大数据与网络舆情分析-大数据与网络舆情分析
基于大数据分析的网络舆情传播模型研究与建模

基于大数据分析的网络舆情传播模型研究与建模随着互联网的发展,人们对于舆情传播的关注度也越来越高。
网络舆情传播模型研究与建模是一个旨在分析和理解大数据中的舆情信息,揭示其传播机制和规律的研究领域。
本文将从定义网络舆情、大数据分析的概念入手,探讨基于大数据分析的网络舆情传播模型的研究与建模。
首先,我们需要明确什么是网络舆情。
网络舆情是指通过互联网平台上的信息流传播的涉及社会、经济、政治、文化等各个领域、各个层面的舆论和情感表达。
网民通过各种社交媒体、论坛、博客等平台进行信息发布和分享,这些信息在网络上迅速传播,引发大量网友的参与和讨论,进而形成一种舆论场景。
大数据分析是指通过对大规模数据集进行采集、存储、处理和分析,从中发现隐藏的模式、关联和趋势,进而提供决策支持和洞察。
在网络舆情研究中,大数据分析扮演着至关重要的角色。
通过搜集、爬取、存储和处理互联网上的大量数据,如新闻、微博、微信、论坛等,我们可以得到丰富的舆情信息资源。
基于大数据分析的网络舆情传播模型的研究与建模是为了深入理解和预测舆情的传播特征和机制。
在传统的舆情研究中,学者们通常基于小样本和有限信息来进行分析,这样往往不能准确反映真实的情况。
而大数据分析所采用的海量数据和算法可以帮助我们更全面地认知舆情现象,揭示网络舆情的发生、演化和蔓延规律。
在研究网络舆情传播模型时,我们可以基于影响力传播理论,构建相应的模型。
影响力传播理论认为,网络舆情传播是由一系列的信息源和受众之间的相互作用所导致的。
信息源通过发布信息,受众通过接受和传播信息,从而形成一种信息传播的网络。
在这个网络中,每个个体都有不同的影响力大小,信息的传播路径也是多样的。
我们可以通过建立数学模型,对网络舆情的传播进行建模和分析。
一个常用的网络舆情传播模型是SIR模型,即易感者(susceptible)、感染者(infected)、恢复者(removed)模型。
在这个模型中,舆情的传播过程可以看作是一种病毒的传播过程。
大数据与网络舆情分析研究报告

大数据与网络舆情分析研究报告在当今数字化的时代,互联网已经成为人们获取信息、表达观点和交流互动的重要平台。
随着网络的普及和社交媒体的兴起,网络舆情的影响力日益凸显。
大数据技术的发展为网络舆情分析提供了强大的支持,使我们能够更全面、深入地了解公众的意见和情绪。
一、大数据在网络舆情分析中的重要性大数据的特点在于其海量的数据规模、多样的数据类型、快速的数据流转和价值密度低。
这些特点使得大数据在网络舆情分析中具有不可替代的作用。
首先,大数据能够提供全面的舆情数据。
通过收集和整合来自各种网络平台的信息,包括社交媒体、新闻网站、论坛等,我们可以获得更广泛的公众意见和话题讨论。
其次,大数据能够实现实时监测。
网络舆情的发展变化迅速,实时的数据采集和分析可以帮助我们及时掌握舆情的动态,做出快速响应。
再者,大数据有助于发现潜在的舆情趋势。
通过对大量数据的挖掘和分析,可以发现一些隐藏在表面之下的规律和趋势,为预测舆情走向提供依据。
二、网络舆情的特点与传播机制网络舆情具有以下几个显著特点:一是传播速度快。
信息在网络上可以瞬间传播到全球各地,一个热点事件可能在短时间内引发广泛的关注和讨论。
二是传播范围广。
网络突破了地域和时间的限制,使得舆情能够在不同的地区和群体中迅速扩散。
三是参与主体多元化。
任何人都可以在网络上发表自己的观点和看法,舆情的来源非常广泛。
网络舆情的传播机制主要包括以下几个方面:首先是信息源的发布。
某个事件或话题的出现成为舆情的起点。
其次是社交媒体的推动。
社交媒体平台上的用户通过转发、评论等方式加速了舆情的传播。
再者是意见领袖的引导。
