初等数论整除练习题
第一章 数的整除性 第四节 最大公因数1

初等数论(4)(第一章数的整除性第四节最大公因数(1))定义1 整数a1,a2, ,a k的公共因数称为a1,a2, ,a k的公因数。
不全为零的整数a1,a2, ,a k的公因数中最大的一个叫做a1,a2, ,a k的最大公因数,记为(a1,a2, ,a k)。
由于每个非零整数的因数的个数是有限的,所以最大公因数是存在的,并且是正整数。
如果(a1,a2, ,a k)=1,则称a1,a2, ,a k是互质的;如果(a i , a j)=1,1 ≤i ≤k,1 ≤ j ≤k,i≠ j,则称a1,a2, ,a k是两两互质的。
显然,由a1,a2, ,a k两两互质可以推出(a1,a2, ,a k)= 1,反之则不然,例如(2,6,15)=1,但(2,6)= 2。
定理1 下面的等式成立:(ⅰ)(a1,a2, ,a k)=(|a1|,|a2|, ,|a k|);(ⅱ)(a,1)=1,(a,0)=|a|,(a,a)=|a|;(ⅲ)(a,b)=(b,a);(ⅳ)若p是质数,a是整数,则(p,a)=1或p∣a;(ⅴ)若a = bq + r,则(a,b)=(b,r)。
证明(ⅰ)我们先证明a1,a2, ,a k与|a1|,|a2|, ,|a k|的公因数相同。
设d是a1,a2, ,a k 任一公因数,由定义d∣ a i,i = 1,2,……,n。
因而d∣| a i | ,i = 1,2,……,n。
故d是|a1|,|a2|, ,|a k|的一个公因数,同样的方法可证|a1|,|a2|, ,|a k|的任一个公因数都是a1,a2, ,a k的一个公因数.即a1,a2, ,a k与|a1|,|a2|, ,|a k|的公因数相同。
由此可直接得(a1,a2, ,a k)=(|a1|,|a2|, ,|a k|);(ⅱ)、(ⅲ)、(ⅳ)显然。
(ⅴ)如果d∣a,d∣b,则有d∣r = a -bq,反之,若d∣b,d∣r,则d∣a = bq + r。
初等数论第一章整除

例1:设 x, y 为整数,且5 | x 9 y 则 5 | 8x 7 y
证:因为 8x 7 y
8( x 9 y) 65y
因为5 | x 9 y
所以有
又
5 | 65y
5 | 8x 7 y
例2:证明若3|n,7|n,则21|n
证:因为3|n,所以n= 3n1 又因为7|n,所以 7 | 3n1 显然有 7 | 7n 1 则有 7 | 7n1 2 3n1 即 7 | n1 有 n1 ห้องสมุดไป่ตู้7n2 即有 n 21n2 所以有21|n
注: (1)连续n个整数中必有一个数被n整除。 可作为一个定理,在证明整除问题时非常 有用。 (2)注意整数的各种表示。 例2: 证明若a不是5的倍数,则
与
中有且仅有一个数被5整除
证明: 这四个数有一个是5的倍数 若 5 | a 1或 又 所以 即 a 1, a 1 有且仅有一个数被5整除
n 是整数,所以 3
n2 2
n3 6
是
注:这里用了连续n个整数的乘积是n!的 倍数的结论.
注:连续n个整数的乘积是n!的倍数。 a、当n个整数都大于零时,由
m( m1)( m n1) n!
C
n m n1
而组合数为整数,可知连续n个整数的乘积是n! 的倍数。 b、当n个整数中有一个为零时,显然成立。
n 注:1、
2、
a b (a b)M1
n
n
a b (a b)M 2 , 2†n
n
3、
(a b) aM3 b ,
n n
例5、试证明任意一个整数与它的各位数 字和的差必能被9整除。
数论习题-整除练习1

