闪耀光栅和反射式阶梯光栅

合集下载

闪耀光栅闪耀光栅

闪耀光栅闪耀光栅
亮度:单缝衍射和多缝干涉的总效果。
2、极小 可以证明:在两个相邻主极大之间有N-1个 暗纹。 3、次极大 相邻两极小之间有一个次极大,相邻两主极 大间有N - 2个次极大;因亮度很小,一般可不 计。

在N很大时,光栅衍射的暗纹和次极大联成 一片,几乎无法分辨,形成一个暗区,把主极 大衬托的既细又明亮。
Littman结构半导体激光器的功率损耗:
光束的入射角过大会导致光栅衍射效率的下降,而且,Littman结构加 大了腔内损耗。故在相同的工作条件下,Littman结构输出功率要比Littrow 结构小很多。
Littrow和Littman两种结构半导体激光器的参数对比:
光栅反馈外腔激光器整体结构
(a)外腔半导体激光器的增益与损耗曲线 (b)没有加入外腔反馈时, 本征腔模谱 (c)外腔与内腔构成的复合腔的模谱 (d)加入外腔反馈时,外腔与内腔构成的 复合腔的模谱
根据光栅反馈的不同构型又可分为Littrow和Littman两种方式:
Littman方式中,经光栅衍射 在Littrow方式中,经 光栅衍射后产生的一级衍 射光直接沿入射光路反馈 回激光器,零级光作为输 出光。 后产生的一级衍射光先投射到一 个反射镜上,由反射镜原路反射 回光栅,产生第二次衍射使一级 衍射光反馈回激光器。
(k 0,1,2.....)
k 不同,按波长分开形成 入射光为白光时, 不同, 光谱.
I
sin
0
一级光谱
三级光谱 二级光谱
光栅单色器的工作原理
单缝
输出平行光
0级光无色散,探测不同波长的强度,主要利用一级光
6 条纹的重叠 在衍射光谱中,级数较高的谱线会发生重叠。
当波长1的第k1级谱线与波长2的第k2级谱线 重叠时,它们有相同的衍射角

光栅的结构及工作原理

光栅的结构及工作原理

光栅的结构及工作原理光栅是一种常用的光学元件,广泛应用于光谱仪、激光器、衍射仪等领域。

它通过光的衍射和干涉现象,实现对光的分光、分束、波长选择和光学信息处理等功能。

本文将详细介绍光栅的结构和工作原理。

一、光栅的结构光栅一般由一块平行的透明介质基片上刻有一系列平行的、等间距的刻槽组成。

这些刻槽可以是等宽的,也可以是不等宽的。

光栅的刻槽可以分为反射式和透射式两种。

1. 反射式光栅:反射式光栅的刻槽是在金属或介质膜上形成的,光线从光栅的一侧入射,经过刻槽的衍射和反射后,再次出射。

2. 透射式光栅:透射式光栅的刻槽是在透明介质上形成的,光线从光栅的一侧入射,经过刻槽的衍射和透射后,再次出射。

光栅的刻槽可以是等宽的,也可以是不等宽的。

刻槽的间距决定了光栅的周期,而刻槽的宽度和深度则会影响光栅的衍射效果和光栅的效率。

二、光栅的工作原理光栅的工作原理基于光的衍射和干涉现象。

当平行入射的光线照射到光栅上时,光栅上的刻槽会对光线进行衍射,形成多个衍射波。

衍射波的方向和强度由光栅的刻槽间距和宽度决定。

当刻槽的间距和光的波长相当时,衍射波将沿特定的方向进行干涉,形成明暗相间的衍射图样。

具体来说,光栅的衍射效应可以用衍射公式来描述:mλ = d(sinθi ± sinθd)其中,m为衍射级次,λ为入射光的波长,d为光栅的周期,θi为入射角,θd为衍射角。

