要的理论和实践意义。

研究聚磷酸铵的热解过程可以深入了解其分解机理、反应动力学和产物生成规律,为聚磷酸铵在防火材料、能源存储等领域的应用提供基础理论支持。

同时,研究聚磷酸铵的热解过程还可以为火灾防控技术的改进和研发提供重要参考。

本篇文章将首先介绍聚磷酸铵的基本性质,包括其化学结构、物理特性等方面的内容。

然后,重点探讨聚磷酸铵的热解过程,包括反应机理、热解动力学以及产物生成规律等方面的研究进展。

最后,对聚磷酸铵的热解过程进行总结,并展望其在防火材料、能源存储等领域的应用前景。

通过深入研究聚磷酸铵的热解过程,有望为提高聚磷酸铵的防火性能、研发新型能源存储材料以及改进火灾防控技术等方面提供理论和实践指导,具有重要的科学意义和应用价值。

1.2 文章结构文章结构部分的内容可以描述为:文章将分为引言、正文和结论三个部分。

引言部分将概述聚磷酸铵热解过程的背景和重要性,介绍聚磷酸铵的基本性质,并说明文章的目的。

正文部分将包括两个小节,分别介绍聚磷酸铵的基本性质和热解过程。

在2.1小节中,将详细讨论聚磷酸铵的化学结构、物理性质以及其在工业中的应用。

在2.2小节中,将重点探讨聚磷酸铵在热解过程中的反应机制、产物生成和影响因素等内容。

结论部分将总结聚磷酸铵热解过程的关键要点,概括热解过程的主要研究进展。

并对聚磷酸铵热解过程的应用前景进行展望,指出其在能源领域、催化剂、阻燃材料等方面的潜在应用。

1.3 目的本文的主要目的是深入研究聚磷酸铵的热解过程,并总结和分析其关键要点。

通过对聚磷酸铵的基本性质和热解过程的深入探索,希望能够更好地理解其化学反应机制和热解行为。

阻燃陶瓷化聚烯烃材料研究进展

阻燃陶瓷化聚烯烃材料研究进展*王钰含,李 璇,李 静,毛灿宇,王凤毅(新疆工程学院,新疆乌鲁木齐830091)摘要:阻燃陶瓷化聚烯烃材料是一类新型阻燃、耐火材料,是在聚烯烃基体中加入成瓷填料、助熔剂、阻燃剂等制成的特种复合材料,可在火焰及高温环境中迅速形成具有一定强度的陶瓷体,起到阻燃、隔热、隔氧的作用。

文章从无卤阻燃剂在聚烯烃材料中的应用、陶瓷化聚烯烃材料的研究成果、阻燃陶瓷化聚烯烃材料研究成果几个方面进行综述,在此基础上,对未来阻燃陶瓷化聚烯烃的发展进行了展望。

关键词:阻燃;陶瓷化;聚烯烃中图分类号:TQ 327.8Research Progress of Flame-retardant Ceramifi able Polyolefi n MaterialsWANG Yu-han, LI Xuan, LI Jing, MAO Can-yu, WANG Feng-yi(Xinjiang Institute of Engineering, Urumqi 830091, Xinjiang, China)Abstract: Flame-retardant ceramifi able polyolefi n material is a new type of fl ame-retardant and refractory material. It is a special composite material made by adding ceramic filler, flux, flame-retardant, etc. into polyolefin matrix. It can quickly form ceramic body with certain strength in flame and high temperature environment, playing the role of flame-retardant, heat insulation and oxygen isolation. This paper reviews the application of halogen-free fl ame-retardants in polyolefi n materials, the research results of ceramifi able polyolefi n materials, and the research results of fl ame-retardant ceramifi able polyolefi n materials. On this basis, the development of fl ame-retardant ceramifi able polyolefi n in the future is prospected.Key words: fl ame-retardant; ceramifying; polyolefi n高分子材料与金属材料、无机非金属材料相比,具有易加工、易调节性能、价格相对较低等特点,广泛应用于建筑、机械、电气等各行各业,成为体积产量最大的一类材料。

聚磷酸铵_APP_的合成与改性研究进展

聚磷酸铵(A PP )的合成与改性研究进展李 蕾1,杨荣杰1,王雨钧2(11北京理工大学材料科学与工程学院,北京 100081;2.北京鑫龙海防火器材有限公司,北京 100083)摘要:聚磷酸铵是膨胀型阻燃剂的重要组成部分,而其本身所具有的高效、安全、经济等特点使得聚磷酸铵的生产成为阻燃剂发展一个重要课题。