整除练习1:某个六位数23456A是9的倍数,求A的值。
【详解】能被9整除,其数字和是9的倍数;2+3+4+5+6+A=20+A;大于20小于30且是9的倍数只有27;所以A=7;2:某个七位数2008ABC能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数ABC是多少?【详解】能被8整除,必然被2、4整除;能被9整除,必然被3整除;能被8和9整除,一定能被6整除;可以认为能够同时被5、7、8、9整除;被5整除,C只能是0;被9整除,B+C为8或17;被7整除,先割去末位的0形成2008AB六位数,再用截位法,得到6AB;被8整除且末位是0的ABC必须是40的倍数;分别检验24组3位数,满足被7整除和后2位的数字和是否8或7;只有440符合要求;3:形如123434…...34,有n个34,能被11整除的最小自然数中的n等于几?【详解】奇数位上的数字和是4n+2,偶数位上的数字和是3n+1,它们差是n+1能被11整除时n+1=11,所以n最小是104:两个四位数A275和275B,如果他们的乘积能被72整除,求A和B。
【详解】考虑到72=8*9,而A275是奇数,所以275B必为8的倍数,因此可得B=2;四位数2752各位数字之和为2+7+5+2=16,不是3的倍数也不是9的倍数,因此275A必须是9的倍数,其各位数字之和A+2+7+5= A +14,能被9整除,所以A=4;5:用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除?【详解】被11整除的数的特征是:奇数位上数字的和与偶数位上数字的和之差能被11整除。
因为1、2、3、4这几个数字的和之差不可能大于11,因此要被11整除,只能是奇数位上数字的和与偶数位上数字的和之差等于0。
所以1和4必须同是奇数位上的数字或者同时偶数位上的数字,这样才能满足以上要求。
当1和4都是奇数位上的数字时,这样的四位数有:1243、1342、4213、4312;当1和4都是偶数位上的数字时则为:2134、3124、2431、3421。
小升初专练-数论问题-数的整除特征通用版(含答案)

小升初专练-数论问题-数的整除特征【知识点归纳】整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b 的倍数数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.【经典题型】例1:下列4个数都是六位数,A是大于0小于10的自然数,B是0,一定能同时被2、3、5整除的数是( )A、AAABAAB、ABABABC、ABBABBD、ABBABA 分析:这个六数个位上的数字是0,能被2和5整除,不管A是比10小的哪个自然数,A+A+A的和一定是3的倍数,所以ABABAB一定能被3整除解:B=0,ABABAB能被2和5整除,A+A+A的和一定是3的倍数,ABABAB也一定能被3整除,故选:B.点评:此题主要考查能被2、3、5整除的数的特征:一个数个位上是0或5,这个数就能被5整除;个位是0、2、4、6、8的数能倍2整除;一个数各数位上的数字之和是3的倍数,这个数就能被3整除.【常考题型】例2:有一个四位数3AA1能被9整除,A是().分析:已知四位数3AA1能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数然后再根据题意进一步解答即可.因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么3+A+A+1=22,22<27,所以3AA1的各位数字和只能是9的1倍或2倍,即9或18.解:根据题意可得:四位数3AA1,它能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数;因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9;若A=9,那么3+A+A+1=3+9+9+1=22,22<27,所以,3AA1的各位数字和只能是9的1倍或2倍,即9或18;当3+A+A+1=9时,A=2.5,不合题意;当3+A+A+1=18时,A=7,符合题意;所以,A代表7,这个四位数是3771.答:A是7,故答案为:7.点评:本题主要考查能被9整除数的特征,即一个数能被9整除,那么这个数的数字和一定是9的倍数,然后在进一步解答即可.一.选择题1.下面四个数都是六位数,N是比10小的自然数,S是0,一定能被3和5整除的数是( )A.NNNSNN B.NSNSNS C.NSSNSS D.NSSNSN2.某班有一个小图书馆,共有300多本,从1开始,图书按自然数的顺序编号,即1,2,3…,小光看了这图书馆里都被2,3和8整除的书号,共16本,这个图书馆里至少有( )本图书.A.381B.382C.383D.3843.四位数同时是2、3和5的倍数,第一个里最大能填( )A.9B.8C.7D.64.用0,3,4,5四个数字组成的所有四位数都能被( )整除.A.2B.3C.55.用1~8八个数字组成两个四位数,每个数字只用1次.已知两个四位数都是9的整数倍,则两个四位数的差的最大值为( )A.5286B.4184C.7531D.70656.下列各数中是11的倍数的是( )A.75087B.117208C.632599D.4563517.从1,2,3,4,5这五个数字中选取四个组成一个四位数,使它能同时被3、5、7整除,这个四位数是( )A.1235B.1245C.2415二.填空题8.有一个号码是六位数,前四位是2857,后两位忘记了,但是这个六位数能被11和13整除,那么这个号码是 。
R《初等数论(闵嗣鹤、严士健)》第三版习题解答