根据衍射公式,我们可以得出以下几个重要结论:1. 入射角和衍射角之间的关系:入射角和衍射角之间满足sinθi ± sinθd = mλ/d。

当入射角和波长确定时,衍射角取决于衍射级次和光栅的周期。

2. 衍射级次和衍射角之间的关系:不同的衍射级次对应着不同的衍射角。

一般来说,一阶衍射是最强的,其它级次的衍射逐渐减弱。

3. 衍射光的强度分布:衍射光的强度分布呈现出明暗相间的图样,其中暗纹对应的是衍射级次为奇数的衍射波,而亮纹对应的是衍射级次为偶数的衍射波。

光栅的分类问题回答

光栅的分类问题回答

光栅的分类光栅是一种广泛应用于光学、电子学和通信等领域的光学元件,它可以将入射光按照一定的规律分散成不同的波长成分,从而实现光谱分析、色彩分离、图像处理等功能。

根据其结构和工作原理的不同,可以将光栅分为以下几类。

1. 折射式光栅折射式光栅是将入射光线通过折射产生衍射效应的一种光栅。

它通常由一个三角形棱镜和一个刻有平行线条纹的反射膜组成。

当入射角度发生变化时,反射膜上的平行线条纹会在棱镜内部产生不同的衍射角度,从而实现波长分散。

折射式光栅具有结构简单、透过率高、容易制造等优点,但其衍射效率较低。

2. 反射式光栅反射式光栅是利用反射产生衍射效应的一种光栅。

它通常由一个金属或介质表面刻有平行线条纹的反射膜组成。

当入射角度发生变化时,反射膜上的平行线条纹会在反射角度产生不同的衍射角度,从而实现波长分散。

反射式光栅具有衍射效率高、抗污染性好等优点,但其制造难度较大。

3. 全息式光栅全息式光栅是一种利用全息技术制成的光栅。

它通常由一块光敏材料和一个参考波组成。

当入射光线和参考波交叠时,它们会在光敏材料内形成干涉条纹,从而形成一个具有周期性折射率分布的全息图。

当入射光线再次通过该全息图时,会产生衍射效应,从而实现波长分散。

全息式光栅具有制造灵活、衍射效率高等优点,但其制造成本较高。

4. 晶体式光栅晶体式光栅是利用晶体结构产生衍射效应的一种光栅。

它通常由一块单晶或多晶材料组成。

当入射光线垂直于材料表面时,在晶体内部会发生布拉格衍射,从而实现波长分散。

晶体式光栅具有衍射效率高、稳定性好等优点,但其制造难度较大。

以上是光栅的主要分类。

在实际应用中,不同类型的光栅具有各自的优缺点,需要根据具体需求选择合适的类型。

随着科技的不断发展和进步,光栅技术也将不断创新和发展,为人类带来更多更广阔的应用前景。

闪耀光栅原理

闪耀光栅原理

闪耀光栅原理
闪耀光栅是一种利用光学原理来实现图像显示的技术。

它采用了一种特殊的光
学结构,能够产生出非常细小的像素,从而实现高分辨率的图像显示。

在闪耀光栅技术中,光栅是起到关键作用的部件,通过控制光栅的反射和透射,可以实现对图像的显示和调控。

下面,我们将详细介绍闪耀光栅的原理及其工作过程。

首先,闪耀光栅的原理是基于光的反射和折射。

当光线照射到光栅上时,栅格
的结构会使得光线发生反射和折射,从而产生出不同的亮度和颜色。

这种原理是基于光学的物理特性,通过控制光的反射和折射,可以实现对图像的显示和调控。

其次,闪耀光栅的工作过程是通过控制光栅的结构和材料来实现的。

光栅的结
构通常是由微小的凹凸结构组成,这些凹凸结构能够使得光线在表面发生反射和折射。

而光栅的材料也是非常重要的,不同的材料会对光的反射和折射产生不同的影响,从而实现不同的显示效果。

此外,闪耀光栅的原理还包括了对光的控制和调节。

通过控制光线的入射角度、波长和强度,可以实现对图像的亮度、颜色和清晰度的调节。

这种原理是基于光的特性,通过控制光线的参数,可以实现对图像的精细调控。

总结起来,闪耀光栅是一种基于光学原理的图像显示技术,它利用光的反射和
折射来实现对图像的显示和调控。

通过控制光栅的结构和材料,以及对光线的控制和调节,可以实现高分辨率、高亮度和高色彩饱和度的图像显示效果。

闪耀光栅技术在显示领域有着广泛的应用前景,未来将会成为图像显示技术的重要发展方向。

闪耀光栅

闪耀光栅

闪耀光栅
结果:用于分光的较高级次谱线只分配到很少能量原因:单缝衍射的零级主极大方向
= 缝间干涉的零级主极大方向
闪耀光栅:通过刻槽的形状实现
使二主极大方向分开——将大部分能量(衍射零级)集中到所需的(缝间干涉)光谱极次上
θB :闪耀角
普通光栅大部分能量集中于零级—无色散闪耀光栅
反射式闪耀光栅的工作原理
∗ 闪耀角θB : 使单个刻槽面衍射的中央主极大与槽面间干涉零级主极大分开。