一些具有较高影响力和权威性的个人或组织的观点往往能够影响公众的看法。
三、大数据时代网络舆情分析的方法与技术在大数据时代,网络舆情分析主要采用以下方法和技术:数据采集技术,包括网络爬虫、API 接口等,用于获取各种网络平台上的舆情数据。
数据预处理技术,对采集到的数据进行清洗、去噪、分类等处理,以提高数据质量。
基于大数据分析的网络舆情态势感知与评估

基于大数据分析的网络舆情态势感知与评估网络舆情态势感知与评估是当今社会信息时代的重要课题之一。
随着互联网的普及和信息传播的快速发展,舆情事件的爆发和蔓延速度也越来越快。
在这样的背景下,借助大数据分析技术,可以有效地捕捉和分析网络舆情信息,从而实现对舆情态势的感知与评估。
首先,网络舆情态势感知是通过运用大数据分析技术,对海量的网络舆情数据进行搜集和分析,快速准确地捕捉事件的发生和发展。
大数据技术的应用可以帮助舆情监测和分析系统实现对社交媒体、新闻网站、论坛等多种信息源的内容监测和整合,从而及时发现与关注公众关心的热点事件。
通过对海量数据的分析,可以提取关键词、主题和情感倾向等信息,帮助利益相关者及时了解舆情的演变趋势。
其次,网络舆情态势评估是指通过采用大数据分析技术,对网络舆情进行定量和定性的评估,以便更好地理解和解读舆情的传播效果、影响范围和影响力。
通过分析网络舆情数据,可以获得事件传播的速度、规模、活跃度等指标,以及舆情事件对公众、组织和市场的影响程度。
这些评估指标能够为相关部门和企业提供决策参考和舆论引导,帮助其应对突发事件和舆情危机。
在进行网络舆情态势感知与评估时,需要借助大数据分析的相关技术和方法。
首先,需要建立一个庞大的数据采集和存储系统,可以通过网络爬虫、API接口等方式,实时地搜集和整理网络舆情数据。
其次,需要运用自然语言处理、文本挖掘和情感分析等技术,对采集到的数据进行处理和分析,提取关键信息和特征。
最后,需要运用数据可视化和统计分析等技术,将数据进行可视化展示,并在此基础上进行舆情态势评估。
通过基于大数据分析的网络舆情态势感知与评估,可以实现对舆情事件及时、准确地监测和评估,从而为社会管理、企业决策等提供科学依据。
例如,在公共安全领域,可以利用网络舆情数据进行预测分析,发现和预警突发事件,为应急管理提供及时的决策支持。
在企业营销领域,可以通过对网络舆情的感知和评估,了解消费者的喜好和需求,优化产品和服务,提升市场竞争力。
如何利用大数据进行舆情分析

如何利用大数据进行舆情分析随着信息技术的飞速发展,特别是互联网的普及,大数据的产生和应用已经成为现代社会的重要组成部分。
在这个背景下,舆情分析作为一种新兴的研究领域,受到了越来越多的关注。
舆情分析是指通过对社会公众意见和态度的搜集与分析,以了解公众对某一事件、某个人物或某一组织的看法。
本文将探讨如何利用大数据进行舆情分析,从数据的获取、处理和分析到结果的应用等方面进行详细阐述。
一、大数据在舆情分析中的重要性随着社交媒体和在线论坛的盛行,公众表达意见的渠道日益增多,大量的数据涌现出来。
这些数据不仅包括文字信息,还有图片、视频等多种形式。
大数据的特点主要体现在以下几个方面:海量性:每天产生的信息量巨大,包括社交网络、新闻网站、博客等各类平台上发表的内容。
多样性:信息来源及其表现形式极其丰富,各种格式的信息可以用于舆情分析。
实时性:社交媒体和新闻的快速传播使得舆情发展的动态变化可以被及时捕捉,提供了实时分析的可能性。
价值性:通过对这些海量信息进行处理,可以提取出有价值的信息,从而辅助决策。
因此,运用大数据技术对舆情进行全面、深入的分析对于理解公众心理、制定更有效的政策和营销策略非常重要。
二、舆情数据的获取在进行舆情分析之前,首先要明确所需的数据来源。