第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。
存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m又12,,,n q q q 是任意n 个整数1122n n q a q a q a 1122n n q p m q p m q p m1122()n n p q q p q p m即1122n n q a q a q a 是m 的整数 2.证明 3|(1)(21)n n n证明 (1)(21)(1)(21)n n n n n n n (1)(2)(1)(1)n n n n n n又(1)(2)n n n ,(1)(2)n n n 是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n3|(1)(2)(1)(1)n n n n n n从而可知3|(1)(21)n n n3.若00ax by 是形如ax by (x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by .证: ,a b 不全为0在整数集合 |,S ax by x y Z 中存在正整数,因而有形如ax by 的最小整数00ax by,x y Z ,由带余除法有0000(),0ax by ax by q r r ax by则00()()r x x q a y y q b S ,由00ax by 是S 中的最小整数知0r00|ax by ax by00|ax by ax by (,x y 为任意整数) 0000|,|ax by a ax by b 00|(,).ax by a b 又有(,)|a b a ,(,)|a b b 00(,)|a b ax by 故00(,)ax by a b4.若a ,b 是任意二整数,且0b ,证明:存在两个整数s ,t 使得||,||2b a bs t t成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b 则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b 成立 ()i 当q 为偶数时,若0.b 则令,22q qs t a bs a b,则有 02222b q q qa bs t ab a b b t若0b 则令,22q qs t a bs a b,则同样有2b t ()ii 当q 为奇数时,若0b 则令11,22q q s t a bs a b,则有若 0b ,则令11,22q q s t a bs a b,则同样有2b t,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t 则11()t t b s s b 而111,22b bt t t t t t b矛盾 故11,s s t t 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d 是a ,b 的任一公因数, d |a ,d |b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b(,)n a b rd |1a bq 1r , d |122b r q r ,, ┄d |21(,)n n n n r r q r a b ,即d 是(,)a b 的因数。
初等数论_习题解答

初等数论 习题及作业解答P17 习题1-1 1,2(2)(3), 3,7,11,12为作业。
1.已知两整数相除,得商12,余数26,又知被除数、除数、商及余数之和为454.求被除数.解:1226,1226454,a b a b =++++=12261226454,b b ++++=(121)454122626390,b +=---=b =30, 被除数a =12b +26=360+26=386.这题的后面部分是小学数学的典型问题之一——“和倍” 问题。
2.证明:(1) 当n ∈Z 且39(09)n q r r =+≤<时,r 只可能是0,1,8;证:把n 按被9除的余数分类,即:若n=3k, k ∈Z ,则3327n k =, r=0;若n=3k +1, k ∈Z ,则3322(3)3(3)3(3)19(331)1n k k k k k k =+++=+++,r=1;若n=3k -1, k ∈Z ,则33232(3)3(3)3(3)19(331)8n k k k k k k =-+-=-+-+,r=8. (2) 当 n ∈Z 时,32326n n n -+的值是整数。
证 因为32326n n n -+=32236n n n -+,只需证明分子3223n n n -+是6的倍数。
32223(231)(1)(21)n n n n n n n n n -+=-+=--(1)(21)n n n n =--++=(1)(2)n n n --+(1)(1)n n n -+.由k ! 必整除k 个连续整数知:6 |(1)(2)n n n --,6 |(1)(1)n n n -+.或证:2!|(1)n n -, (1)n n -必为偶数.故只需证3|(1)(21)n n n --.若3|n, 显然3|(1)(21)n n n --;若n 为3k +1, k ∈Z ,则n -1是3的倍数,得知(1)(21)n n n --为3的倍数;若n 为3k -1, k ∈Z ,则2n -1=2(3k -1)-1=6k-3, 2n -1是3的倍数.综上所述,(1)(21)n n n --必是6的倍数,故命题得证。
《初等数论》习题集