对聚磷酸铵现有的生产方法进行了分析比较,并介绍了几种简便易行的改性方法。

关键词:聚磷酸铵;合成;改性1 引言阻燃剂是用以提高材料抗燃烧性,即阻止材料被引燃和抑制火焰传播的助剂,已广泛用于合成和天然高分子材料(包括塑料、橡胶、纤维、木材、纸张、油漆、涂料等)的阻燃。

在塑料助剂领域,阻燃剂已跃居为仅次于增塑剂的第二大助剂类别。

常用的阻燃剂按其所含的阻燃元素可分为卤系、磷系、铝镁系、硼系、钼系等[1]。

卤系阻燃剂虽然具有其他阻燃剂系列无可比拟的高效性,但是其对环境的危害是不可忽视的。

因此不论是在灭火剂范围还是在阻燃领域中含有卤系元素的产品正逐步被替代[2]。

氢氧化铝及氢氧化镁作为阻燃剂,其热稳定性好,吸热分解后不会产生有害的气体,抑烟能力好,而且价格便宜,是无机阻燃剂中的重要品种[3]。

但是其应用于阻燃时,所需的添加量较大,与有机物质的相容性较差,影响产品的力学性能。

以聚磷酸铵(A PP )为主要组分的膨胀型阻燃剂将是今后阻燃发展的重点方向之一。

膨胀型阻燃体系一般由以下三个部分组成:酸源、炭源、气源[4]。

A PP 在这一体系中有多种功能,既可以作酸源又可以作气源。

A PP 的阻燃机理是,催化降解,由于在整个膨胀体系中A PP 的质量百分比占到10%~20%,并不是平常意义上的催化[5]。

A PP 同时含有磷、氮两种阻燃元素,作为无卤阻燃剂,在阻燃材料中具有重大价值。

2 A PP 发展历史和应用聚磷酸铵(amm on ium po lyp ho sp hate ),简称A PP ,是长链状含磷、氮的无机聚合物,其分子通式为:(N H 4)n +2P n O 3n +1[6]。

微胶囊化聚磷酸铵在聚氨酯弹性体中阻燃及协效性的研究

III
ABSTRACT
for char residual was also observed by photographs and scanning electron microscope (SEM). Results showed that a suitable substitution of MAPP by synergist could improve the flame retardancy of the TPU/MAPP composites, and TPU composites with lower MAPP/synergist could achieving UL-94 V-0 rating. LOI of the composites also increased a little after adding synergist. The heat release rates (HRR) and weight loss rates of TPU/MAPP composites were also considerably decreased by the synergist. The CONE and MCC data showed synergistic effects between synergist and MAPP in the composites. (3) Thermal stability was investigated by thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). Boron phosphate and ferric pyrophosphate can improve the thermal stability of the composite at higher temperature from the TGA and the RTFTIR data. They also make the char residual of the composites more compact and continuous from their photographs and SEM, but had different synergistic effects: in BP system, during heating, polyphosphoric acid produced by the elimination of ammonia from APP could attack B-O bonds. The formation of boric acid appeared in the surface of residue, and adsorb combustible gases to make a deoxidizel atmosphere, made the char structures more stable. The (PO4)3- could promoted the release of ammonia from APP. Also APP could react with [B(PO4)x]n+, which took as bridges, the formation would brought about a stabilization of the composites. In FePP system, there is also a [Fe(PO4)x]n+, brought about a stabilization char layers, ferric also can capture the free radical in the combustion reaction. (4) The thermal stability and the degradation kinetics of the BP/MAPP/TPU and the FePP/MAPP/TPU systems were studied. Results showed that BP/MAPP/TPU system has a higher activation energy. Key words: microencapsulation, ammonium polyphosphate, combustion property, thermoplastic polyurethane, flame retardant mechanism

高分子材料DOPO基阻燃剂研究进展

高分子材料DOPO基阻燃剂研究进展摘要: 综述了9,10 - 二氢- 9 - 氧- 10 - 磷杂菲- 10 - 氧化物(DOPO)基阻燃剂在高分子材料,如环氧树脂、聚酯、聚丙烯中的研究进展和应用,指明了阻燃剂的发展方向。

目前,高分子材料DOPO基阻燃剂主要向着低添加量、多元素协同阻燃和不影响材料其他性能方向发展,展示出了良好的应用前景。

关键词: 9,10 - 二氢- 9 - 氧- 10 - 磷杂菲- 10 - 氧化物;高分子材料;应用;协同阻燃0 前言随着高分子材料科学的发展,高分子材料越来越广泛的被应用于人们的日常生产与生活中。