∗ θB 很小,,导致衍射级内只有约一级干涉主极大,其它各级干涉主极大均为缺级
d a ≈(1)当垂直于光栅平面入射时,考虑θ方向的衍射光,相邻两槽面衍射光的光程差为:
ΔL = d sin θ槽面间干涉主极大位置由光栅方程决定:
d sin θ= k λθ = 0 对应于干涉零级主极大,各级干涉主极大位置与θB 无关
反射式闪耀光栅的工作原理
* 单槽面衍射光的中央主极大位置:
θ =2θB
闪耀波长决定于:k B
B k d λθ=)2sin(* 分光仪器普遍使用此种闪耀光栅
其中称为k 级闪耀波长
k B λ闪耀光栅
(2)当垂直于光栅刻槽面入射时,考虑θ方向的衍射光,相
邻两槽面衍射光的光程差为:
ΔL = d (sin θΒ+ sin θ)
* 单槽面衍射光的中央主极大位置:入射光的反方向闪耀波长决定于:θ = θΒ
k B B k d L λθ==Δsin 2其中称为k 级闪耀波长
k B λd
θB
θB 槽间干涉0级主极大方向
-θB
单槽衍射中央主极大方向
θ = -θΒ对应于干涉零级主极大。

闪耀光栅和反射式阶梯光栅

闪耀光栅和反射式阶梯光栅

3.4.2 各种衍射光栅及应用
1. 透射光栅与反射光栅
2. 闪耀光栅
3. 光栅光谱仪
4. 波导光栅
5. 光纤光栅的应用
6. 全息光栅
2. 闪耀光栅
由光栅分光原理可知: 各波长零级衍射主极大重合,无色散。不能用于分光; 高级次衍射主极大的光能量较少。使光能量不能集中到分光
的那一级光谱。
Δ 衍射 a(sin sin ) Δ 干涉 d (sin sin )
除了P0点之外(主焦点),还有一系列光强较小的亮点 (次 焦点),相应的焦距为:
2 1 N fm m N
m 1,3,5
如图:F1 为上述P0点,波带是以F1 为中心划分的,相 邻波带到达F1 的光程差为/2。对于F3点,相邻波带到达 F3 的光程差为3/2。偶数波带已遮挡,相邻透光波带的光 程差为3,即为一焦点。
受到通信理论的启发,将物体衍射的波前与一个 离轴的参考波进行叠加,消除了共轴孪生波;使大 部分入射光不能透过的物体以及明暗连续变化的物 体都能够实现波前重现。 光学部件的缺陷会对全息的效果造成影响。
激光器的出现为全息的发展提供了机遇。使得记 录漫反射、三维的物体成为可能。 物体大小不再有限制; 漫反射物体全息(部件的影响不再明显,能够 将多个全息图叠加在底板上);
(1)按照空间维度划分
a. 平面上的一维光栅 b. 平面上的二维光栅
c. 空间三维立体光栅
(2)按照对入射光的反射和透射作用划分
a. 反射光栅——平面反射光栅,凹面反射光栅,闪耀 光栅和反射式阶梯光栅; b. 透射光栅——平面透射光栅和透射式阶梯光栅。
(3)按照衍射屏屏函数的类型划分
a. 振幅光栅 b. 相位光栅

闪耀光栅-四川大学

闪耀光栅-四川大学

§5.10 闪耀光栅
闪耀光栅:相位型反射光栅,可使能量集中到有用的某一级上去,而不是无用的零级。

一.方法:通过控制刻槽的形状使光栅本身在各个衍射单元处给入射光波引进附加的相位,就能把衍射的中央主极大转移到其它的干涉主极大上去。

图5.10-l 闪耀光栅 图5.10-2 闪耀光栅光程差的计算

二.衍射光强分布
每一刻槽相当于一单缝
根据惠更斯一菲涅耳原理,用复振幅积分法可求得其夫琅和费衍射光强分布公式为:
β
βαα22220
sin sin sin N I I = 表明:相位型反射光栅的光强分布比例于单槽衍射因子和槽间干涉因子之乘积。