第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论:数的整除性

此时 2b-1=
k
0,3 ,或
2
3k
,这都是不可能的,
所以
k
3
|
2b
1。
17
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 6. 写出不超过 100 的所有的素数。 解: 将不超过 100 的正整数排列如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
若 n 2s,由上式知 n 22, 因为 n 2 > 2,这是不可能的,所以 n 2 | s。
10
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 2. 设 A = { d1, d2, , dk }是 n 的所有约数的集合,
则B
={dn1
,
n d2
,,
n dk
}也是
n
的所有约数的集合。
8
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
推论. 任何大于 1 的合数 a 必有一个不超过 a 的素约数。
证明:使用定理 2 中的记号,有 a = d1d2,
其中 d1 > 1 是最小的素约数,
所以
d2 1
a。证毕。
9
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 1. 设 r 是正奇数,证明:对任意的正整数 n,有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数论整除练习题
初等数论是数学中的一个分支,主要研究自然数的性质和整数的性质。
在初等
数论中,整除是一个重要的概念。
整除是指一个数能够被另一个数整除,也就
是能够被另一个数整除的数称为这个数的倍数。
在初等数论中,整除的性质和应用非常广泛。
下面我将通过一些练习题来帮助
大家更好地理解和应用整除的概念。
1. 练习题一:判断是否整除
题目:判断以下数能否被2整除:12、17、20、25、30。
解析:能否被2整除就是判断一个数是否为偶数。
偶数的特点是个位数为0、2、4、6、8。
因此,我们可以逐个判断这些数的个位数是否满足这个条件。
答案:12、20、30可以被2整除,17、25不能被2整除。
2. 练习题二:最大公约数
题目:求以下两组数的最大公约数:(a)12和18;(b)24和36。
解析:最大公约数是指能够同时整除两个数的最大正整数。
我们可以通过列举
两个数的所有因数,然后找出它们的公共因数,再从中找出最大的那个。
答案:(a)12和18的公约数有1、2、3、6,其中最大的是6,所以最大公约
数为6。
(b)24和36的公约数有1、2、3、4、6、8、12,其中最大的是12,所以最大公约数为12。
3. 练习题三:最小公倍数
题目:求以下两组数的最小公倍数:(a)8和12;(b)15和20。
解析:最小公倍数是指能够同时被两个数整除的最小正整数。
我们可以通过列
举两个数的倍数,然后找出它们的公共倍数,再从中找出最小的那个。
答案:(a)8和12的倍数有8、16、24、32、40、48,其中最小的是24,所
以最小公倍数为24。
(b)15和20的倍数有15、30、45、60、75、90,其中
最小的是60,所以最小公倍数为60。
4. 练习题四:素数判断
题目:判断以下数是否为素数:13、21、29、35、41。
解析:素数是指只能被1和自身整除的数,大于1的自然数中只有2、3、5、7、11、13、17、19、23、29、31、37、41等为素数。
我们可以逐个判断这些数
是否能被这些素数整除。
答案:13、29、41是素数,21、35不是素数。
初等数论中的整除是一个非常重要的概念,它不仅在数论中有着广泛的应用,
也在其他数学分支中发挥着重要的作用。
通过以上练习题的训练,我们可以更
好地掌握整除的性质和应用,提高数学解题的能力。
总结起来,初等数论中的整除是一个重要的概念,它在数学中有着广泛的应用。
通过练习题的训练,我们可以更好地理解和应用整除的概念,提高数学解题的
能力。
希望大家能够通过学习初等数论,更好地理解和应用整除的知识。