然而,大多数高分子材料的极限氧指数(LOI)低于25 %,易发生火灾,对使用者的人身和财产安全产生了威胁,限制了高分子材料的应用[1-2]。

因此,如何改善高分子材料的阻燃能力,已经成为了亟待高分子材料研究者解决的问题。

由于DOPO基阻燃剂有着阻燃性能良好、无卤无毒、环境友好等优点,近年来被广泛应用于环氧树脂(EP)、聚酯、聚丙烯(PP)和其他高分子材料中。

当下,反应型DOPO基阻燃剂和添加型DOPO基阻燃剂都得到了广泛的研究和应用,两者的特点如表1所示。

表1DOPO基阻燃剂特点Tab.1 Characteristics of DOPO-based flame retardant1 DOPO基阻燃剂20世纪70年代,Saito[3]首次合成了DOPO(图1)。

由于DOPO含有连苯环结构和菲环结构,相比于未成环的磷酸酯具有较好的热稳定性和刚性,常用于改善高分子材料的力学性能、阻燃性能和耐水解性能。

同时,DOPO的结构中含有活泼的P—H键,对烯烃、环氧键和羰基等极具活性,可反应生成许多衍生物。

图1 DOPO的合成路线Fig.1 Synthesis of DOPODOPO作为一种有机磷中间体,利用其可形成多种衍生物的能力,可以制备DOPO基阻燃剂[4]。

DOPO基阻燃剂在高分子材料燃烧时,可形成聚磷酸、亚磷酸、磷酸使材料表面脱水形成碳层,隔绝氧气和燃烧产生的热量向材料内部传递,实现凝聚相阻燃[5];同时,其在燃烧时产生难燃气体,稀释可燃气体浓度,并且产生的P·和PO·等自由基能够猝灭热解产生的高活性的H·和HO·自由基,中断燃烧的自由基反应,从而实现气相阻燃[6]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过渡金属氧化物对阻燃剂聚磷酸铵热分解的影响机制
周友;郝建薇;刘国胜;杜建新
【期刊名称】《无机化学学报》
【年(卷),期】2013(029)006
【摘要】过渡金属氧化物(MO)可以显著影响聚磷酸铵(APP)的热分解过程,进而改善APP复配膨胀阻燃聚合物材料的阻燃效率.将ZnO、Fe2O3、TiO2掺入到APP 中,采用热失重分析(TGA)、X射线光电子能谱(XPS)和X射线衍射分析(XRD),考察了3种MO对APP热分解行为的影响,分析了相互作用过程中金属原子和磷原子化学结合状态的变化以及高温热分解产物的物相结构.TGA和XPS图谱分析结果表明,MO可降低APP的起始热分解温度,并催化APP释放NH3和H2O,而在热分解后期由于金属磷酸盐的形成可显著增加APP的高温残留量.3种MO催化APP热分解脱NH3和H2O的活性由大到小的顺序是:ZnO>Fe2O3>TiO2,而对APP凝聚相热分解P-O产物的交联能力从大到小的顺序为:Fe2O3>ZnO>TiO2.XRD结果显示,ZnO在高温下与APP反应生成了Zn(PO3)2晶体,而Fe2O3和TiO2与APP反应分别生成了Fe4(P2O7)3和TiP2O7晶体.
【总页数】8页(P1115-1122)
【作者】周友;郝建薇;刘国胜;杜建新
【作者单位】北京理工大学材料学院,北京 100081;北京理工大学材料学院,北京100081;北京理工大学材料学院,北京 100081;北京市丰台区公安消防支队,北京100039;北京理工大学材料学院,北京 100081
【正文语种】中文
【中图分类】TQ132.2;TQ322.2
【相关文献】
1.聚磷酸酯阻燃剂复配聚磷酸铵对环氧树脂阻燃性能的影响 [J], 李霈;付海;赵欧;来方;陈仕梅;梅贵友;赵伟;班大明
2.稀土金属氧化物与聚磷酸铵阻燃剂协同作用的研究 [J], 张焱;吕奔;刘志江;雷武;夏明珠;王风云
3.过渡金属氧化物复合催化剂对丁羟推进剂热分解性能的影响 [J], 张炜; 朱慧
4.聚磷酸铵复合阻燃剂对沥青性能影响研究 [J], 苟宏伟; 杨晋雷; 黄亮; 蒋恒; 陈致远; 张明月
5.蜜胺甲醛树脂包覆聚磷酸铵/三聚氰胺/硼酸锌复合阻燃剂对环氧树脂胶黏剂阻燃性能的影响 [J], 王晓慧;程瑞香;李胜
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档