常见的数据来源包括:社交媒体:如微博、微信、Facebook、Twitter等,这些平台是用户言论最集中、更新最快的地方。
新闻网站:传统媒体与新兴媒体结合,可以获得专业记者写作的报道和评论。
问答社区:如知乎、Yahoo Answers等用户提问与回答的平台,反映了公众对某一问题或事件的真实想法。
博客和论坛:个人博客和讨论论坛聚焦特定兴趣群体,可以获得比较深入和专业化的意见。
抓取这些数据时,可以使用网络爬虫技术进行定向抓取,同时也要遵循相关法律法规,以保护用户隐私。
三、数据预处理获取到海量数据之后,需要对数据进行预处理,以便为后续的分析做好准备。
预处理一般包括以下几个步骤:数据清洗:去除无效或重复的数据,包括广告、垃圾信息等。
大数据在网络舆情分析中的应用

大数据在网络舆情分析中的应用随着信息技术的发展和互联网的普及,网络舆情已经成为社会关注的热点。
在这个信息爆炸的时代,舆情事件的传播速度和影响范围大大增加。
如何有效地监测、分析与应对这些舆情,成为政府、媒体和企业亟待解决的问题。
大数据作为一种新兴的技术,赋予网络舆情分析新的动力。
本文将着重探讨大数据在网络舆情分析中的应用,分析其技术特点、实施方法与实际案例,提出未来的发展方向。
大数据与网络舆情分析首先,我们需要明确什么是大数据以及网络舆情。
大数据是指无法用传统的数据处理软件进行捕捉、管理和处理的数据集合,这些数据具有海量、多样、高速、真实性与价值密度等特点。
网络舆情则是指在网络空间中,人们对特定事件、人物或问题所表现出的意见和情感。
随着社交媒体和在线论坛的兴起,网络舆情的形成变得空前复杂。
人们在不同的平台上发表自己的看法,形成多维度的意见链。
这使得仅靠传统的质性研究方法难以对网络舆情进行全面而系统的分析。
因此,将大数据技术引入到舆情分析中至关重要。
大数据在网络舆情分析中的技术应用数据采集数据采集是舆情分析的重要环节。
通过爬虫技术等手段,可以迅速抓取社交媒体、新闻网站和论坛等多个渠道的数据。
这些数据不仅包括文字,图像和视频等多种形态也是获取的重要部分。
例如,通过API接口获取Twitter或微信公众平台的数据,可以准确掌握用户的评论与转发情况,从而为后续的分析提供基础。
数据存储与管理面对海量的数据,如何存储和管理成为了一项挑战。
传统的关系型数据库往往无法承载这样的数据量。
因此,许多机构开始使用Hadoop、Spark等分布式存储和处理框架。
这些框架能够支持海量数据存储,并快速进行并行计算,从而提高数据处理效率。
数据清洗在众多来源的数据中,常常存在噪声和冗余信息。
只有经过清洗后,才能保证数据的准确性和有效性。
利用文本处理技术,可以识别并去除无关信息,例如重复评论、垃圾信息以及非结构化文本中的干扰元素。
大数据与网络舆情分析(一)2024

大数据与网络舆情分析(一)引言概述:大数据与网络舆情分析是当前信息时代的热门研究领域,随着互联网的迅速发展和智能设备的普及,人们在网络上产生的海量数据成为了研究和分析的对象。
网络舆情分析通过对大数据的处理和挖掘,可以揭示出社会舆论的动向、用户情绪的变化以及舆论的传播规律,为政府、企业和个人提供决策参考。
本文将从五个大点出发,分别介绍大数据与网络舆情分析领域的核心概念、技术方法、数据处理和挖掘的常用技术、舆情分析的应用以及未来发展趋势。
正文内容:一、核心概念1. 大数据:介绍大数据的定义、特点和来源,强调数据量、速度和多样性的重要性。
2. 网络舆情:解释网络舆论的概念,包括舆论的形成、传播和影响因素,并介绍网络舆情分析的意义和目的。
二、技术方法1. 数据采集与清洗:介绍大数据的采集方式和常用的数据清洗方法,包括爬虫技术、API接口和数据清洗的挑战。
2. 数据存储与管理:介绍大数据存储和管理的技术,包括关系型数据库、NoSQL数据库和分布式文件系统等。