讨论:
(1) 当),3,1,0("±±==K K πβ时,产生主极大
λϕϕK d =−)'sin (sin ——平面反射光栅的光栅方程
(2) 当时,0=K 'ϕϕ=,多槽干涉的零级光谱出现在对光栅平面满足反射定律的方向; (3) 当0=α时,',单槽衍射的中央主极大出现在对槽面满足反射定律的方向,它不与槽间干涉的零级主极大重合,从而实现了两个零级主极大的分离。

i i =
三.闪耀方向:单槽衍射主极大方向
λθK i d =sin cos 2
式中之K 称作闪耀级次。

讨论两种特殊情况:
(1) 若平行光束沿槽面法线n 方向人射0=i ,
λθK d =sin 2
即衍射的主极大转移到λ的K 级谱线上。

(2) 若使平行光沿光栅平面的法线N 方向入射
λθK d =2sin
由于单槽衍射的中央主极大区域有一定的宽度,故反射定向光栅可以在一定波段内把光能集中到某一级光谱上去。

闪耀光栅

闪耀光栅

闪耀光栅闪耀光栅blazed grating当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即某一光谱级上。

从这个方向探测时,光谱的强度最大,这种现象称为闪耀(blaze),这种光栅称为闪耀光栅。

在这样刻成的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角(blaze angle)。

最大光强度所对应的波长,称为闪耀波长(bl aze wavelength)。

通过闪耀角的设计,可以使光栅适用于某一特定波段的某一级光谱。

闪耀光栅的优点透射光栅有很大的缺点,主要是衍射图样中没有色散的零级主最大总是占总光能的很大一部分,其余光能分散在各级光谱中,而实际使用光栅时往往只利用它的某一级。

这对光栅的应用是很不利的。

闪耀光栅则实现了单缝衍射中央最大值的位置从没有色散的零级光谱转移到其他有色散的光谱级上。

CD光盘可以看作粗制的闪耀光栅。

第一章光学分析法引论-1.3 光谱法仪器背景知识三、光谱仪器组成:光源,单色器,样品容器,检测器(光电转换器、电子读出、数据处理及记录)。

• 光源对光源的要求:强度大(分析灵敏度高)、稳定(分析重现性好)。

*Laser=light amplification by stimulated emission of radiation2. 分光系统( monochromator, wavelength selector )定义:将由不同波长的“复合光”分开为一系列“单一”波长的“单色光”的器件。

理想的100% 的单色光是不可能达到的,实际上只能获得的是具有一定“纯度”的单色光,即该“单色光具有一定的宽度(有效带宽)。

有效带宽越小,分析的灵敏度越高、选择性越好、分析物浓度与光学响应信号的线性相关性也越好。

构成:狭缝、准直镜、棱镜或光栅、会聚透镜。

1 )棱镜( Prism ):棱镜的色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4 衍射光栅
3.4.1
3.4.2 3.4.3 各种衍射光栅及其应用
3.4.1 概述
衍射光栅应用非常广泛,通常都是基于夫朗和费多缝
衍射效应进行工作。 最早的光栅是夫朗和费在 1819 年制成的金属丝栅网, 现在的一般光栅是通过在平板玻璃或金属板上刻划出一道 道等宽、等间距的刻痕制成的。
1. 光栅的概念
c. 振幅—相位混合型光栅
(4)按照制备光栅的方法划分
a. 刻画光栅——刀刻光栅和光刻光栅
b. 腐蚀光栅 c. 复制光栅 d. 全息光栅
(5)按照光栅的面型划分
a. 平面光栅——平面反射光栅和平面透射光栅;
b. 凹面光栅——高反射率金属凹面光栅。
(6)正弦光栅
a. 正弦振幅光栅——屏函数的模按正弦函数形式变化; b. 正弦相位光栅——屏函数的辐角按正弦函数形式变化。
3.4.2 光栅方程
由多缝衍射理论,当光波垂直入射光栅时,衍射图样中
亮线位置由下式决定:
d sin = m
(m = 0, ±1, ±2, …)
—— 光栅方程当光波斜入射来自栅时,光栅方程的普遍表示式d (sin sin) = m
(m = 0, ±1, ±2, …)
为入射角——入射光与光栅平面法线的夹角; 为衍射角——第 m 级衍射光与光栅平面法线的夹角
辨的最小波长差,分辨本领定义为:
A Δ
d d cos 用角距离表示: Δ Δ d m Nd cos mN
d m d d cos
② 线色散 dl /d——波长差0.1nm的两条谱线在透镜焦平面 上分开的距离
dl d m f f d d d cos
(2)分辨本领 根据锐利判据,当 + 的 m 级主极大恰好落在 的 m 级主极大旁的第一级极小值处时, 如果 为光栅能分
(1)按照空间维度划分
a. 平面上的一维光栅 b. 平面上的二维光栅
c. 空间三维立体光栅
(2)按照对入射光的反射和透射作用划分
a. 反射光栅——平面反射光栅,凹面反射光栅,闪耀 光栅和反射式阶梯光栅; b. 透射光栅——平面透射光栅和透射式阶梯光栅。
(3)按照衍射屏屏函数的类型划分
a. 振幅光栅 b. 相位光栅
3.4.2 各种衍射光栅及应用
1. 透射光栅与反射光栅
2. 闪耀光栅
3. 光栅光谱仪
4. 波导光栅
5. 光纤光栅的应用
6. 全息光栅
2. 闪耀光栅
由光栅分光原理可知: 各波长零级衍射主极大重合,无色散。不能用于分光; 高级次衍射主极大的光能量较少。使光能量不能集中到分光
的那一级光谱。
Δ 衍射 a(sin sin ) Δ 干涉 d (sin sin )
狭义定义:平行、等宽而又等间隔的多狭缝装置。
广义定义:凡是能够起到周期性分割波振面作用的一切光
学元器件。包括晶体光栅、超声光栅、晶体折射率光栅等。
周期性地分割波振面是指:① 周期性分割波振面上的
振幅;② 周期性分割波振面上的相位;③ 既周期性分割波
振面上的振幅,又周期性分割波振面上的相位。
2. 光栅的分类
0