3. 数据挖掘与分析:介绍数据挖掘和机器学习的基本原理,包括聚类、分类、关联规则挖掘等常用的数据分析方法。
三、数据处理和挖掘的常用技术1. 文本预处理:介绍文本数据的预处理技术,包括分词、词性标注、去除停用词、主题建模等。
2. 情感分析:介绍情感分析的方法和算法,包括基于词典的方法、机器学习方法和深度学习方法。
3. 社交网络分析:介绍社交网络分析的技术,包括网络节点度中心性、社区发现、信息传播模型等。
四、舆情分析的应用1. 政府决策:介绍政府利用大数据和网络舆情分析进行舆情监测、民意调查和决策支持的实际案例。
2. 企业营销:介绍企业利用网络舆情分析来了解用户需求、调整营销策略和建立品牌形象的实践经验。
3. 社会热点事件分析:介绍通过分析网络舆情对社会热点事件的影响和演化过程,提供舆论引导的可能性。
五、未来发展趋势1. 智能化和自动化:展望大数据与网络舆情分析的发展方向,包括人工智能、自然语言处理和深度学习技术的应用。
探析大数据背景下网络舆情热点对大学生的影响

探析大数据背景下网络舆情热点对大学生的影响随着大数据技术的发展,网络舆情热点在当今社会的影响越来越大。
大数据技术的应用促进了信息的快速传播和大规模分析,网络舆情热点通过互联网平台在社会中迅速引起广泛关注,对人们的思想观念、行为和情绪产生着巨大的影响,尤其是对大学生群体。
本文将从网络舆情热点的特点、大数据背景下网络舆情热点对大学生的影响以及如何引导大学生正确处理网络舆情热点三方面来进行探析。
一、网络舆情热点的特点网络舆情热点是指在网络平台上产生并引起广泛关注的信息话题,通常具有持续性、广泛性和瞬时性的特点。
在大数据背景下,网络舆情热点的产生和传播速度更加迅猛,大规模数据的分析和挖掘使得舆情热点更加具有引爆性和感染力。
网络舆情热点的特点主要有以下几点:1.广泛性:网络舆情热点能够快速地在网络平台上传播,并且吸引了大量的讨论和关注,具有非常广泛的影响面。
2.瞬时性:在大数据时代,网络舆情热点往往能够在短时间内引起社会的公众关注和议论,具有很强的瞬时性。
3.持续性:一旦形成网络舆情热点,它往往会在一段时间内持续发酵和影响社会,甚至对相关群体产生长期的影响。
大数据背景下,网络舆情热点对大学生的影响主要体现在以下几个方面:1.价值观影响:网络舆情热点可能会对大学生的价值观念产生影响。
通过网络传播的信息可能涉及社会热点、时事话题、娱乐八卦等各种内容,这些信息会对大学生的思想观念产生一定的影响,导致他们的价值观念发生变化。
2.心态影响:网络舆情热点会对大学生的心态产生影响。
一些热点事件可能会引发社会的不安情绪、恐慌情绪,甚至会对大学生产生情绪上的冲击和困扰,影响其正常的学习生活。
3.行为影响:网络舆情热点也可能对大学生的行为产生影响。
一些网络热点可能会导致大学生的模仿跟风行为,甚至会对他们的社交行为、消费行为产生一定的影响。
4.人际关系影响:网络舆情热点还会对大学生的人际关系产生影响。
一些热点事件可能会促使大学生参与到情绪激烈的讨论中,导致他们与同学、朋友之间产生矛盾和纷争。
大数据对于舆情分析的意义与作用

大数据对于舆情分析的意义与作用随着千禧年后互联网的快速发展和大数据技术的出现,舆情分析逐渐被广泛应用于政府、企事业单位以及社会组织的管理和决策过程中。
大数据不仅为舆情分析提供了更为丰富的数据来源,而且为舆情分析带来了更为科学、高效的分析手段和决策支持。
本文将从几个方面详细探讨大数据对于舆情分析的意义和作用。
一、丰富舆情数据来源,提高分析效率在传统的舆情分析中,研究员们所依据的数据主要来源于报刊媒体、电视台等传统的媒体平台,其收集和分析的方法显得单一而低效。
而随着社交媒体、博客等新媒体的兴起,以及互联网的不断发展,大量的用户数据也被轻松地获取并带来了丰富多样的数据来源。
通过大数据技术可以快速地对这些数据进行采集、存储和分析,使分析效率得到了极大的提升。
此外,利用大数据技术也能够从更广泛的视角、更全面的维度去观察舆情,为舆情分析提供更为全面和准确的依据。
二、深入挖掘舆情数据,提高信息精度大数据技术可以帮助舆情分析研究员对于复杂的、多元的舆情事件进行深入挖掘和分析,从而更准确地把握舆情的发展趋势。
例如,在大数据技术的支持下,可以快速采集哪些话题被提及得最多,在哪些区域讨论度高等数据和信息。
由此可以快速分析出舆情动态,发现一些潜伏的重要信息。
而且,基于大数据分析的舆情研究不仅可以进行模式识别和数据挖掘,还可以采用情感分析、主题分析、网络分析以及人工智能等多种分析手段,从不同的角度、不同的维度去解读舆情数据,大大提高了信息精度。
三、实现舆情即时预警和精细化管理传统舆情分析由于受到数据来源上的限制,通常需要花费大量的时间和精力去收集和整理数据,从而无法做到实时性。
而利用大数据技术所收集的数据是大规模、多维、高实时的,可以实现舆情即时预警和迅速响应。
借助互联网和大数据技术,可以快速了解用户的舆情需求,及时为用户提供需要的资源和反馈,并通过大数据分析进行精细化管理,提升舆情应对的效率和准确性。
四、拓展舆情分析应用场景大数据技术的应用不仅拓展了舆情分析的数据来源和信息精度,同时也拓展了应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 爆料人在腾讯微博上注册用户并进行发布。 2. 该用户爆料时,粉丝仅为9人,即初期整
个互联网中仅有9人有较小机会看到并传 播该信息。 3. 该信息经过4小时左右传播后被删除,删 除前仅转发了65次,但最终在全网范围内 进行扩散。
案例结论:
1. 舆情监测必须全平台。 2. 如仅监测大号,无法确保舆情监测业务
大数据与网络舆情分析
大数据
所有真实用户都不独立存在,紧密的社交圈在帮助用户产生数据。
社交大数据的内部爆炸 可以为任意分析提供充足的数据支撑
超过6亿互联网真实用 户档案数据。
每天新产生的数亿条的评 论,及过去4年间数百亿 的各类观点。
现在可以在一个平台上掌 握所有的这些声音。
通过这些大数据可回答以下问题:
只要内容具有传播价值,数亿微博用户中总有人会将其从门户,论 坛,朋友圈及其它各类媒介中放到微博中进行传播,因此微博可以 说是大数据时代舆情监测最重要的阵地。
微博是目前中国唯一能够满足普通用户将信息传递到全国皆知的需 求的平台。
主要的技术路线比较
方案 及时获取 完整获取 判别热度 判别真假 可扩展 稳定性
❖发布时间:中午十二点整 ❖后续:由韩寒在十分钟后进行转发 ❖后续:由亭林镇工作室的微博以及其他朋友 微博账号进行转发并持续发酵
最终结果
❖ 超过8.5万次转发,1.7万条评论 ❖ 名列当日新浪微博热门榜第一位 ❖ 各传统媒体记者纷纷要求采访事件经过 ❖ 淘宝网专门发布道歉声明并宣称会处理此事 ❖ 淘宝公关部负责人亲自致电向我道歉
日期 微博数 转发数 评论数 微信数
3.21 486 44220 12942 1
3.22 608 78114 27745 1
3.23 614 36297 13410 0
3.24 262 3964 1424
1
实时意见领袖的监测
传播地域评估
新媒体下的内容引导
什么是传统媒体?
电视、广播、报纸、杂志、布告栏、电线杆……
牛鬼蛇神屌丝聚会
这是什么?
@王左中右
每天一个汉字,读懂中国
@小丑出品
PS&吐槽
新媒体平台上的 内容包装与品牌塑造
❖独特的原创内容 ❖有针对性的受众群体 ❖紧抓热点 ❖关键的传播点 ❖良好的互动
我买了这么多货不对版的植物 我会告诉你吗?
太长!
too long!