B 方向是单槽面衍射主极大方向:
所以
0 0
2
可求得: 2 0 因此:
2d sin 0 cos m
当 m、、、d 已知,即可确定 0
这时B方向光很强,如同物体光滑表面反射的耀眼光一样。
当沿槽面法线方向入射时:= = =0 、此时:
2d sin 0 mM
主闪耀条件。M闪耀波长;m闪耀级次。 可见闪耀波长和级次由闪耀角0 决定。
m 1, 2d sin 0 b 一级闪耀波长
1
0
1
2
3
3. 光栅光谱仪
S
透射光栅光谱仪
里特罗自准直光谱仪
光谱仪多用反射式,特别是闪耀光栅。主要性能指标: (1)色散本领 ① 角色散 d /d——波长差0.1nm的两条谱线分开的角距离
1. 透射光栅的衍射
R1

R2
dsin d
R1

R2 dsin

d dsin

dsin (a)
(b)
d (sin sin ) m m 0, 1, 2,
d (sin sin ) m m 0, 1, 2,
2. 反射光栅的衍射
光栅方程所确定的是:隶属于各级衍射亮条纹、
并且属于不同干涉级的多光束干涉主极大的方位。
从干涉的角度考虑,光栅方程实质上是多光束 干涉主极大条件加上缺级条件。
4. 衍射光栅的分光原理
d sin = m (m = 0, ±1, ±2, …) 给定光栅常数 d ,当用复色光照射时,除零级衍射光 外,不同波长的同一级衍射光不重合,即“色散”,这就 是衍射光栅的分光原理。 对应于不同波长的各级亮线称为光栅谱线,不同波长 光谱线的分开程度随着衍射级次的增大而增大,对于同一 衍射级次而言,波长大者 大,波长小者 小。
光栅周期为d,槽面与光栅平面夹角为 0(闪耀角),对于 按 角入射的光束,单槽面衍射主极大在 B 方向;而干 射主极大条件:
d (sin sin ) 2d sin

2
cos

2
m
要使 m 级干射主极大条件在单槽面衍射主极大 B 方向, 根据角度关系:
0
R1 dsin d R2 d R1 R2

dsin

dsin

dsin
d (sin sin ) m m 0, 1, 2,
d (sin sin ) m m 0, 1, 2,
3. 光栅方程的本质含义 d sin = m (m = 0, ±1, ±2, …)
当 = ,单缝衍射主极大和干涉零级极大的方向一致。
解决办法:在玻璃上刻画出锯齿形沟槽,构成闪耀光栅

衍射主极大方向

干 d
干涉主极大方向
d
透射型
反射型
光栅平面
0
B (最大强度衍射光方向)


d

0
n(刻槽面法线) A (入射光方向) N (光栅面法线)
dsin 反射式闪耀光栅的角度关系
相关文档
最新文档