发布微博时其他考量
内容传播分析
真实传播评估
应对技术
• 大数据采集
• 从09年开始研发搭建的高效分布式采集平台,将近百个采集点毫无规律地放置在全球各地,使采集能力大增 并且不易被平台防抓取技术拦截,已稳定采集4年相关数据。
• 大数据处理
• 自主研发了国际上最先进的非关系型数据库并利用分布式文件系统(hadoop)实现了低成本的高速数据读 写。经测试同等硬件环境下,读取速度比SQL Server或Oracle快20倍,写入快5倍。
• 微信
• 微信用户 3亿,日活跃约 2亿,公众号约200万,认证公众号与服务号约20万。
• 新一轮的信息爆炸
• 传统门户,论坛有价值信息量大约在一年1亿条左右 • 微博每天产生近2亿条各类内容
• 社交媒体特点
• 海量数据 • 大量长尾和碎片和噪音
互联网舆情现状
当前互联网舆情监测的思路
在今天的中国,任意可能被在全社会范围内传播的舆情都无法绕开 微博这一传播载体。
谁/哪些人 在讨论一个什么问题 他们的观点和期望到底是什么
可自由组织的问题
影响力评估
用户作息时间
群体/个体习惯对比分析(作息,上网)
自然状态下的用户言论
自然状态下的用户言论
移动设备更替
社交关系网结构
社交关系结构
群体/个体兴趣对比分析
网络舆情分析
互联网舆情现状
• 微博
• 新浪微博用户 6.5亿,日活跃 4600万,腾讯微博用户 6.2亿,日活跃约 1亿。 • 全国政务微博总数 17万,2012年增长 2.5倍(其中在新浪微博6万)。 • 在新浪微博开通的企业微博总数 27万,2012年增长 1.2倍。
的安全。 3. 基于社交网络的舆情传播力非常大,一
不注意就造成舆论灾难。
舆情监测的挑战
• 大数据采集
• 社交媒体数据量较传统门户论坛增长了数百倍,传统舆情平台技术无力实现全数据采集。 • 微博数据源都是高技术能力的互联网公司,反采集技术成熟,难以攻破。(短信验证,图片识别等)
• 大数据处理
• 利用传统的数据处理与存储方式,要实时处理数以亿计的数据需要投入庞大的硬件,一般公司无法承担。例 如邓亚萍的即刻搜索,就投入了近700台高性能服务器提供微博内容的搜索服务,但仍然数据缺失严重。
• 舆情的发现
• 基于国际上一些权威的传播研究论文,设计出能够实时评价舆情重要性的“热度指数”,获得国家相关奖项 认可。
• 舆论噪音的辨别与去除
• 探查整个社交网络数亿用户情况,通过真实度算法识别网络机器人,确保去除虚假互联网声音。
微博实时搜索
微信实时搜索
案例 – 平度事件
最早
影响力最大
21-24号的数据统计
什么是新媒体?
网络视频,IPTV,移动电视,数字报纸,数字杂志,博客,微博……
新媒体的优势
❖传播速度更快,信息更及时 ❖覆盖面更广,受众更多 ❖互动性更强
新媒体的特点
❖消解边界 ❖信息多元化和自由选择 ❖突破时空限制 ❖小众化与长尾效应
自媒体
什么是自媒体?
@作业本
❖784万粉丝 ❖独特的语言风格,契合时事热点的创作 ❖每条微博都有上千乃至数万转发评论
• 舆情的发现
• 任意舆情系统最终都需要将数据呈现在用户面前,在大量相关数据面前,人一天满负荷浏览最多不会超过 2000条微博,但在大数据的基础上,往往相关数据都会超过这个极限。因此如何实时将最重要的舆情信息 优先放到用户面前成为重要问题。
• 舆论噪音的辨别与去除
• 社交平台中存在大量受控制的机器账号,总量惊人,这些机器账号可以被利用快速增长某些内容的转发量。 需要有技术识别舆情的真假,防止被错误引导。
Байду номын сангаасAPI
关键词实 时获取
X
X
X
X
非常稳定
页面爬虫 重要优先
√
√
√
√
较稳定
页面爬虫根据采集能力约束主要分为:“全采集”与“组织性采集”。
案例 – 上海法官招嫖事件
事件回放:2013.8.2网上开始大量传播以
视频截图为依据的披露上海高院法官集体招 嫖的事件,该事件在全国范围内造成大范围 的传播与讨论,造成恶劣影响,微趣舆情平 台在这条暴露微博仅仅转发11次之前就捕 获了该微博。